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Integrating microbial 16S rRNA 
sequencing and non-targeted 
metabolomics to reveal sexual 
dimorphism of the chicken cecal 
microbiome and serum 
metabolome
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Background: The gut microbiome plays a key role in the formation of livestock 
and poultry traits via serum metabolites, and empirical evidence has indicated 
these traits are sex-linked.

Methods: We examined 106 chickens (54 male chickens and 52 female 
chickens) and analyzed cecal content samples and serum samples by 16S rRNA 
gene sequencing and non-targeted metabolomics, respectively.

Results: The cecal microbiome of female chickens was more stable and more 
complex than that of the male chickens. Lactobacillus and Family XIII UCG-001 
were enriched in male chickens, while Eubacterium_nodatum_group, Blautia, 
unclassified_Anaerovoraceae, Romboutsia, Lachnoclostridium, and norank_
Muribaculaceae were enriched in female chickens. Thirty-seven differential 
metabolites were identified in positive mode and 13 in negative mode, showing 
sex differences. Sphingomyelin metabolites possessed the strongest association 
with cecal microbes, while 11β-hydroxytestosterone showed a negative 
correlation with Blautia.

Conclusion: These results support the role of sexual dimorphism of the cecal 
microbiome and metabolome and implicate specific gender factors associated 
with production performance in chickens.
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1 Introduction

Production performance in poultry displays a sex bias for growth rate, slaughter 
performance (increased muscle and decreased abdominal fat), feed conversion efficiency, and 
mineral utilization ability, and this dimorphism is of great practical significance for farmers 
(Rose et al., 1996; Lumpkins et al., 2008; Cui et al., 2021; Tumova et al., 2021). The chicken gut 
microbiome plays a significant role in nutrient processing including dietary fiber conversions 
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to increase nutrient availability and thus contributes to host homeostasis 
(Wen et al., 2021). There is also clear evidence that the gut microbiota 
contributes to these sex-linked differences in production performance 
(Lee et al., 2017; Cui et al., 2021). Thus, gut microbiome profiles may 
provide clues to the regulation of the biological processes within the gut 
that discriminate between male and female chickens, and this 
information could be  useful in designing more efficient rearing 
strategies to maximize production performance (Lee et al., 2017).

Previous studies have demonstrated that gender is an important 
factor that affects the composition and structure of gut microbiomes 
for humans and animals. In addition, different bacterial ecosystems 
have been identified in male and female chickens (Cui et al., 2021). 
For instance, Cobb 500 broiler chicks displayed <30% gender 
similarities in gut microbiota composition as early as 3 days post-hatch 
(Lumpkins et  al., 2008), and gender-specific taxons included 
Bacteroides, Megamonas, Megasphaera, and Phascolarctobacterium for 
male chickens and Akkermansia for female chickens (Cui et al., 2021). 
Another study indicated that Clostridium and Shigella were more 
abundant in female chickens, while the indigestible fiber-degrading 
genus Bacteroidetes was more abundant in male chickens (Lee et al., 
2017). However, although numerous studies have identified sex-linked 
differences in chicken gut microbiomes, the underlying mechanisms 
remain poorly understood.

Human and animal studies have indicated that gut microbiome 
sexual dimorphism is primarily the result of host metabolites and 
primarily steroid hormones and bile acids (Ervin et al., 2019; Sui et al., 
2021). Sex hormones affect gastrointestinal motility, which in turn 
would affect the transit time through the gut and account for these 
differences (Cross et al., 2018). For example, the gut microbiomes of 
boars and sows raised together are significantly different, and castration 
(and thus androgen levels) resulted in the absence of sex-linked 
differences (He et al., 2019). The bile acid pool and the rate of bile acid 
synthesis also are higher in female chickens (Bennion et al., 1978) and 
bile acids that enter the hindgut can affect the composition of the gut 
microbiome and even inhibit the growth of specific microbes and 
significantly alter microbiome compositions between genders (Floch 
et al., 1972). Nevertheless, sex hormones and bile acids account for only 
a small proportion of metabolites in the serum metabolome and 
complicate screening that can then be correlated with gut microbiome 
populations (Tian et al., 2023). However, metabolomics technology 
now allows high-throughput analysis of a large number of metabolites 
with high sensitivity but has not been previously utilized to make these 
types of correlations (Liu et al., 2022).

