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Marine dinoflagellate species in the genus Alexandrium are well known to 
produce paralytic shellfish poison as well as common coastal species with 
cosmopolitan distribution. However, few studies on the feeding of copepods 
on Alexandrium species have been conducted. The toxic dinoflagellate 
Alexandrium pseudogonyaulax contains goniodomin A and causes red tides in 
many countries. To investigate the relationship between the toxic dinoflagellate 
A. pseudogonyaulax and the calanoid copepods Acartia spp., we quantified the 
ingestion rates of Acartia spp. feeding on A. pseudogonyaulax as a function of 
prey concentration. Additionally, we estimated grazing coefficients by integrating 
data from field observations of Acartia spp. and coexisting A. pseudogonyaulax 
with laboratory measurements of ingestion rates obtained during this 
investigation. Furthermore, we compared the ingestion rates of Acartia spp. and 
other predators feeding on Alexandrium species as previously reported. The 
ingestion rates of Acartia spp. on A. pseudogonyaulax increased continuously 
with increasing mean prey concentration. The highest values among the 
ingestion rate of Acartia spp. feeding on A. pseudogonyaulax was 3,407 cells 
predator−1 d−1 (4,872  ng C predator−1 d−1) at the given prey concentration. The 
calculated grazing coefficients for Acartia spp. on A. pseudogonyaulax in 
Shiwha Bay, Korea, were up to 0.073 d−1. The results of this study suggest that 
A. pseudogonyaulax may decrease or maintain the population of Acartia spp. in 
marine food webs.
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1 Introduction

Marine dinoflagellates and copepods are important components of aquatic environments 
(Calbet et al., 2003; Jeong et al., 2010, 2021; Turner et al., 2012; Kim et al., 2013). Marine 
dinoflagellates are ubiquitous species that can dominate the biomass and density of the marine 
environment (Jeong et al., 2010, 2013, 2021; Hansen, 2011; Nagarkar et al., 2018; Goswami 
et al., 2020; Telesh et al., 2021). Copepods are major zooplankton in marine food webs and are 
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effective grazers of protist prey species and sometimes control 
dinoflagellate populations (Watras et al., 1985; Campbell et al., 2005; 
Jeong et al., 2010; Kim et al., 2013). Therefore, to understand the roles 
and population dynamics of dinoflagellates in marine communities, 
growth and mortality due to zooplankton predation must be explored.

Marine dinoflagellate species of the genus Alexandrium are widely 
distributed and sometimes cause red tides or harmful algal blooms 
(Anderson, 1997; Cembella et al., 2000; Grattan et al., 2016; Kremp 
et al., 2019; Shin et al., 2021). Several species of Alexandrium have 
been well–studied for their physiological and ecological properties, 
such as toxin profiles, growth rates, distributions, and predation, 
because they often cause large-scale shellfish mortality and human 
illnesses due to the toxins they produce (Parkhill and Cembella, 1999; 
Cembella et al., 2000, 2002; Navarro et al., 2006; Etheridge, 2010; Bill 
et al., 2016; Grattan et al., 2016; Kim et al., 2016; Kang et al., 2018). 
Many Alexandrium species produce toxins, such as paralytic shellfish 
poisoning (PSP) and other allelochemicals, which are potentially 
transferred to marine organisms in higher trophic levels (Cembella 
et al., 2000; Turner et al., 2005; Sephton et al., 2007; Ma et al., 2011; 
Anderson et al., 2012; Tillmann et al., 2016). Therefore, they are of 
interest to government officials, fish consumers, and marine scientists 
(Alcala et al., 1988; Anderson et al., 2012). Thus, understanding the 
interactions between dinoflagellates and their consumers is important 
for understanding the diversity of red tides and harmful algal species 
(Turner et al., 2006; Jeong et al., 2010; Kim et al., 2013; Yoo et al., 2013; 
Kang et al., 2018).

