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Background: The toxin-antitoxin (TA) system plays a vital role in the virulence 
and pathogenicity of Mycobacterium tuberculosis (M. tuberculosis). However, 
the regulatory mechanisms and the impact of gene mutations on M. tuberculosis 
transmission remain poorly understood.

Objective: To investigate the influence of gene mutations in the toxin-antitoxin 
system on M. tuberculosis transmission dynamics.

Method: We performed whole-genome sequencing on the analyzed strains 
of M. tuberculosis. The genes associated with the toxin-antitoxin system were 
obtained from the National Center for Biotechnology Information (NCBI) Gene 
database. Mutations correlating with enhanced transmission within the genes 
were identified by using random forest, gradient boosting decision tree, and 
generalized linear mixed models.

Results: A total of 13,518 M. tuberculosis isolates were analyzed, with 42.29% 
(n  =  5,717) found to be part of genomic clusters. Lineage 4 accounted for the 
majority of isolates (n  =  6488, 48%), followed by lineage 2 (n  =  5133, 37.97%). 
23 single nucleotide polymorphisms (SNPs) showed a positive correlation with 
clustering, including vapB1 G34A, vapB24 A76C, vapB2 T171C, mazF2 C85T, 
mazE2 G104A, vapB31 T112C, relB T226A, vapB11 C54T, mazE5 T344C, vapB14 
A29G, parE1 (C103T, C88T), and parD1 C134T. Six SNPs, including vapB6 A29C, 
vapB31 T112C, parD1 C134T, vapB37 G205C, Rv2653c A80C, and vapB22 C167T, 
were associated with transmission clades across different countries. Notably, 
our findings highlighted the positive association of vapB6 A29C, vapB31 
T112C, parD1 C134T, vapB37 G205C, vapB19 C188T, and Rv2653c A80C with 
transmission clades across diverse regions. Furthermore, our analysis identified 
32 SNPs that exhibited significant associations with clade size.

Conclusion: Our study presents potential associations between mutations in 
genes related to the toxin-antitoxin system and the transmission dynamics 
of M. tuberculosis. However, it is important to acknowledge the presence of 
confounding factors and limitations in our study. Further research is required to 
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establish causation and assess the functional significance of these mutations. 
These findings provide a foundation for future investigations and the formulation 
of strategies aimed at controlling TB transmission.
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1 Introduction

Tuberculosis (TB) is a global health threat caused by the highly 
successful human pathogen Mycobacterium tuberculosis 
(M. tuberculosis). According to a report by the World Health 
Organization (WHO), an estimated 10.6 million new TB cases 
occurred worldwide in 2022, resulting in over 1.3 million deaths 
(World Health Organization, 2023). Despite the substantial global 
burden of TB, our knowledge regarding the factors influencing its 
transmission remains limited. Therefore, it is imperative to delve 
deeper into the mechanisms underlying the spread of M. tuberculosis.

The toxin-antitoxin (TA) system plays a critical biological role in 
M. tuberculosis. Composed of toxins and antitoxins, this system forms 
a small genetic unit that is widely present in prokaryotes (Schuster and 
Bertram, 2013; Dai et al., 2022). TA systems have been shown to assist 
cells in stress adaptation, antibiotic resistance, biofilm formation, 
persisters, and disease development. Toxins are typically translated 
into proteins, while antitoxins can be either proteins or RNA (Ogura 
and Hiraga, 1983; Aizenman et al., 1996; Magnuson, 2007; Fineran 
et al., 2009; Wang and Wood, 2011; Lobato-Márquez et al., 2016). 
Based on the nature of antitoxins and the mechanisms which inhibit 
toxin activity, TA modules can be classified into six distinct types 
(Page and Peti, 2016). Among these types, type II TA systems are well-
characterized, where antitoxins directly interact with toxins to 
neutralize their effects. Bioinformatics and phylogenetic analyses have 
revealed the presence of numerous TA systems encoded in the 
M. tuberculosis genome. The retention of these TA systems in members 
of the M. tuberculosis complex suggests their crucial role in regulating 
metabolic pathways essential for bacterial pathogenesis. Type II TA 
systems predominate in M. tuberculosis. The abundance of TA loci in 
the M. tuberculosis genome raises important questions about their 
functional diversity (Ramage et  al., 2009; Tandon et  al., 2019). 
Previous studies have extensively investigated the various functions of 
TA systems in M. tuberculosis and their potential impact on pathogenic 
mechanisms (Schippers et al., 2005; Guo et al., 2016). These systems 
are believed to play a key role in M. tuberculosis ‘s response to stressors 
such as nutrient starvation and antibiotic treatment, promoting its 
survival and drug resistance (Kim et  al., 2018). Additionally, TA 
systems are associated with the formation of persistent cells, a 
subpopulation exhibiting drug tolerance that plays a crucial role in 
establishing chronic infections in M. tuberculosis (Merfa et al., 2016). 
While the importance of toxin-antitoxin systems in M. tuberculosis 
has been acknowledged, our understanding of their specific 
mechanisms and functions within this bacterium remains limited. 
Therefore, comprehensive research is required to explore the roles of 
TA systems and gain deeper insights into the complex biology of 
M. tuberculosis.

Driven by the need to better understand the mechanisms 
underlying M. tuberculosis transmission, we conducted an extensive 
study investigating the impact of mutations in TA system genes on its 
spread. Our research aims to elucidate how genetic variations within 
this system can influence M. tuberculosis strain transmission 
dynamics. Utilizing whole-genome sequencing (WGS), we analyzed 
the genetic variations present in M. tuberculosis isolates at a high-
resolution level. This enabled us to identify specific mutations within 
the TA system genes that may be  associated with M. tuberculosis 
transmission. Advanced statistical and bioinformatics techniques, 
including random forest, gradient boosting decision tree, and 
generalized linear mixed models, were employed for comprehensive 
analyses to identify key genetic variants linked to transmission 
dynamics. We acknowledge challenges posed by confounding factors 
and population dynamics in our analysis. Future research should 
incorporate social networks and regional interactions for a more 
comprehensive understanding. Limitations of our study include a 
focus on gene analysis, potentially overlooking other important 
genetic influences such as drug resistance mutations or virulence 
determinants. Therefore, more comprehensive studies are needed to 
address these limitations adequately. Our study has yielded significant 
results, identifying multiple single nucleotide polymorphisms (SNPs) 
within the toxin-antitoxin system genes that positively correlate with 
clustering, suggesting their potential role in M. tuberculosis 
transmission. Furthermore, some of these SNPs were found to 
be associated with transmission clades across different geographical 
regions, indicating their potential global impact on the spread of 
M. tuberculosis. These findings provide valuable insights into the 
transmission dynamics of this pathogen and contribute to a more 
thorough understanding of M. tuberculosis transmission.