If sex-dependent microbiota differences underlie the differences 
in sex-specific production performance, it might open new venues for 
designing effective strategies to improve chicken performance by 
manipulating microbiota and associated serum metabolome in a 
sex-specific way (Elderman et  al., 2018). We  hypothesized that 
differences in cecal microbiota between different gender chickens 
were related to different biological processes such as metabolite 
secretion. Therefore, in this study, we investigated the relationship 
between sex differences in serum metabolomes and microbiomes in 
healthy chickens. A total of 106 chickens of different genders were 
selected as research materials, and cecal content and serum samples 
were collected. We integrated microbial 16S rRNA gene sequencing 
and non-targeted metabolome detection technology to characterize 
and explore their interrelationships based on sex. The results can 
provide new insight for explaining differential production 

performance by gender in chickens and contribute to the development 
of sex-specific feeds to maximize production.

2 Materials and methods

2.1 Ethics statement

All animal studies were conducted according to the guidelines for 
the care and use of experimental animals established by the Ministry 
and Rural Affairs of the People’s Republic of China. The project used 
for this animal experiment was approved by the Animal Care and Use 
Committee at Guizhou University, China (approval number: 
EAE-GZU-2022-T050).

2.2 Animals and sample collection

The chickens used in these experiments were raised at the Scientific 
Research Chicken Farm of Guizhou University from June 2022 to 
October 2022. A total of 106 chickens were collected including 51 
Guizhou yellow chickens (25 male chickens and 26 female chickens) 
and 55 Wumeng Black-Bone chickens (29 male chickens and 26 female 
chickens). Guizhou Yellow broiler is a Chinese hybrid line (Weining 
♀ × New Hampshire × Plymouth Rock ♂) that possesses high market 
weights and tender meat, while Wumeng Black-Bone chicken possesses 
black tissues and bones. They are both meat-type chicken and are 
popular with consumers. The hatching batches, feeds, feeding methods, 
and management conditions were consistent. Specifically, chickens 
were fed in the same house, and cages were constructed of three-layer 
iron. The stocking density was 16 chickens from 0 to 4 weeks (male and 
female chickens mixed, not gendered); 8 chickens from 4 to 10 weeks 
(4 male and 4 female chickens mixed); and one chicken from 10 to 
18 weeks. The chicken house temperature control was regulated using 
roller shades. The daily lighting time was 16 h, and the temperature 
ranged from 15 to 35°C. The chickens were fed with commercial feed 
twice a day at 9 AM and 5 PM, with access to food and watered ad 
libitum. Chickens were vaccinated according to routine immunization 
procedures for Marek’s and Newcastle disease, infectious bronchitis, 
bursal virus, and avian influenza. The chickens were weighed every 
2 weeks with an electronic scale. No antibiotics were added within 
1 month prior to cecal content sample collection.

Since local chickens in these areas are generally 18 weeks old, 
these chickens were slaughtered at 18 weeks of age in this study. 
Chickens were euthanized by CO2 asphyxiation referred to previously 
reported methods (Haetinger et al., 2021). Whole blood was collected 
from wing veins and then was left undisturbed at room temperature 
to clot. After that, the clot was removed by centrifuging at 1000 × g for 
5 min in a refrigerated centrifuge to obtain serum. Approximately 2 g 
cecal contents were collected into a clean sterile plastic 2 mL 
Eppendorf tube. Samples were immersed in liquid nitrogen 
immediately and were stored at −80°C. Due to five samples that 
showed hemolysis, only 101 serum samples were obtained for 
metabolome analysis including serum samples from 50 Guizhou 
yellow (25 male chickens and 25 female chickens) and 51 Wumeng 
black-bone (26 male chickens and 25 female chickens) chickens. All 
106 cecal content samples for 16S rDNA gene sequencing and 101 
serum samples for non-targeted metabolomics were processed at 
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Shanghai Majorbio Bio-pharm Technology (Majorbio, Shanghai, 
China) and Shanghai Applied Protein Technology (Aptbio, Shanghai, 
China), respectively. The experimental flow chart is shown in Figure 1.