In this study, we  isolated and established a clonal culture of 
Alexandrium pseudogonyaulax from the coastal waters of Korea (Yoo 
et al., 2023). In many countries, this species produces goniodomin A, 
which cause red tides (Matsuoka and Fukuyo, 2003; Bravo et al., 2006; 
Kremp et al., 2019). Previously, A. pseudogonyaulax has been shown 
to be  a phototrophic dinoflagellate. However, this species is a 
mixotrophic dinoflagellate (Blossom et al., 2012). Several studies have 
been performed on the taxonomy, ecology, physiology, distribution, 
bioinformatics, and cysts of this species (Montresor and Marino, 1996; 
Matsuoka and Fukuyo, 2003; Blossom et al., 2012; Triki et al., 2016; 
Yoo et al., 2023). However, few studies have been conducted on the 
mortality of A. pseudogonyaulax caused by grazers. Grazing can play 
an important role in dinoflagellate population dynamics (Watras et al., 
1985; Turner et al., 2006; Jeong et al., 2010; Yoo et al., 2013). Copepods 
are effective grazers of several dinoflagellates (Watras et  al., 1985; 
Jeong et al., 2010; Kim et al., 2013). Thus, to understand the roles and 
population dynamics of A. pseudogonyaulax, the predator–prey 
relationships between A. pseudogonyaulax and copepods was 
investigated. Additionally, we compared the ingestion rates of Acartia 
spp. in the present study with those of other Alexandrium species and 
dinoflagellates reported in the literature. The results of this study 
provide a basis for understanding the interactions between 
A. pseudogonyaulax and Acartia spp. and their population dynamics 
in marine planktonic food webs.

2 Materials and methods

2.1 Preparation of experimental organisms

For isolation and culture of Alexandrium pseudogonyaulax, 
plankton samples collected with Niskin sampler were taken from 

Shiwha Bay, Korea when the water temperature and salinity were 
25.4°C and 23.9, respectively (Table  1). These samples were 
screened through a 202–Nitex mesh and placed in 6–well tissue 
culture plates (SPL lifesciences, Gyeonggido, Korea). A clonal 
culture of A. pseudogonyaulax was established by performing two 
serial single–cell isolations. As the concentration of 
A. pseudogonyaulax increased, this species was subsequently 
transferred to 50–mL and 500–mL polycarbonate (PC) bottles 
containing fresh f/2–Si medium (Guillard and Ryther, 1962). 
Freshly filtered seawater was used to fill bottles containing the f/2-Si 
medium and A. pseudogonyaulax. The capped bottles were then 
incubated at 20°C under illumination of 20 μmol photons m−2 s−1 
of cool white fluorescent light on a 14:10 h light:dark cycle. Once 
dense cultures of A. pseudogonyaulax were obtained, the cells were 
transferred to new 2–L PC bottles containing fresh f/2-Si medium 
approximately 3 weeks before the feeding experiments were 
conducted at a temperature of 15°C.

Copepods were collected Shiwha Bay, Korea, using a 303 μm mesh 
net when water temperature and salinity were 7.3°C and 27.2, 
respectively (Table  1). The copepods were acclimatized in a 15°C 
room in the presence of Prorocentrum cordatum for 10 days. Adult 
female Acartia spp. (A. hongi and A. omorii) were used in the 
experiments. A. hongi and A. omorii which co-occur in the western 
coastal waters of Korea, are very similar and it is impossible to 
distinguish between these two species when they are alive (Soh and 
Suh, 2000).

The mean equivalent spherical diameter (ESD) of live 
A. pseudogonyaulax was measured using an electron–particle counter 
(Coulter Multisizer II; Coulter Corporation, Miami, Florida, 
United States). The carbon content of this species was estimated based 
on the cell volume according to Menden-Deuer and Lessard (2000).

2.2 Swimming speed

A dense culture (ca. 1,500 cells mL−1) of A. pseudogonyaulax, 
which grew photosynthetically under a 14:10 h light:dark cycle at 
20 μmol photons m−2 s−1 in f/2–Si medium was transferred to a 250–
mL PC bottle. Subsequently, an aliquot from the bottle was transferred 
to a 50–mL cell culture flask and allowed to acclimate for 30 min. The 
observations were conducted at 20°C using a video analyzing system 
(SV-C660, Samsung) and a CCD camera (KP-D20BU, Hitachi). The 
video camera was focused on a field of view within the cell culture 
flask and observed as a single field under a dissecting microscope at 
50× magnification. The mean and maximum swimming velocities of 
all A. pseudogonyaulax cells in motion within the first 10 min were 
recorded and analyzed. The linear displacement of the cells within a 
single–frame playback was measured to calculate the average 
swimming speed. The swimming velocities of 30 cells were assessed.