2 Materials and methods

2.1 Sample collection

We collected a total of 1,550 samples from patients with culture-
positive pulmonary tuberculosis at two medical institutions in China: 
the Shandong Public Health Clinical Research Center (SPHCC) and 
Weifang Respiratory Disease Hospital (WRDH). These samples were 
obtained through analysis of sputum specimens. The sample collection 
spanned the period from 2011 to 2018. It is important to note that all 
samples were collected anonymously, and therefore, informed consent 
was not required as per the approved research protocol. Our study 
received ethical approval from the Ethics Committee of Shandong 
Provincial Hospital, which is affiliated with Shandong First Medical 
University (No.2017-337). This approval ensures that our research 

https://doi.org/10.3389/fmicb.2024.1398886
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Hou et al. 10.3389/fmicb.2024.1398886

Frontiers in Microbiology 03 frontiersin.org

adheres to ethical guidelines and safeguards the rights and privacy of 
the participants involved in the study.

2.2 DNA extraction and sequencing

Genomic deoxyribonucleic acid (DNA) was successfully extracted 
from 1,468 of the 1,550 Shandong M. tuberculosis isolates. Gene 
sequencing was performed at the Beijing Genomic Institute. The 
genomic DNA was sequenced using an Illumina HiSeq 4,000 system. 
The resulting sequence data were deposited in the National Center for 
Biotechnology Information (NCBI) BioProject PRJNA1002108. 
Quality control of the sequence reads was conducted using Fast QC 
software, and a total of 1,447 samples passed the quality control 
criteria. Low-quality raw reads with a sequencing base ≤20 or 
sequencing fragments length ≤ 20 were excluded from the paired-end 
sequencing process. During the analysis, two isolates were accidentally 
lost, resulting in 1445 isolates being included for further analysis. The 
reads of these 1,445 strains, along with 12,132 M. tuberculosis isolates 
downloaded from previous studies and collected from 52 countries 
and 18 regions worldwide, were aligned to the H37Rv reference 
genome (NC_000962.3) using BWA-MEM (version 0.7.17-r1188) 
(Luo et al., 2015; Yang et al., 2017; Coll et al., 2018; Hicks et al., 2018; 
Koster et al., 2018; Liu et al., 2018; Chen et al., 2019; Huang et al., 
2019; Jiang et al., 2020). To improve the alignment quality, clipped 
alignments and duplicated reads were removed using samclip (v0.4.0) 
and samtools markdup (v1.15), respectively. Samples with a coverage 
rate below 98% or a depth less than 20× were excluded from the 
analysis (Jajou et  al., 2019; Yang et  al., 2021). Additionally, 55 
Mycobacterium bovis isolates, one Mycobacterium caprae isolate, and 
three Mycobacterium orygis isolates were also excluded. In summary, 
a total of 13,518 genomes were analyzed in this study. Specific sample 
numbers can be found in Supplementary Tables 1, 2.

2.3 Single nucleotide polymorphism (SNP) 
analysis

After performing variant calling, we proceeded with additional 
filtering steps to enhance the quality of the detected variants. This 
involved employing Free Bayes (version 1.3.2) with an included filter 
parameter “FMT/GT = “1/1″ && QUAL> = 100 && FMT/DP > = 10 
&& (FMT/AO)/(FMT/DP) > = 0.” and Bcftools (version 1.15.1) for 
further refinement of the identified variants. To ensure the accuracy 
of our analysis, we excluded SNPs located within repetitive regions. 
This includes polymorphic sequences rich in GC found in PE/PPE 
genes, directly repeated SNPs, and repetitive bases identified using 
Tandem Repeat Finder (version 4.09) and RepeatMask (version 4.1.2-
P1) (Li et al., 2009; Liu et al., 2019). The annotation for each candidate 
SNP was determined using SnpEff, version 4.11. The resulting output 
was obtained by utilizing the Python programming language 
(Cingolani et al., 2012).

2.4 Phylogenetic analysis

Phylogenetic lineages were inferred based on specific SNPs 
following the methodology described by Coll et  al. (2014) 

(Supplementary Tables 1, 2). Maximum-likelihood phylogenetic 
and phylogenomic analyses were conducted using IQ-TREE version 
1.6.12. The phylogeny was constructed using the general time 
reversible (GTR) model of nucleotide substitution with the 
GAMMA model of rate heterogeneity, and bootstrap replicates 
were performed with 100 iterations. To establish the phylogenetic 
relationships, the genome of the Mycobacterium canettii strain 
CIPT 140010059 (NC_15848.1) was used as an outgroup (Nguyen 
et al., 2015). The resulting phylogenetic tree was visualized and 
annotated using the online phylogenetic tree visualization 
tool iTOL.1

2.5 Genotypic drug resistance prediction

We utilized the web-based tool TBProfiler (version 4.3.0) to 
analyze M. tuberculosis WGS data for drug resistance prediction 
(Phelan et  al., 2019). Drug resistance was predicted using the 
curated drug-resistance Tuberculosis Database within TBProfiler. 
This database has undergone extensive testing on over 17,000 
samples with genotypic and phenotypic data. The resistance-
associated polymorphisms (SNPs and indels) identified by 
TBProfiler were further evaluated based on the WHO-endorsed 
catalog of molecular targets for M. tuberculosis complex drug-
susceptibility testing and resistance interpretation (Walker et al., 
2022). This additional assessment ensures reliable and accurate 
interpretation of drug resistance profiles. For more detailed 
information on the predicted drug resistance results, please refer to 
Supplementary Table 3.