2.3 Cecal microbiota DNA extraction, v3–
v4 region sequencing of 16S rRNA gene, 
and data processing

DNA was extracted from cecal content samples using a Magnetic 
Soil and Stool DNA Kit (Tiangen, Beijing, China) following kit 
instructions. The concentration and purity of DNA were determined 
using UV spectroscopy with a NanoDrop 1,000 instrument (Thermo 
Fisher, Pittsburg, United States) and 0.8% agarose gel electrophoresis. 
Primers 338F (5’-ACTCCTACGGGAGGCAGCAG-3′) and 806R 
(5’-GGACTACHVGGGTWTCTAAT-3′) were used to amplify the V3–
V4 region of the 16S rRNA gene as previously described (Huse et al., 
2008; Caporaso et al., 2011). The annealing temperature was set at 55°C 
for 27 cycles. The amplicons were purified from agarose gels using an 
AxyPrep DNA gel extraction kit (Corning, Glendale, United States). 
Purified amplicons were pooled in equimolar amounts, and paired-end 
sequencing was performed on an Illumina MiSeq platform (Illumina, 
San Diego, USA) according to standard protocols. A two-step tailed PCR 
approach was used to construct the paired-end libraries (Miya et al., 
2015). The first-round PCR amplified the target region using a region of 
interest-specific primer; the overhang adapter sequence was used in the 
second-round tailed PCR to add indices and adapter sequences. The 
constructed libraries were sequenced with NovaSeq 6,000 SP 500 Cycle 
Reagent Kit (Illumina, San Diego, USA) at Majorbio Bio-pharm 
Technology (Shanghai) Co., Ltd. Barcodes, primers, and low-quality and 
ambiguous sequences were filtered out with Trimmomatic software 
(version 0.33) (Bolger et al., 2014). Cut adapt (version 1.9.1) was applied 
to identify and remove primer sequences (Martin, 2011). Paired-end 
reads from the clean data sets were clustered into tags by FLASH 
(version 1.2.11) (Magoc and Salzberg, 2011). Tags were then clustered 

into amplicon sequence variants (ASVs) using DADA2 (Callahan et al., 
2016). ASV taxonomic assignments were conducted by the RDP 
classifier (version 2.2) (Wang et al., 2007). ASVs were annotated in the 
database Silva1 (Quast et al., 2012).

2.4 Construction of microbial 
co-occurrence network

Relative abundance of ASVs >0.05% was selected to construct 
clustering co-occurrence networks. The SparCC algorithm (Friedman 
and Alm, 2012) was used to construct a bacterial co-occurrence 
network. Correlations between ASVs (nodes) were calculated based on 
relative abundance using the PCIT algorithm (Reverter and Chan, 
2008), and the paired taxa with absolute sparse correlation 
coefficient > 0.35 were selected for the next network construction. 
Cytoscape (version 3.7.1) (Lopes et al., 2010) was employed to evaluate 
the topological characteristics of co-occurrence networks and visualize 
the network. The stability of the network was represented by the 
percentage of negative interactions (competition) (Coyte et al., 2015; 
Hernandez et  al., 2021). The complexity was calculated using the 
average number of lines connecting each node (Bader and Hogue, 2003).