2.3 Ingestion rates of Acartia spp. on 
Alexandrium pseudogonyaulax

This experiment was designed to measure the ingestion and 
clearance rates of Acartia spp. on A. pseudogonyaulax as a function of 
prey concentration (Table 2). Adult female Acartia spp. (a combination 
of A. hongi and A. omorii) were used in the present study.
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For the feeding experiment, the initial concentrations of 
A. pseudogonyaulax were dertermined using an autopipette to deliver 
predetermined volumes of known cell concentrations to the bottles 
and those of Acartia spp. were obtained by individually transferring 
Acartia spp. using a pasteur pipette. Triplicate 500–mL PC bottles 
(mixtures of predator and prey) and triplicate control bottles 
(A. pseudogonyaulax prey only) were set up for each predator–prey 
combination. In order to maintain consistent water conditions, the 
water from the predator culture was passed through a 0.7 μm GF/F 
filter before being added to the prey control bottles. The volume of the 
filtered predator culture added to the experimental bottles for each 
predator–prey combination was matched with an equal amount of 
filtered water added to the prey control bottles. All the bottles were 
filled to capacity with freshly filtered seawater and capped. To 
determine the initial predator and prey densities, a 10–mL sample was 
extracted from each bottle and fixed with 1% Lugol’s solution for 
fixation. The fixed sample were examined using a light microscope to 
determine the abundance of predator and prey species. The cells in 
three 1–mL Sedgwick-Rafter chambers (SRCs) were counted to 
determine the actual densities of predator and prey species. The 
bottles were refilled to capacity with freshly filtered seawater, capped, 
and placed on rotating wheels at a temperature of 15°C, following the 
conditions outlined earlier. We considered any dilution of the cultures 
associated with refilling the bottles when determining the clearance 
rate. A 10–mL aliquot was taken from each bottle after 24 and 48–h 
incubation periods and fixed with 1% Lugol’s solution. The abundance 
of prey species was determined by counting all or > 200 cells in three 
1–mL SRCs. Following sub–sampling, the bottles were filled with 
freshly filtered seawater and placed back on rotating wheels. After 
incubation for 48 h, the Acartia spp. were counted. The mortality of 
Acartia spp. occurred until the end of the incubation period. The 
ingestion and clearance rates were calculated using the equations of 
Frost (1972).

2.4 Grazing impact

We calculated the grazing coefficients attributable to Acartia spp. 
on A. pseudogonyaulax by combining field data on the abundances of 
Acartia spp. and A. pseudogonyaulax with the ingestion rates of 
Acartia spp. on A. pseudogonyaulax obtained in the present study. 
Data on the abundance of Acartia spp. and co-occurring 
A. pseudogonyaulax used in this estimation were obtained from water 
samples from Shiwha Bay, Korea using real-time PCR for 
A. pseudogonyaulax and cell counting for Acartia spp.

The grazing coefficients (g, d−1) were calculated as follows:

 g = × ×CR GC 24 (1)

where CR is the clearance rate (mL predator−1 h−1) of a Acartia 
spp. on A. pseudogonyaulax at a given prey concentration and GC is 
the predator concentration (cells mL−1). The CR values were 
calculated as follows:

 CR IR= / X  (2)

where IR is the ingestion rate (cells predator−1 h−1) of the predator 
on the prey and X is the prey concentration (cells mL−1).

2.5 Species-specific primer and probe 
design and specificity analysis

We developed species-specific primer and probe set for 
A. pseudogonyaulax and obtained the sequences of the internal 
transcribed spacer region of ribosomal DNA (ITS rDNA) of 
A. pseudogonyaulax and other dinoflagellate species belonging to the 
Alexandrium genus and related dinoflagellate species from GenBank. 
These sequences were aligned using MEGA v.11. A. pseudogonyaulax 
specific primers and probe were developed by searching the 
arrangement for unique portions of the ITS rDNA sequences for 
A. pseudogonyaulax. Primer and probe sequences were analyzed 
using Primer 4 (Whitehead Institute for Biomedical Research, 
Cambridge, MA, United  States) and Oligo Calc: Oligonucleotide 
Properties Calculator (Kibbe, 2007) to investigate the optimal melting 
temperature and secondary structure, respectively. Primers and probe 
were synthesized by Bioneer (Table 3). The probe was dual labeled 
with the fluorescent dyes FAM and BHQ1 at the 5′ and 3′ ends.