2.6 Propagation analysis

To explore the influence of mutations in toxin-antitoxin system 
genes on the transmission of M. tuberculosis, we conducted analyses 
on transmission clusters and transmission clades (Seto et al., 2017). 
Building upon prior research (Walker et  al., 2013), we  defined 
genome-based transmission clusters as pairs of isolates separated by 
≤12 SNPs. Genome-based transmission clades were defined as pairs 
of isolates separated by ≤25 SNPs. To classify the transmission clades 
into different categories, we adopted a classification system established 
by previous scholars. The transmission clades were categorized into 
three groups based on their size: large (above the 75th percentile), 
medium (between the 25th and 75th percentiles), and small (below 
the 25th percentile) (Chiner-Oms et al., 2019). For a comprehensive 
analysis of global distribution patterns and transmission dynamics 
among M. tuberculosis isolates, we  classified them into two main 
groups: cross-country clades and within-country clades. Cross-
country clades consisted of isolates originating from two or more 
different countries. Additionally, we  further classified the 
M. tuberculosis isolates into cross-regional and within-regional clades 
based on their geographic location, using the United Nations standard 
regions (UN M.49). Cross-regional clades comprised isolates from 
two or more different regions.

1 https://itol.embl.de/
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2.7 Acquisition of toxin-antitoxin system 
genes

Initially, our analysis started with the retrieval of all genes 
correlated with Mycobacterium tuberculosis from the NCBI database, 
which yielded a comprehensive set of 4,015 genes. We concentrated 
our study on the specific strain, Mycobacterium tuberculosis H37Rv, 
and meticulously filtered that list down to 4,009 genes, guided by their 
respective organism names. Subsequently, our attention was directed 
toward refining the gene selection, with a focus on identifying those 
associated with the toxin-antitoxin system. This involved evaluating 
their functional descriptions and characteristic annotations, resulting 
in the successful identification of 78 genes directly implicated in the 
toxin-antitoxin system. To further our investigation on these genes, 
we employed Python, a versatile programming language with robust 
data analysis capabilities, to identify mutations within the set of toxin-
antitoxin system genes (Supplementary Table 4).

2.8 Statistical analysis and modeling

Categorical data were presented as frequencies and percentages. 
In order to improve statistical reliability, Mutations observed fewer 
than 10 times were discarded prior to continuing analysis. Statistical 
analyses were performed by generalized linear mixed models 
(GLMM) in R (version 4.2.3). In addition, Python 3.7.4 with the 
Scikit-learn library was used to implement random forest and gradient 
boosting decision tree algorithms for further data analysis. To evaluate 
the performance of the models, all samples were randomly divided 
into training and test sets at a ratio of 7:3. Various metrics such as 
Kappa, sensitivity, specificity, accuracy, positive predictive value 
(PPV), negative predictive value (NPV), positive likelihood ratio 
(PLR), negative likelihood ratio (NLR), and area under curve (AUC) 
were calculated to assess the models’ effectiveness (Luo et al., 2022). 
Importantly, after fitting the models, we assessed the importance of 
input variables on the model’s predictions. By assigning scores to each 
input feature, we identified the top-performing variables by taking the 
intersection of both conditions. This approach allowed us to identify 
the most influential features contributing to the precision of predicting 
risk factors (Bi et al., 2018; Agarwal et al., 2019). All models included 
lineage and geographical location as covariates to correct for potential 
confounding factors. All statistical tests were two-tailed, with p-values 
less than 0.05 considered statistically significant.

3 Results

3.1 Characteristics of study samples

A total of 13,518 isolates were included in this study. We identified 
a total of 70,346 SNPs related to the toxin-antitoxin system. Out of the 
included strains, 6,488 (48%) belonged to lineage 4, 5,133 (37.97%) 
belonged to lineage 2, and only 10 strains (0.07%) belonged to lineage 
6, while 29 strains (0.21%) belonged to lineage 7. By dividing the 
isolates into clusters based on 12 SNPs, a total of 5,717 strains clustered 
together, resulting in a clustering rate of 0.42. The M. tuberculosis 
isolates were further categorized into 1,955 clusters, with the number 
of isolates per cluster ranging from 2 to 146. Among the lineage 4 

group, 3,245 (50.02%) isolates formed clusters, while within the 
lineage 2 group, 2,043 (39.80%) isolates formed clusters. Additionally, 
the majority of the M. tuberculosis strains analyzed in this study 
originated from Eastern Asia (n = 3,170, 23.45%) and Northern 
America (n = 1,646, 12.18%). Other regions contributing substantial 
sample sizes include Eastern Africa (n = 1731, 12.81%), Western 
Europe (n = 1,578, 11.67%), Northern Europe (n = 1,262, 9.34%), and 
Eastern Europe (n = 1,118, 8.27%), see Figure 1. Applying a threshold 
of 25 SNPs for clades, a total of 7,808 isolates claded together, resulting 
in a clading rate of 0.58. The M. tuberculosis isolates were further 
grouped into 2,218 clades, with the number of isolates per clade 
ranging from 2 to 192. Among these clades, there were 187 cross-
country clades, consisting of 2 to 3 countries per clade, and 164 cross-
regional clades, consisting of 2 to 3 regions per clade, as shown in 
Table  1. The phylogenetic tree of M. tuberculosis isolates was 
constructed as described in Figure 2.

3.2 Relationship between toxin-antitoxin 
system gene mutations and transmission 
clusters

We conducted a filtering process to exclude sites with less than 10 
mutations, resulting in a final selection of 182 SNPs for further 
analysis. Our investigation aimed to explore the correlation between 
these 182 SNPs and clustering by comparing isolates within clusters 
to those outside clusters. The generalized linear mixed model 
(GLMM) revealed that 27 SNPs were statistically significant for 
clustering (p < 0.05) (Supplementary Table 5). Among these significant 
SNPs, there were 18 nonsynonymous SNPs, one start lost site, one stop 
gained site, and seven synonymous SNPs. Notably, these genetic 
variations showed a positive correlation with transmission clusters in 
M. tuberculosis isolates, see Table  2 for details. Furthermore, 
we  employed random forest and gradient boosting decision tree 
models to establish prediction models (Table  3; Figure  3; 
Supplementary Table 14). However, the SNPs Rv0298 G213A, Rv1103c 
G56A, and Rv2871 G28C did not contribute significantly to the 
gradient boosting decision tree model. In summary, our findings 
suggested that the presence of Rv0064A (vapB1, G34A), Rv0239 
(vapB24, A76C),Rv0300 (vapB2, T171C), Rv0659c (mazF2, C85T), 
Rv0660c (mazE2, G104A), Rv0748 (vapB31, T112C), Rv1247c (relB, 
T226A), Rv1560 (vapB11, C54T), Rv1943c (mazE5, T344C), Rv1952 
(vapB14, A29G), Rv1959c (parE1, C103T, C88T), Rv1960c (parD1, 
C134T), Rv1991A (mazE6, G156A), Rv2009 (vapB15, T6C, G237A), 
Rv2142c (parE2, C48G), Rv2142A (parD2, A196G), Rv2274c (mazF8, 
A97G), Rv2526 (vapB17, G213C), Rv2550c (vapB20, A54C), Rv2654c 
T152C, Rv2862A (vapB23, T2C), and Rv3385c (vapB46, G70A) were 
positively associated with transmission clusters in 
M. tuberculosis isolates.