2.5 Chromatography–mass spectrometry 
analysis of serum sample and metabolome 
data preprocessing

2.5.1 Serum extraction
Serum samples from chickens were thawed at 4°C, and 100 μL 

aliquots were added to 400 μL of methanol/acetonitrile (1:1, v/v) to 

1 Release 132, http://www.arb-silva.de.

FIGURE 1

Experimental design. The experimental cohort comprised of 106 healthy chickens (male chickens n  = 54, female chickens n  =  52). Cecal content 
samples were collected at the age of 18  weeks and subjected to 16S rRNA gene sequencing to infer microbial profiles. Concurrent blood samples were 
collected to measure the non-targeted metabolome. Sexual dimorphism in chickens was explored after data pre-treatment of cecal microbiota and 
serum metabolome.
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remove proteins, then vortex-mixed and cryogenically sonicated for 
30 min, and then centrifuged for 20 min at 14000 × g at 4°C. The 
supernatant was dried in a vacuum centrifuge and dissolved in 
100 μL acetonitrile/water (1:1, v/v) and centrifuged, and the 
supernatant was transferred to a sample vial for liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

2.5.2 Analysis conditions of chromatography–
mass spectrometry

Non-targeted metabolomic analysis of serum samples from 
chickens was performed at an ultra-high performance liquid 
chromatography-quadrupole /orbitrap high resolution mass 
spectrometry (UHPLC-Q-Exactive Orbitrap MS) with the methods 
as previously described (Dunn et al., 2011; Cai et al., 2015; Wang et al., 
2016). A Vanquish HPLC system (Thermo Fisher, Pittsburg, 
United States) with an LC BEH Amide column (2.1 mm × 100 mm, 
1.7 μm) coupled to an Orbitrap MS Q Exactive HFX mass spectrometer 
(Thermo Fisher, Pittsburg, United States) was used for separations.

2.5.2.1 UHPLC chromatographic conditions
The column temperature was set at 25°C, the flow rate was at 

0.5 mL/min, and the injection volume was 2 μL. The mobile phase 
compositions were as follows: composition A: water (containing 
25 mM each ammonium acetate and ammonia) and composition B: 
acetonitrile. A gradient elution program was used as follows for 
analyte separation: 0–0.5 min, 95% B; 0.5–7.0 min, B changes linearly 
from 95 to 65%; 7.0–8.0 min, B changes linearly from 65 to 40%; 
8.0–9.0 min, 40% B. The samples were placed in the auto-sampler at 
4°C during the entire analysis process. To avoid the influence caused 
by the fluctuation of the instrument detection signal, samples were 
continuously analyzed in random order. QC samples were inserted 
into the sample queue to monitor and evaluate the stability of the 
system and the reliability of experimental data.

2.5.2.2 Mass spectrometry conditions
After samples were separated using UHPLC, mass spectrometry 

was performed using a Triple TOF 6600 mass spectrometer (SCIEX, 
Framingham, USA), and electrospray ionization (ESI) positive and 
negative ion modes were used for detection. The ESI source conditions 
were set as follows: ion source gas 1 (Gas1) as 60, ion source gas 2 
(Gas2) as 60, curtain gas as 30, source temperature: 600°C, ion spray 
voltage floating ±5,500 V (positive and negative modes). In MS-only 
acquisition, the instrument was set to acquire over the m/z range 
60–1,000 Da, and the accumulation time for TOF MS scan was set at 
0.20 s/spectra. In auto MS/MS acquisition, the instrument was set to 
acquire over the m/z range 25–1,000 Da, and the accumulation time 
for product ion scan was set at 0.05 s/spectra. The product ion scan 
was acquired using information-dependent acquisition, with high-
sensitivity mode using collision energy fixed at 35 V ± 15 eV, 
declustering potential at 60 V (+) and − 60 V (−), and isotopes within 
4 Da, with 10 candidate ions to monitor per cycle.

2.5.3 Metabolome data preprocessing
ProteoWizard MSConvert was used to convert the raw MS data 

into MzXML files, and the data were imported into XCMS software. 
Parameters used to pick peaks were as follows: centWave m/z = 10 ppm, 
peak width = c (10, 60), prefilter = c (10, 100). Parameters used to 
group peaks were as follows: bw = 5, mzwid = 0.025, minfrac = 0.5. 