Specificity analysis of the primer and probe sets for 
A. pseudogonyaulax was performed using DNA extracts of 
A. pseudogonyaulax and related dinoflagellate species in the Family 
Pyrocystaceae. The qPCR reaction mixture contained 1 μL of DNA 
template, 0.2 μM of specific forward and reverse primers, 0.15 μM of 
the specific probe, 5 μL of qPCRBIO Probe Separate-ROX (Genepole, 
Gwangmyeong, Korea), and deionized sterilized water (DDW; 
Bioneer), with a final total volume of 10 μL. The qPCR assay was 
conducted using the Rotor-Gene Q (Qiagen, Hilden, Germany). The 

TABLE 1 Isolation and maintenance conditions of the experimental organisms.

Organisms Location Temp (°C) Sal ESD (μm) Prey species Concentration (cells mL−1)

Alexandrium pseudogonyaulax Shiwha Bay, Korea 25.4 23.9 24.8

Acartia spp. (A. hongi and A. omorii) Shiwha Bay, Korea 7.3 27.2 Prorocentrum 

cordatum

12,000

ESD, equivalent spherical diameter.

TABLE 2 Experimental design for feeding by the copepods Acartia spp. 
on Alexandrium pseudogonyaulax.

Abundance of Alexandrium 
pseudogonyaulax

Abundance of Acartia spp. 
(A. hongi and A. omorii)

0 20

25 (36) 20

63 (91) 20

132 (189) 20

265 (379) 20

688 (983) 20

1,429 (2,044) 20

The numbers are the initial abundances (cells mL−1 for A. pseudogonyaulax and inds. L−1 for 
Acartia spp.) of A. pseudogonyaulax and Acartia spp. Values in the parentheses in A. 
pseudogonyaulax are the abundances in ng C mL−1.
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FIGURE 1

Ingestion rates (IR) of Acartia spp. (A. hongi and A. omorii) 
feeding on Alexandrium pseudogonyaulax as a function 
of mean prey concentration (x). Symbols represent 
treatment means ± 1 SE. The curves were fitted using the 
linear regression equation. IR (ng C Acartia−1 d−1) = 2.42 × (x), 
r2 = 0.938.

FIGURE 2

Calculated grazing coefficients (g, d−1) of the Acartia spp. (A. 
hongi and A. omorii) in relation to the population of co-
occurring Alexandrium pseudogonyaulax in the western coastal 
waters of Korea.

cycling conditions were initialized with a denaturation step at 95°C for 
3 min, followed by 40 cycles of 10 s at 95°C for 10 s, and 58°C for 40 s.

2.6 Standard curve construction

A standard curve for exploring the abundance of 
A. pseudogonyaulax was constructed using a qPCR. DNA was extracted 
from the culture of A. pseudogonyaulax (4,200 cells mL−1) in the growth 
phase using the AccuPrep Genomic DNA Extraction Kit (Bioneer), 
targeting 1, 10, 100, 1,000, 2,000, and 4,000 A. pseudogonyaulax cells. 
The qPCR assay was performed using the reaction mentioned above 
under the following thermal cycling conditions: 95°C for 3 min, 
followed by 45 cycles of 10 s at 95°C for 10 s, and 58°C for 40 s.

2.7 Quantification using qPCR

We developed species-specific primer and probe set for 
A. pseudogonyaulax, and obtained the sequences of the internal 
transcribed spacer region of ribosomal DNA (ITS rDNA) of 
A. pseudogonyaulax and related dinoflagellates.

The previously mentioned qPCR assay conditions were used to 
analyse the abundance of A. pseudogonyaulax in field samples. The 
DNA from each sample was amplified four times to ensure the 
accuracy of results. The sample using DDW as the template was used 
as a negative control, whereas the one used to construct a standard 
curve was used as positive and standard control.

3 Results

3.1 Ingestion rates of Acartia spp. on 
Alexandrium pseudogonyaulax

The ingestion rate of Acartia spp. on A. pseudogonyaulax continuously 
increased with increasing prey concentration (Figure 1). The highest 
ingestion and clearance rates of Acartia spp. on A. pseudogonyaulax at the 
given prey concentration was 3,407 cells Acartia−1 d−1 (4,872 ng C 
Acartia−1 d−1) and 192 mL Acartia−1 h−1, respectively.

3.2 Grazing impact

The grazing coefficients attributable to Acartia spp. on 
co-occurring A. pseudogonyaulax in Shiwha Bay, Korea were affected 
by the abundance of Acartia predators (Figure 2). The abundance of 
Acartia spp. and A. pseudogonyaulax were 1.5–126.0 cells mL−1 and 

TABLE 3 Sequences of the primers and probe for Alexandrium pseudogonyaulax used in this study.