3.3 Relationship between toxin-antitoxin 
system gene mutations and transmission 
clusters of lineages

After excluding sites with less than 10 mutations, a total of 46 
SNPs were identified and included for further analysis. Specifically 
focusing on clustered isolates belonging to lineage 2, we investigated 
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the relationship between these 46 SNPs and non-clustered isolates. 
The GLMM analysis revealed that five SNPs showed statistical 
significance for clustering (p < 0.05) (Supplementary Table 6). Among 
these significant SNPs, there were three nonsynonymous SNPs, one 
start lost site, and one synonymous SNP, all of which displayed a 
positive correlation with clustering. Notably, these significant SNPs 
included Rv0239 (vapB24, A76C), Rv0659c (mazF2, C85T), Rv1959c 
(parE1, C25G), Rv1991A (mazE6, G156A), and Rv2862A (vapB23, 
T2C). Furthermore, prediction models were established using random 
forest and gradient boosting decision tree algorithms 
(Supplementary Tables 10, 15; Supplementary Figure 1). The findings 
demonstrated that vapB24 A76C, mazF2 C85T, parE1 C25G, mazE6 
G156A, and vapB23 T2C significantly contributed to both the random 
forest and gradient boosting decision tree models. Overall, our results 
indicated a positive correlation between the SNPs vapB24 A76C, 
mazF2 C85T, parE1 C25G, mazE6 G156A, vapB23 T2C and 
transmission clusters within M. tuberculosis isolates of lineage 2.

After filtering out sites with less than 10 mutations, we selected a 
total of 82 SNPs for further analysis. Our focus was specifically on 
clustered isolates belonging to lineage 4, and we aimed to investigate 
the relationship between these 82 SNPs and clustered isolates. Using 
the GLMM analysis, we identified 17 SNPs that showed statistical 
significance for clustering (p < 0.05) (Supplementary Table 7). Among 
these significant SNPs, 11 were nonsynonymous SNPs, one was a stop 
gained SNP, and five were synonymous SNPs, all exhibiting a positive 
correlation with clustering, see Table  4 for details. Furthermore, 
we established prediction models using random forest and gradient 
boosting decision tree algorithms (Supplementary Tables 11, 16; 

Supplementary Figure 2). However, the SNPs Rv0064A G34A, Rv2009 
T6C, Rv2104c G249T, and Rv3385c G70A did not contribute 
significantly to the gradient boosting decision tree model. In summary, 
our findings indicated a positive correlation between the SNPs Rv0300 
(vapB2, T171C), Rv0660c (mazE2, G104A), Rv1560 (vapB11, C54T), 
Rv1943c (mazE5, T344C), Rv1952 (vapB14, A29G), Rv1959c (parE1, 
C88T), Rv1960c (parD1, C134T), Rv2009 (vapB15, G237A), Rv2142c 
(parE2, C48G), Rv2274c (mazF8, A97G), Rv2526 (vapB17, G213C), 
Rv2550c (vapB20, A54C), Rv2871 (vapB43, G28C), and transmission 
clusters within lineage 4 of M. tuberculosis isolates.

3.4 Relationship between toxin-antitoxin 
system gene mutations and cross-country 
transmission

After excluding sites with fewer than 10 mutations, a total of 128 
SNPs within genes associated with the toxin-antitoxin system were 
identified and included for analysis. The objective was to investigate 
the relationship between these SNPs and cross-country transmission 
clades. The GLMM analysis revealed that seven nonsynonymous SNPs 
exhibited statistical significance for cross-country transmission clades 
(p < 0.05) (Supplementary Table 8). These significant SNPs included 
Rv0657c (vapB6, A29C), Rv0748 (vapB31, T112C), Rv1960c (parD1, 
C134T), Rv2104c (vapB37, G205C), Rv2547 (vapB19, C188T), Rv2653c 
A80C, and Rv2830c (vapB22, C167T). Additionally, random forest and 
gradient boosting decision tree models were employed to establish 
prediction models for these SNPs (Supplementary Tables 11, 17; 

FIGURE 1

Distribution of 13,518 strains of Mycobacterium tuberculosis in 18 regions of the world.
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Supplementary Figure 3). The results indicated that vapB6 A29C, 
vapB31 T112C, parD1 C134T, vapB37 G205C, Rv2653c A80C, and 
vapB22 C167T made significant contributions to both the random 
forest and gradient boosting decision tree models. However, the SNP 
vapB19 C188T did not contribute significantly to the gradient 
boosting decision tree model. Overall, our results showed that vapB6 
A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, Rv2653c A80C, 
and vapB22 C167T were positively correlated with transmission clades 
across different countries.

3.5 Relationship between toxin-antitoxin 
system gene mutations and cross-regional 
transmission

After excluding sites with less than 10 mutations, we identified 
and included a total of 128 SNPs of toxin-antitoxin system genes. The 
GLMM showed that seven nonsynonymous SNPs were found to 
be statistically significant for transmission clades of cross-country 
(p < 0.05) (Supplementary Table  9), including Rv0657c (vapB6, 
A29C), Rv0748 (vapB31, T112C), Rv1960c (parD1, C134T), Rv2104c 
(vapB37, G205C), Rv2547 (vapB19, C188T), Rv2653c A80C, Rv2830c 
(vapB22, C167T). Two prediction models were established using 

random forest and gradient boosting decision tree 
(Supplementary Tables 13, 18; Supplementary Figure 4), we found 
that vapB6 A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, 
vapB19 C188T and Rv2653c A80C also contributed most to the 
random forest and gradient boosting decision tree. However, the SNP 
of vapB22 C167T did not contribute significantly to the gradient 
boosting decision tree model. Overall, our results showed that vapB6 
A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, vapB19 C188T, 
and Rv2653c A80C were positively correlated with transmission 
clades across different regions.