Collection of algorithms of metabolite profile annotation was used for 
annotation of isotopes and adducts. In the extracted ion features, only 
the variables having >50% of the non-zero measurement values in at 
least one group were selected. Compound identification of metabolites 
was performed by comparing accuracy m/z value (<10 ppm) and MS/
MS spectra with an in-house database established with available 
authentic standards.

2.6 Statistical analysis

QIIME 2 platform (Bolyen et al., 2019)2 was used to calculate the 
alpha diversity of cecal microbiota with the Chao1, Shannon, and 
phylogenetic diversity (PD) indices (Shannon, 1948; Chao, 1984; Faith, 
1992). Other statistical analyses and result visualization were 
performed on the R V4.4.0 environment (R Core Team, 2022). The 
performance data were analyzed using the two-way ANOVA on SPSS 
(version 26.0). Bray–Curtis distances were calculated to compare the 
beta diversity of the cecal microbial community between male and 
female chickens using principal coordinate analysis (PCoA). Alpha-
diversity differences between the two groups were analyzed using the 
Wilcoxon rank-sum tests. Permutational multivariate analysis of 
variance (PERMANOVA) was used to explore the effects of genders on 
the composition of cecal microbiota (McArdle and Anderson, 2001). 
The effect size of each factor (R2) of PERMANOVA was used to 
determine the contribution and significance of genders on cecal 
microbial composition, and the p-values were calculated based on 
9,999 permutations. Linear discriminate analysis (LDA) coupled with 
effect size measurements (LEfSe) was performed online platform3 
(Segata et al., 2011) to identify bacterial taxa that differed significantly 
between male and female chickens, and the threshold was set to 
LDA > 2.0 and p-value <0.05. Spearman’s correlation analysis was 
conducted on R with ‘cor.test’ function to compute Pearson’s correlation 
coefficients between serum metabolites and cecal microbiota.

The metabolome data were processed on the MetaAnalyst 5.0 
online platform (Pang et al., 2021).4 The dataset was normalized by 
log10 transformation of the m/z values. After sum normalization, the 
processed data of the two groups were compared using orthogonal 
partial least squares discriminant analysis (OPLS-DA). The robustness 
of the model was evaluated with 7-fold cross-validation and response 
permutation testing. The variable importance in the projection (VIP) 
value of each variable in the OPLS-DA model was calculated to assess 
its contribution to the classification. The importance threshold for the 
impact values for metabolic pathway topology analysis was set at 0.10 
(Wang et al., 2012).

3 Results

3.1 Animals and growth performance

We utilized 106 chickens to examine whether breed factors 
significantly influenced production performance indicators and initially 

2 https://qiime2.org/

3 http://huttenhower.sph.harvard.edu/galaxy

4 https://www.metaboanalyst.ca
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compared growth performance differences between Guizhou yellow 
chickens (GHC, n = 51) and Wumeng Black-Bone (WMC, n = 55) 
chicken breeds. We found that except for day 0 (t-test, p = 0.47) and 
week 4 (p = 0.077), GHC and WMC chickens significantly differed in 
their body weights (p < 0.05; Supplementary Table S1; Figures 2A, C). 
The results of two-way ANOVA showed that there was no significant 
interaction between breed and sex for 18-week-age weights (p = 0.681; 
Supplementary Table S2). We then evaluated the role of gender on 
chicken growth performance and found that gender differences were 
significant for body weights (p < 0.01; Figure 2B). In particular, the body 
weights for the GHC male chickens (2205.92 ± 225.65 g, n = 25) were 
higher than body weights of GHC female chickens (1801.81 ± 191.62 g, 
n = 26) at the age of 18 weeks (Figure 2A), and the weights of WMC 
male chickens (1891.24 ± 220.36 g, n = 29) were also higher than WMC 
female chickens (1453.85 ± 189.00 g, n = 26).