Target gene Analysis Primer name Primer sequence (5′ – 3 ′) References

ITS rDNA PCR ITSF2 Forward TACGTCCCTGCCCTTTGTAC Litaker et al. (2003)

LSU500R Reverse CCCTCATGGTACTTGTTTGC Litaker et al. (2003)

qPCR Apsudo_F Forward GAAGGTGTGCTTGATCCAATGTAA This study

Apseudo_R Reverse CACACACAATGGCAAACCTTTCAC This study

Apseudo_P Probe TGCTTATGGGCTTCTG This study

ITS, Internal transcribed spacer; PCR, polymerase chain reaction; qPCR, quantitative real-time PCR.
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2–2,570 ind. m−3, respectively. The grazing coefficients attributable 
to Acartia spp. on co-occurring A. pseudogonyaulax were 0.001 to 
0.073 d−1 (i.e., up to 7% of A. pseudogonyaulax population could 
be removed by the copepod Acartia spp. in a day).

4 Discussion

The calanoid copepod Acartia is a major components 
metazooplankton in marine environments (Kim et  al., 2013; Rice 

et al., 2015; Lee et al., 2017). Several Acartia species such as Acartia 
bifilosa, Acartia grani, Acartia hudsonica, and Acartia tonsa feed on 
Alexandrium spp., including toxic strains of Alexandrium fundyense, 
Alexandrium minutum, Aleandrium ostenfeldii, and Alexandrium 
tamarense and non-toxic strain of A. tamarense (Teegarden, 1999; 
Colin and Dam, 2002, 2003, 2007; da Costa and Fernández, 2002; 
Teegarden et al., 2003, 2008; da Costa et al., 2008; Sopanen et al., 
2011). Among the maximum ingestion rates (MIRs) of Acartia grazers 
on Alexandrium prey species, the MIRs were not significantly 
correlated with the prey (19–28 μm of equivalent spherical diameter) 
and predator sizes (Figure 3). Acartia spp. (A. hongi and A. omorii) 
were significantly larger than A. grani and A. tonsa (Table 4).

Among the MIRs of Acartia grazers on Alexandrium prey species, 
the MIR of A. hudosonica on the toxic of A. tamarense strain was higher 
than that on the non-toxic strain of A. tamarense (Colin and Dam, 2007; 
Teegarden et al., 2008). Additionally, the MIR of A. tonsa on the toxic of 
A. fundyense strain was lower than that on the non-toxic strain of 
A. tamarense (Teegarden, 1999). Thus, the toxicity of Alexandrium prey 
species probably did not affect the MIRs of Acartia grazers.

Among the MIRs of Acartia grazers on Alexandrium prey species, 
the MIR of Acartia spp. on A. pseudogonyaulax was higher than 
A. bifilosa on A. ostenfeldii, but lower than that of A. grani on 
A. minutum (da Costa and Fernández, 2002; da Costa et al., 2008). 
Many Alexandrium species contain PSP toxins; however, the subgenus 
Gessnerium does not produce PSP toxins (Balech, 1995). 
A. pseudogonyaulax belonging to the subgenus Gessnerium may not 
produce PSP toxins, but may produce goniodomin A (Balech, 1995; 
Matsuoka and Fukuyo, 2003; Bravo et  al., 2006). Furthermore, 
A. pseudogonyaulax is a mixotrophic species when mucus traps are 
used to immobilize prey cells prior to ingestion (Blossom et al., 2012). 
Therefore, the mucus trap excreted by A. pseudogonyaulax may not 
only function to effectively accumulate toxins but also be used to avoid 
encounters and ingestion by potential predators.

The motility of dinoflagellates is not only relevant to potential 
predators but is also important for resource availability (Buskey, 1997; 
Tillmann and Reckermann, 2002; Jeong et  al., 2015, 2017). The 

FIGURE 3

Maximum ingestion rates of Acartia spp. feeding on Alexandrium 
prey species as a function of prey size (ESD: equivalent spherical 
diameter, μm). The p-value was p  >  0.1 (linear regression ANOVA). Af 
(T): toxic strain of A. fundyense; Am (T): toxic strain of A. minutum; 
Ao (T): toxic strain of A. ostenfeldii; Ap (T): toxic strain of A. 
pseudogonyaulax; At (T): toxic strain of A. tamarense; At (NT): non-
toxic strain of A. tamarense. The data were obtained from Calbet 
et al. (2003), Colin and Dam (2002, 2003, 2007), da Costa and 
Fernández (2002), da Costa et al. (2008), Sopanen et al. (2011), 
Teegarden (1999), and Teegarden et al. (2003, 2008).