3.6 Relationship between toxin-antitoxin 
system gene mutations and clade size

After excluding sites with less than 10 mutations, a total of 128 
SNPs within the toxin-antitoxin system were identified and included 
for analysis. The results revealed that 32 SNPs were significantly 
associated with clade size (p < 0.05). Among these significant SNPs, 
there were 21 nonsynonymous SNPs, two stop gained SNPs, and nine 
synonymous SNPs, all of which displayed a positive correlation with 
clade size. Notable examples include vapB1 G34A, mazE2 G104A, 
vapB11 C54T, mazE5 T344C, vapB14 A29G, parE1 C88T, parD1 
C134T, vapB15 T6C, parE2 C48G, mazF8 A97G, and vapB46 
G70A. For more detailed information, please refer to 
Supplementary Figure 5.

4 Discussion

Consistent with prior research findings, our study further 
emphasizes the diverse functionality of TA systems in M. tuberculosis. 
These redundant TA systems serve as a backup mechanism enabling 
cellular adaptation and survival under adverse conditions (Min et al., 
2012). They play a critical role in M. tuberculosis’s stress response, 
including nutrient deprivation, by regulating essential cellular 
processes like DNA replication, protein translation, and cell division. 
Moreover, TA systems contribute to the formation of drug resistance 
and persistence in M. tuberculosis. However, it is important to 
acknowledge that certain studies have reported conflicting results 
regarding the specific contributions of TA systems to persistence 
formation and stress conditions (Yu et al., 2020; Sharma et al., 2021). 
These discrepancies may arise from variations in experimental setups 
or genetic differences among M. tuberculosis strains used in different 
investigations. Therefore, additional research is needed to precisely 
determine the roles of TA systems in persistence formation, stress 
responses, and their impact on M. tuberculosis pathogenesis. In our 
study, we  focused on examining the relationship between gene 
mutations in toxin-antitoxin systems and the transmission dynamics 
of M. tuberculosis. The M. tuberculosis genome contains numerous 
toxin-antitoxin systems, including VapBC, MazEF, ParDE, and RelBE 
(Ramage et al., 2009; Tandon et al., 2019). To gain deeper insights 
into the significance of these toxin-antitoxin systems in 
M. tuberculosis transmission, we analyzed the prevalence and genetic 
variation of specific toxin-antitoxin system genes across various 
clusters and evolutionary branches. Our analysis detected multiple 
mutations in these genes, suggesting they could be  involved in 
M. tuberculosis transmission.

TABLE 1 The characteristics of Mycobacterium tuberculosis isolates.

Characteristic Number of isolates (%)

Lineage

Lineage 1 851 (6.30)

Lineage 2 5,133 (37.97)

Lineage 3 969 (7.17)

Lineage 4 6,488 (48)

Lineage 5 38 (0.28)

Lineage 6 10 (0.07)

Lineage 7 29 (0.21)

12 SNPs

Cluster 5,717 (42.29)

No-cluster 7,807 (57.71)

Lineage 2 cluster 2043 (39.80)

no-cluster 3,090 (60.20)

Lineage 4 cluster 3,245 (50.02)

no-cluster 3,243 (49.98)

25 SNPs

Clade 7,808 (57.76)

No-Clade 5,710 (42.24)

Cross_country Yes 704 (9.02)

No 7,104 (90.98)

Cross_regional Yes 650 (8.32)

No 7,158 (91.68)

Clades by size Small 2,548 (32.63)

Medium 3,264 (41.80)

Large 1996 (25.56)
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In our study, we have found a strong association between SNPs in 
the VapB antitoxin-related genes and the transmission of 
M. tuberculosis. Specifically, we identified several significant SNPs that 
were linked to transmission, including vapB1 G34A, vapB24 A76C, 
vapB31 T112C, vapB14 A29G, and vapB15 (T6C, G237A). 
We observed that vapB24 A76C and vapB23 T2C were particularly 
associated with transmission, especially in lineage 2. Additionally, 
vapB2 T171C, vapB11 C54T, vapB14 A29G, vapB15 G237A, vapB17 
G213C, and vapB20 A54C were significantly related to transmission, 
especially in lineage 4. Furthermore, we found that vapB43 G28C was 
associated with transmission in lineage 4, while vapB6 A29C, vapB31 
T112C, and vapB37 G205C were correlated with cross-country and 
cross-regional transmission. We also found that vapB1 G34A, vapB11 
C54T, vapB14 A29G, vapB15 T6C, and vapB46 G70A were related to 
clade size. The VapBC system is crucial for regulating the behavior and 
adaptation of M. tuberculosis under diverse environmental stresses. It 
comprises stable VapC toxins and labile VapB antitoxins, whose 
interplay is essential for bacterial growth, survival, and response to 
stress conditions (Robson et al., 2009; Winther and Gerdes, 2011). 
During periods of stress, antitoxin molecules are degraded, leading to 
the release of toxins, such as VapC, through their RNase activity (Min 
et al., 2012). Consequently, these toxins inhibit or slow down cellular 
metabolism, providing a survival advantage to the bacterium during 
adverse conditions. The delicate balance between VapB antitoxins and 

VapC toxins is crucial for maintaining bacterial homeostasis and 
ensuring appropriate responses to external stimuli (McKenzie et al., 
2012). Overall, our study provides compelling evidence for the 
significant association between SNPs in VapB antitoxin-related genes 
and M. tuberculosis transmission. These findings shed light on the 
intricate role of the VapBC toxin-antitoxin system in regulating 
bacterial behavior and underscore the importance of genetic variations 
within this system in shaping transmission dynamics.