3.2 Effect of gender on the composition of 
cecal microbiota in chickens

A total of 5,087,788 high-quality reads were generated from 106 
samples (47,998 reads per sample), and 1955 ASVs were clustered. 
Taxonomic assignments revealed that these ASVs could be classified into 
16 bacterial and archaeal phyla, and 3 phyla were present in all samples. 
The mean relative abundance of 5 phyla was >1%, including Bacteroidetes 
(46.88%), Firmicutes (45.52%), Desulfobacterota (2.41%), 
Actinobacteriota (2.38%), and Synergistota (1.46%) 
(Supplementary Table S3). We identified 63 genera, and the predominant 
microbes in the ceca were Bacteroides (35.95%), Megamonas (8.48%), 
Phascolarctobacterium (7.87%), Prevotellaceae_UCG-001 (6.09%), and 
Ruminococcus_torques_group (5.83%) (Figure 3; Supplementary Table S4). 
A permutation analysis for male chickens and female chickens showed 

FIGURE 2

Body weights of experimental chickens. Comparison of 18-week-old body weight of chickens between different (A) breeds and (B) sexes. (C) Changes 
in body weight of experimental chickens from 0 to 18  weeks old. GH, Guizhou yellow chickens; WM, Wumeng Black-Bone chickens. The addition of F 
or M to breed designations indicates female and male chickens, respectively.
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that gender (r = 0.039, p = 0.002; Supplementary Figure S1) significantly 
affected the composition of chicken cecal microbiota. We  further 
examined the structural characteristics of cecal microbiota interaction 
networks according to gender. A total of 252 and 273 ASVs were selected 
from cecal microbiota of the male and female groups, respectively, to 
construct microbial co-occurrence networks. The results showed that the 
network stability index for male and female chickens was 37.50 and 
46.26%, respectively, and the complexity for female chickens was 7.01 
and was 3.35-fold larger than that of the male microbial network (2.09) 
(Table 1).

3.3 Identification of gender-related cecal 
microbes

In our taxonomic groupings, the Wilcoxon rank-sum tests and 
PCoA indicated the absence of gender differences for alpha and beta 
diversity of the cecal microbiome in these chickens (Figures 4A,B). 
We used LEfSe analysis at different taxonomic levels to determine 
whether we could identify specific taxa that displayed a gender bias. 
In the total cohort, no significant gender differences in bacterial phyla 
were detected (Supplementary Figure S2) although genera more 
abundant in male chickens included Lactobacillus and Family_XIII_
UCG_001 (LDA > 2.0, p < 0.05) while Eubacterium_nodatum_ group, 
Blautia, unclassified_Anaerovoraceae, Romboutsia, Lachnoclostridium, 
and norank_Muribaculaceae were more abundant in female chickens 
(Figure 4C).

3.4 Differences in serum metabolites 
between male and female chickens

A non-targeted metabolomics analysis was performed on 101 
chicken serum samples (male chickens n = 51, female chickens n = 50), 
7,086 and 4,910 metabolite features were obtained in positive and 
negative modes, and 494 and 272 metabolites were annotated, 
respectively (Supplementary Tables S5, S6). An OPLS-DA model was 
constructed to identify differential serum metabolites between male 
and female chickens, and these plots displayed a clear separation 
within both positive and negative modes (Figures 5A,B).

To evaluate the differences in metabolic profiles between male and 
female chickens, we examined the patterns of specific metabolites. In 
the positive mode, 37 differential metabolites (VIP > 2, p < 0.05) were 

FIGURE 3

Cecal microbiota composition of experimental chickens depicted by a Sankey diagram.

TABLE 1 Indices of co-occurrence networks of cecal microbiota between 
male and female chickens.