TABLE 4 Comparison of maximum ingestion rates of Acartia species on Alexandrium species.

Prey species Temp Predator species MIR References

Alexandrium pseudogonyaulax (T) 20.0 Acartia spp. (A. hongi and A. omorii) 4,872 This study

Alexandrium fundyense (T) 12.0 Acartia hudsonica 10,800 Teegarden et al. (2008)

Alexandrium fundyense (T) 14.0 Acartia hudsonica 1,060 Colin and Dam (2002)

Alexandrium fundyense (T) 14.0 Acartia hudsonica 3,563 Colin and Dam (2003)

Alexandrium fundyense (T) 17.0 Acartia hudsonica 948 Teegarden et al. (2003)

Alexandrium fundyense (T) 19.0 Acartia tonsa 2,160 Teegarden (1999)

Alexandrium mimutum (T) 15.5 Acartia grani 10,680 Calbet et al. (2003)

Alexandrium mimutum (T) 17.5 Acartia grani 10,200 da Costa and Fernández (2002)

Alexandrium mimutum (T) 17.5 Acartia grani 16,800 da Costa et al. (2008)

Alexandrium osfeldii (T) 11.0 Acartia bifilosa 4,080 Sopanen et al. (2011)

Alexandrium tamarense (T) 14.0 Acartia hudsonica 6,220 Colin and Dam (2007)

Alexandrium tamarense (NT) 14.0 Acartia hudsonica 1,390 Colin and Dam (2002)

Alexandrium tamarense (NT) 14.0 Acartia hudsonica 9,600 Teegarden et al. (2008)

Alexandrium tamarense (NT) 19.0 Acartia tonsa 8,880 Teegarden (1999)

ESD, equivalent spherical diameter (μm); Temp, temperature (°C); MIR, maximum ingestion rate (ng C Acartia−1 d−1); T, toxic strain; NT, non-toxic strain.
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swimming speed of A. pseudogonyaulax (n = 30) was 263–512 μm s−1. 
The average (±standard error) swimming speed of A. pseudogonyaulax 
was 372 (±12) μm s−1. The maximum swimming speed of 
A. pseudogonyaulax was faster than that of A. minutum but slower 
than that of A. tamarense (Kang et al., 2018). Thus, the swimming 
speed of Alexandrium prey species probably did not affect the MIRs 
of Acartia grazers. Other properties, such as the biochemical factors 
of Alexandrium species, may affect the ingestion of Acartia grazers 
more than their physical and behavior properties.

Grazing impacts calculated by using field observation data of 
Acartia spp. and coexisting A. pseudogonyaulax with laboratory 
measurements of ingestion rates suggest that up to 7% of 
A. pseudogonyaulax populations may be eliminated in a day by the 
copepods Acartia spp. Therefore, the copepod Acartia species could 
have a considerable potential grazing impact on Alexandrium 
populations in Shiwha Bay.

Few studies have been conducted on the grazing effects of 
copepods on Alexandrium species in the field. The grazing effect of 
A. hudsonica on Alexandrium spp. was 0.8 d−1 at Cundy’s Harbor 
(Campbell et al., 2005). In Cape Cod embayment, the grazing pressure 
of A. hudsonica feeding on A. tamarense was less than 1% (Turner and 
Anderson, 1983). Additionally, the grazing coefficients of the 
copepods such as Acartia granii and Oithona davisae on A. minutum 
were 0.00003–0.00007 d−1 (i.e., up to 0.007% of Alexandrium 
populations could be removed by the copepod populations in a day) 
in the Arenys de Mar harbor (Calbet et al., 2003). Thus, the copepod 
Acartia species sometimes have a considerable potential grazing 
impact on populations of Alexandrium.

5 Conclusion

The present study investigated the grazing by calanoid copepods 
Acartia spp. on the toxic dinoflagellate Alexandrium pseudogonyaulax. 
The grazing of Acartia spp. can affect the abundance of Alexandrium 
populations in many countries. A total of 34 Alexandrium species have 
been reported, but there have been few studies on grazing by 
metazooplankton on Alexandrium spp. (Calbet et al., 2003; Campbell 
et al., 2005; Guiry and Guiry, 2020). Therefore, constant investigation 
of feeding by dominant copepods on Alexandrium species would 
be worthwhile to enhance our understanding of the interactions and 
population dynamics between the copepods and dinoflagellates in 
natural marine ecosystems.
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