Our study has revealed the association between SNPs in other 
TA system genes and the transmission of M. tuberculosis. Specifically, 
we focused on the MazEF family, which consists of nine TA systems 
encoded in an operon (Ahmed et  al., 2022). We  found a close 
connection between the mazE6 G156A and mazF2 C85T gene 
polymorphisms and the transmission clusters, particularly within 
lineage 2. These variants exhibited significant correlations with the 
formation and expansion of transmission clusters. However, mazE6 
G156A is a synonymous mutation (Arg52Arg), which does not 
directly alter the protein’s function but may still affect the protein 
through other mechanisms. For example, in certain situations, 
synonymous mutations can lead to changes in transcription 
regulatory elements, thereby influencing gene expression levels. 
However, further research is needed to confirm these effects. 
Similarly, the mazF2 C85T variant may alter the stability of the MazF 
and modulate the delicate balance between toxin and antitoxin 

FIGURE 2

A phylogenetic tree is depicted for the Mycobacterium tuberculosis isolates, with the outer circle indicating mutation sites of the toxin-antitoxin system 
genes. (A) Phylogenetic tree for the Mycobacterium tuberculosis isolates of lineage 2. (B) Phylogenetic tree for the Mycobacterium tuberculosis 
isolates of lineage 4.
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interactions (Leplae et al., 2011). Furthermore, our study identified 
a strong correlation between the mazE2 G104A, mazE5 T344C, and 
mazF8 A97G gene polymorphisms and the transmission clusters, 
especially within lineage 4 and clade size. While it’s plausible that 
these genetic variations influence the MazEF system activity, stability, 
and domain structure, our ability to fully elucidate these mechanisms 
is currently limited. Therefore, it’s crucial to interpret these functional 
implications cautiously and consider other potential contributory 
factors to M. tuberculosis transmission. Furthermore, no SNPs in the 
MazEF system were found to be associated with cross-country and 
cross-regional transmission of M. tuberculosis in our study. Future 
investigations should aim to provide a more comprehensive 
understanding of these effects, confirm these hypotheses, and 
uncover the precise impact of these mutations on the dynamics of 
M. tuberculosis transmission.

The ParDE toxin-antitoxin system in M. tuberculosis plays a 
crucial role in bacterial transmission dynamics. Our research has 
identified specific genetic variations in the parE and parD genes, such 
as parE1 C88T, parE2 C48G, parE1 C103T, parD2 A196G, parE1 
C25G, and parD1 C134T, that are closely linked to transmission 
clusters, particularly within lineage 4 and lineage 2. These genetic 
variants impact cross-country and cross-regional transmissions, 
highlighting the significance of the ParDE system in the spread of 
M. tuberculosis. Variations in the parD gene, including those involving 
Rv2142A (parD2) and Rv1960c (parD1), can modify the activity and 
regulatory mechanisms of the ParD antitoxin. Similarly, variations in 
the parE gene, particularly those affecting Rv1959c (parE1), influence 
the function and stability of the ParE toxin, thus impacting its 
interaction with the ParE antitoxin (Xu et al., 2018). Understanding 
these genetic interactions is crucial for deciphering M. tuberculosis 

TABLE 2 Positive correlation between toxin-antitoxin system gene mutations and transmission clusters.

Rv 
number

Gene Position SNP Amino acid 
changes

Generalized linear mixed 
model

Random 
forest

Gradient 
boosted 

classification 
tree

p value OR (95%CI) Importance 
score

Importance 
score

Rv0064A vapB1 71,622 G34A Asp12Asn 0.001 3.241 (1.596–6.581) 0.00289 0.00120

Rv0239 vapB24 289,179 A76C Thr26Pro 0.001 18.331 (3.116–107.848) 0.00364 0.00530

Rv0298 - 363,464 G213A Arg71Arg 0.041 4.802 (1.068–21.597) 0.00868 0

Rv0300 vapB2 363,996 T171C Gly57Gly 0.009 3.387 (1.354–8.476) 0.00313 0.00120

Rv0659c mazF2 754,909 C85T Arg29Cys 0.015 3.678 (1.283–10.545) 0.00296 0.00040

Rv0660c mazE2 755,122 G104A Arg35His 2.82E-04 4.474 (1.993–10.045) 0.01997 0.03120

Rv0748 vapB31 841,058 T112C Phe38Leu 0.01 19.632 (2.051–187.954) 0.00189 0.00190

Rv1103c mazE3 1,231,236 G56A Gly19Asp 0.031 4.242 (1.139–15.798) 0.00030 0

Rv1247c relB 1,389,019 T226A Phe76Ile 0.006 8.273 (1.827–37.465) 0.00072 0.00270

Rv1560 vapB11 1,764,808 C54T Ala18Ala 4.78E-08 15.895 (5.888–42.909) 0.00348 0.00100

Rv1943c mazE5 2,195,004 T344C Leu115Pro 0.006 17.911 (2.282–140.553) 0.00319 0.00250

Rv1952 vapB14 2,200,754 A29G Lys10Arg 0.001 2.262 (1.383–3.7) 0.00959 0.00360

Rv1959c parE1 2,203,875 C103T Leu35Leu 0.004 2.254 (1.304–3.895) 0.00730 0.00520

Rv1959c parE1 2,203,890 C88T Gln30* 4.27E-12 8.558 (4.662–15.709) 0.01542 0.01690

Rv1960c parD1 2,204,092 C134T Thr45Ile 1.08E-04 4.986 (2.211–11.244) 0.00559 0.00600

Rv1991A mazE6 2,234,736 G156A Arg52Arg 8.65E-05 9.605 (3.104–29.72) 0.00468 0.00500

Rv2009 vapB15 2,258,035 T6C Tyr2Tyr 4.42E-05 4.692 (2.235–9.853) 0.00167 0.00340

Rv2009 vapB15 2,258,266 G237A Glu79Glu 0.014 2.765 (1.231–6.207) 0.00385 0.00170

Rv2142c parE2 2,402,463 C48G Phe16Leu 7.44E-06 6.461 (2.857–14.612) 0.00572 0.00910

Rv2142A parD2 2,402,527 A196G Ile66Val 0.011 3.531 (1.337–9.327) 0.00143 0.00040

Rv2274c mazF8 2,546,709 A97G Ile33Val 4.77E-07 21.31 (6.478–70.103) 0.00772 0.01290

Rv2526 vapB17 2,851,303 G213C Glu71Asp 0.033 3.93 (1.119–13.795) 0.00187 0.00090

Rv2550c vapB20 2,870,311 A54C Glu18Asp 0.044 3.111 (1.033–9.375) 0.00220 0.00270

Rv2654c - 2,977,083 T152C Val51Ala 0.049 2.795 (1.002–7.795) 0.00151 0.00030

Rv2862A vapB23 3,174,748 T2C Ile1? 0.005 2.271 (1.273–4.05) 0.00280 0.00130

Rv2871 vapB43 3,183,165 G28C Glu10Gln 0.005 6.967 (1.816–26.73) 0.00277 0

Rv3385c vapB46 3,799,874 G70A Ala24Thr 0.002 2.74 (1.427–5.263) 0.00203 0.00140

OR, odds ratio; CI, confidence interval. *Represents a stop SNP.
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transmission dynamics and developing targeted interventions to 
effectively combat tuberculosis. Additionally, our research has 
identified a unique SNP, T226A, in the relB gene that is associated with 
transmission clusters in M. tuberculosis. This genetic variation further 
adds to the complexity of bacterial transmission dynamics, 
highlighting the intricate interplay between genetic factors and the 
spread of M. tuberculosis.