Sex Male chickens Female chickens

Nodes 252 273

Edges 528 1913

Negative edges 198 885

Complexity 2.09 7.01

Stability (%) 37.50 46.26

Complexity, the average number of edges connected to each node; stability, the proportion of 
negative correlations to the total number of correlations.
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identified (Figure 5C; Table 2). In particular, 22 metabolites were 
enriched for male chickens and they included myristoyl-l-carnitine, 
prostaglandin F2α alcohol methyl ether, and Lys-Ile-Lys. Conversely, 
15 metabolites were enriched in female chickens including riboflavin, 
taurochenodeoxycholic acid, and 3-hydroxy-3′,4′-dimethoxyflavone. 
In negative mode, a total of 13 metabolites showed significant 
differences between the male and female groups in which 7 metabolites 
were increased in the male chickens including 1β-hydroxytestosterone, 
prostaglandin F2β, and linoleic acid (Figure  5D; Table  3). 
Concentrations of 6 metabolites were significantly higher in female 
chickens and included phosphatidylethanolamine 32:1, 
phosphatidylglycerol 34:2, and N-(2-furoyl)glycine. It was worth 
noting that sphingomyelin metabolites contained N-tetracosenoyl-4-
sphingenine (M649T31, positive mode), sphingomyelin (M792T139, 
positive mode), and N-[1,3-dihydroxyoctadec-4-en-2-yl]tetracos-15-
enamide (M647T30, negative mode), were increased in female serum, 
and were significantly correlated with each other (Figure 6A). Among 
them, N-[1,3-dihydroxyoctadec-4-en-2-yl]tetracos-15-enamide and 
N-tetracosenoyl-4-sphingenine were most highly and significantly 
(r = 0.922, P < 0.001) correlated with female chickens. The correlation 
between sphingomyelin with N-tetracosenoyl-4-sphingenine and 
N-[1,3-dihydroxyoctadec-4-en-2-yl]tetracos-15-enamide was 0.515 
and 0.491, respectively (P < 0.001). Three hormone-related metabolites 
(prostaglandin F2α alcohol methyl ether, prostaglandin F2β, and 
11β-hydroxytestosterone) were enriched in male chicken serum. 
However, no hormone-related metabolites were identified in female 
chickens. We then performed a metabolic pathway analysis for the 

differential metabolites we identified above. The pathway enriched in 
male chickens was linoleic acid metabolism, while the sphingolipid 
metabolism pathway was enriched in female chickens (Figures 5E,F).

3.5 Correlation between sex-related 
metabolites and differential cecal microbes

We further established relationships between differential serum 
metabolites and differential cecal microbes based on gender using 
Spearman’s rank correlation analysis. The correlation coefficients were 
calculated for each pair of relative abundance of bacterial species and 
metabolites (Figures  6B,C; Supplementary Tables S7, S8). For sex 
hormone metabolites, 11β-hydroxytestosterone was enriched in male 
chickens and was significantly negatively correlated with Blautia 
(r = −0.217, p = 0.03). All three sphingomyelin metabolites were 
significantly positively correlated with a variety of cecal microbes that 
included Blautia, unclassified_Anaerovoraceae, Romboutsia, and 
Lachnoclostridium. Specifically, N-[1,3-dihydroxyoctadec-4-en-2-yl]
tetracos-15-enamide was positively correlated with Blautia (r = 0.291, 
p = 0.003), unclassified_Anaerovoraceae (r = 0.267, p =  0.007), 
Romboutsia (r = 0.426, p < 0.001), and Lachnoclostridium (r = 0.347, 
p < 0.001). N-tetracosenoyl-4-sphingenine was positively correlated 
with Blautia (r = 0.266, p = 0.007), unclassified_Anaerovoraceae 
(r = 0.251, p = 0.011), Romboutsia (r = 0.360, p < 0.001), and 
Lachnoclostridium (r = 0.304, p = 0.002). Sphingomyelin was positively 
correlated with unclassified_Anaerovoraceae (r = 0.209, p = 0.036) and 
Romboutsia (r = 0.227, p < 0.022).