In terms of drug development and therapeutic interventions, our 
research findings could potentially have significant implications. The 
diverse functions of TA systems suggest potential targets for novel 
therapeutic strategies in M. tuberculosis. Understanding the 
relationship between genetic variations and functional consequences 
within these TA systems might help us discover new methods to 
disrupt or modulate their activity, thereby affecting the survival and 
transmission dynamics of the bacterium. Firstly, interventions 
targeting specific SNPs in TA systems such as VapBC, MazEF, ParDE, 
and RelBE could possibly directly alter the stability and activity of their 
toxins or antitoxins, thus impacting the growth, survival, and 
adaptability of M. tuberculosis (Robson et al., 2009; Leplae et al., 2011; 
Winther and Gerdes, 2011; McKenzie et al., 2012; Ahmed et al., 2022). 
The SNPs we discovered, including vapB24 A76C and vapB23 T2C, 
have the potential to serve as genetic markers for targeted drug design, 
allowing for more personalized treatment approaches. Additionally, 
mutations like parE1 C88T, parE2 C48G, and parE1 C103T show 
associations with cross-national and cross-regional transmissions of 
M. tuberculosis, which could aid in the development of more effective 
treatment plans to reduce global transmission. However, it’s important 
to note that while these genetic insights hold potential, they still 

require experimental validation to confirm their clinical significance 
and functional implications. Each mutation may lead to different 
functional impacts, and there might be other complexities involved, 
such as drug tolerance or adaptability of the bacterium under different 
environmental conditions. Therefore, further research is needed to 
delve deeper into the functional impacts of these genetic variations 
and precisely determine their roles in new drug development and 
treatment strategies. It is crucial to validate these findings through 
rigorous experimental studies and clinical trials before implementing 
them in clinical practice. Future research should aim to elucidate the 
specific mechanisms underlying these genetic variations and their 
contributions to drug response and transmission dynamics. By 
gaining a better understanding of the functional implications, we can 
more accurately tailor treatment strategies and contribute to the 
development of more targeted and effective interventions.

Our findings emphasize that both synonymous and 
non-synonymous mutations can influence the transmission of 
M. tuberculosis, suggesting that synonymous mutations in TA system 
genes are not universally neutral, in line with prior research by Shen 
et  al. (2022). We  believe that synonymous mutations may affect 
mRNA stability, splicing, or secondary structure formation. Changes 
in these regulatory elements can influence gene expression patterns 
and protein folding, thereby impacting bacterial adaptability and 
transmission capacity. Additionally, synonymous mutations may 
be part of a compensatory mechanism. While synonymous mutations 
themselves may not directly provide selective advantages, they may 
be  associated with compensatory changes in other regions of the 
genome. These compensatory mutations could restore proper 

TABLE 3 The performance of various models for discriminating clustered isolates from non-clustered isolates.

Parameters Training set
(n  =  9,462, 3,998 clustered isolates,

5,464 non-clustered isolates)

Test set
(n  =  4,056, 1719 clustered isolates,

2,337 non-clustered isolates)

Random forest Gradient boosted 
classification tree

Random forest Gradient boosted 
classification tree

Kappa 0.447 0.43 0.414 0.371

AUC 0.801 0.782 0.777 0.752

(95% CI) (0.793, 0.809) (0.774, 0.79) (0.764, 0.79) (0.739, 0.765)

Sensitivity 0.625 0.614 0.602 0.586

(95% CI) (0.615, 0.635) (0.604, 0.624) (0.587, 0.617) (0.571, 0.601)

Specificity 0.815 0.809 0.804 0.779

(95% CI) (0.807, 0.823) (0.801, 0.817) (0.792, 0.816) (0.766, 0.792)

PPV 0.712 0.701 0.694 0.663

(95% CI) (0.703, 0.721) (0.692, 0.71) (0.68, 0.708) (0.648, 0.678)

NPV 0.748 0.742 0.733 0.717

(95% CI) (0.739, 0.757) (0.733, 0.751) (0.719, 0.747) (0.703, 0.731)

PLR 2.826 2.717 2.6 2.346

(95% CI) (2.811, 2.841) (2.702, 2.732) (2.577, 2.623) (2.322, 2.37)

NIR 0.354 0.368 0.385 0.426

(95% CI) (0.321, 0.387) (0.335, 0.401) (0.336, 0.434) (0.38, 0.472)

Accuracy 0.735 0.727 0.719 0.697

(95% CI) (0.726, 0.744) (0.718, 0.736) (0.705, 0.733) (0.683, 0.711)

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio; CI, confidence.
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interactions between proteins, maintain enzyme activity, or optimize 
cellular functions affected by primary mutations, ultimately enhancing 
transmission capacity. Although the specific mechanisms and 
advantages of synonymous mutations in tuberculosis transmission are 
not yet fully understood, we  cannot overlook their potential 
significance. Future research should consider the functional 
consequences of synonymous mutations and explore their interactions 
with other genetic factors, including non-synonymous mutations, 
drug resistance mutations, or virulence determinants. In our study, 
we combined local and global datasets to increase sample size for 
robust analysis of M. tuberculosis genetic variations. This approach 
helped identify shared and distinct variants across regions, enhancing 
our understanding of global pathogen diversity. Despite potential 
limitations such as variability from different protocols and sequencing 
technologies, stringent quality control measures, including SNP 
filtering within repetitive regions, were applied to minimize biases. 
Our novel findings contribute valuable insights into global 
M. tuberculosis genetic characteristics, advancing knowledge on 
tuberculosis pathogenesis and evolution. In future research, separate 

and comparative analyses of local and global data can be considered 
to highlight region-specific variations.

In our study, we  investigated the impact of mutations in TA 
system genes on tuberculosis transmission. However, it is crucial to 
acknowledge that these correlations alone do not establish a causal 
relationship and should be interpreted with caution. Our modeling 
approach has limitations, notably in addressing potential confounding 
factors, such as population mobility, social networks, and inter-
regional interactions. These elements may influence M. tuberculosis 
transmission but were not fully integrated into our models. 
We recognize that our primary focus on mutations within TA system 
genes may have led us to overlook other significant genetic influences, 
including SNPs related to drug resistance mutations or virulence 
determinants. While our findings contribute to the growing body of 
knowledge regarding the impact of toxin-antitoxin system gene 
mutations on tuberculosis transmission, further research is necessary 
to explore these intersections and understand their functional 
significance in detail. Limitations also arise from the sheer number of 
genes and computational resources required, which restricted our 

FIGURE 3

Conduct ROC curve analysis to evaluate the performance of models for the relationship between mutations in toxin-antitoxin system genes and 
transmission clusters. (A) ROC analysis showing the performance of the random forest model. (B) ROC analysis showing the performance of the 
gradient boosting decision tree.
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ability to analyze SNPs beyond the scope of our current investigation. 
Moreover, we lack a clear understanding of the cross-interactions and 
mutual regulation among the TA systems of M. tuberculosis, adding 
another layer of complexity to our study. Additionally, uncertainties 
inherent in the phylogenetic inference method used, such as 
homoplasy or recombination events, can present challenges when 
accurately determining evolutionary relationships. Therefore, future 
research should consider alternative methods to validate these 
findings and develop a more nuanced understanding of tuberculosis 
transmission. Further experimental validation is necessary to confirm 
the specific impact of TA system gene mutations. Future investigations 
should focus on refining our models to account for potential biases or 
shortcomings, and expanding research scope to explore the functional 
significance of these mutations and their direct influence on 
tuberculosis transmission.

We also discuss the limitations of using H37Rv as a single 
reference genome for analyzing M. tuberculosis WGS data, 
particularly regarding virulence and transmission. Recent studies 
suggest that relying solely on H37Rv may not fully capture the 
virulence characteristics of M. tuberculosis. H37Rv, commonly used 
as a reference genome in molecular epidemiology and drug resistance 
studies, does not represent the genetic diversity and variations 
present across all M. tuberculosis strains. Polymorphic loci involving 
genes associated with pathogenicity and host immune response, such 
as phospholipase C, membrane lipoproteins, adenylate cyclase gene 
family members, and PE/PPE gene family members, show significant 
differences between H37Rv and clinical isolates. Several gene 
families, including PE/PPE, exhibit higher substitution frequencies 

compared to the entire genome. Widespread genetic variability is 
observed at these polymorphic loci among M. tuberculosis clinical 
isolates (Fleischmann et  al., 2002; O’Toole and Gautam, 2017). 
Phylogenetic and epidemiological analyses reveal independent 
occurrences of these polymorphisms, suggesting selective pressures 
driving these changes. Future research should incorporate genome 
sequences of additional reference strains, especially those directly 
obtained from clinical isolates, to comprehensively understand 
factors related to M. tuberculosis virulence and enable further 
investigations. For drug resistance inference, our analysis primarily 
utilized the TBProfiler platform. While incorporating additional 
tools/methods such as PhyResSE or bioinformatic SNP analysis 
could enhance robustness, resource constraints limited their 
implementation in this study. Thus, our results should be interpreted 
within the context of utilizing TBProfiler alongside the 
WHO-endorsed catalog. Future studies with expanded resources 
could consider alternative tools/methods for validation 
and complementation.

5 Conclusion

The results of this study suggest that mutations in toxin-antitoxin 
genes may increase the risk of M. tuberculosis transmission, 
underscoring the significance of conducting further research to 
explore the impact of these mutations on M. tuberculosis control and 
transmission. These findings offer new insights into the development 
of drug treatment strategies against tuberculosis.

TABLE 4 Positive correlation between toxin-antitoxin system gene mutations and transmission clusters of lineage4.

Rv 
number

Gene Position SNP Amino acid 
changes

Generalized linear mixed 
model

Random 
forest

Gradient 
boosted 

classification 
tree

p value OR (95%CI) Importance 
score

Importance 
score

Rv0064A vapB1 71,622 G34A Asp12Asn 0.005 2.806 (1.371–5.741) 0.00503 0

Rv0300 vapB2 363,996 T171C Gly57Gly 0.024 2.818 (1.144–6.94) 0.00791 0.00400

Rv0660c mazE2 755,122 G104A Arg35His 0.006 3.115 (1.378–7.038) 0.04155 0.09480

Rv1560 vapB11 1,764,808 C54T Ala18Ala 6.78E-06 10.003 (3.669–27.271) 0.00691 0.00690

Rv1943c mazE5 2,195,004 T344C Leu115Pro 0.005 19.158 (2.435–150.733) 0.00847 0.00890

Rv1952 vapB14 2,200,754 A29G Lys10Arg 0.002 2.219 (1.357–3.63) 0.02088 0.00870

Rv1959c parE1 2,203,890 C88T Gln30* 5.10E-13 10.267 (5.457–19.315) 0.03006 0.05750

Rv1960c parD1 2,204,092 C134T Thr45Ile 0.001 4.27 (1.862–9.791) 0.01080 0.00620

Rv2009 vapB15 2,258,035 T6C Tyr2Tyr 0.04 2.218 (1.036–4.753) 0.00410 0

Rv2009 vapB15 2,258,266 G237A Glu79Glu 0.008 2.993 (1.333–6.721) 0.00346 0.00770

Rv2104c vapB37 2,364,533 G249T Gly83Gly 0.006 8.238 (1.804–37.608) 0.00494 0

Rv2142c parE2 2,402,463 C48G Phe16Leu 0.005 3.301 (1.438–7.575) 0.00375 0.00340

Rv2274c mazF8 2,546,709 A97G Ile33Val 0.001 29.592 (3.984–219.821) 0.01375 0.02100

Rv2526 vapB17 2,851,303 G213C Glu71Asp 0.037 3.828 (1.087–13.487) 0.00452 0.00050

Rv2550c vapB20 2,870,311 A54C Glu18Asp 0.02 3.792 (1.228–11.705) 0.00432 0.00080

Rv2871 vapB43 3,183,165 G28C Glu10Gln 0.004 7.272 (1.882–28.103) 0.00923 0.00140

Rv3385c vapB46 3,799,874 G70A Ala24Thr 0.041 2.014 (1.03–3.937) 0.00303 0.00000

OR, odds ratio; CI, confidence interval. *Represents a stop SNP.
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