FIGURE 4

Sex-associated differences in cecal microbiome composition and diversity. (A) Comparison of the α-diversity (Shannon index) of cecal microbiota 
based on sex. (B) PCoA based on Bray–Curtis distances for the cecal microbiomes between male and female chickens. (C) Eight genera showing 
significantly different relative abundance levels between male and female chickens using LEfSe analysis.
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FIGURE 5

Identification of the metabolic signatures between male and female chickens. OPLS-DA of serum metabolomic data in (A) positive and (B) negative 
mode for male (n  =  51, in blue) and female (n  =  50, in brown) chickens. Variable importance in projection (VIP  >  2) scores for the top serum metabolites 
in (C) positive and (D) negative mode contributing to variation in metabolic profiles of male and female chickens. The relative abundance of 
metabolites is indicated by a colored scale from blue to red representing the low and high, respectively. Pathway enrichment analysis based on 
metabolites associated with (E) male and (F) female chicken.
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4 Discussion

4.1 Gender plays an important role in 
chicken production performance

Poultry production led by empirical evidence has traditionally set 
differing production systems based on gender. Sexual dimorphism 
was also associated with a variety of traits in chickens including 
growth rate, slaughter performance (increased muscle and decreased 
abdominal fat), feed conversion efficiency, and mineral utilization 
ability (Rose et  al., 1996; Lumpkins et  al., 2008; Cui et  al., 2021; 
Tumova et al., 2021). Feed additives have demonstrated differential 
effects on animal health or production performance by gender (Han 
and Baker, 1993; Zhang D. et al., 2021). Therefore, gender, production 
performance, and nutrient utilization are linked and have important 
practical significance. However, the mechanisms that mediate these 
associations were poorly understood. A large body of data indicated 
clear contributions of gut microbiota or metabolites to these processes. 
We, therefore, conducted the current study to provide a research basis 
for sexual dimorphism in chicken production performance from the 
perspective of gut microbiota and metabolomics. We explored the 
differences in cecal microbiota and serum metabolome between male 
and female chickens and initially established the relationships between 
sex, the cecal microbiota, and serum metabolites.

4.2 Effect of gender on the diversity of 
cecal microbiota in chicken

Gender is an important factor affecting animal gut microbiota 
diversity (Zhang X. et al., 2021), and higher microbial diversity in 
female chickens has been demonstrated in studies of humans (Falony 
et al., 2016), pigs (Zhang D. et al., 2021), mice (Kozik et al., 2017), and 

TABLE 2 Differences in serum metabolites between male and female 
chickens in positive ion mode.

ID Enriched 
group

Annotated metabolites

M482T190_2 Female 1-hexadecyl-sn-glycero-3-phosphocholine

M578T83 Female 1-palmitoyl-2-oleoyl-sn-glycerol

M377T208 Female (−)-riboflavin

M649T31 Female N-tetracosenoyl-4-sphingenine

M798T80 Female 1,2-dioleoyl-sn-glycero-3-phospho-rac-1-

glycerol

M792T139 Female Sphingomyelin (d18:1/18:0)

M331T164 Female Carnosol

M733T142 Female 1-oleoyl-2-myristoyl-sn-glycero-3-

phosphocholine

M122T287 Female Benzamide

M297T304 Female Trigonelline

M299T297 Female 3-hydroxy-3′,4′-dimethoxyflavone

M1000T151 Female Taurochenodeoxycholic acid

M310T304 Female N-acetylneuraminic acid

M379T119 Female Pyridate

M157T288 Female N-.alpha.-acetyl-l-ornithine

M314T186 Male 1-methyl-2-undecylquinolin-4-one

M797T135 Male Thioetheramide-PC

M452T421 Male Doxazosin

M416T189 Male Tomatidin

M310T195 Male Metipranolol

M747T140 Male 1-hexadecyl-2-(9z-octadecenoyl)-sn-glycero-

3-phosphocholine

M769T136 Male 1-hexadecyl-2-(5z,8z,11z,14z-eicosatetraenoyl)-

sn-glycero-3-phosphocholine

M795T134 Male 1-(1z-octadecenyl)-2-(5z,8z,11z,14z-

eicosatetraenoyl)-sn-glycero-3-phosphocholine

M372T171 Male Myristoyl-l-carnitine

M767T134 Male 1-o-hexadecyl-2-o-(5z,8z,11z,14z,17z-

eicosapentaenoyl)-sn-glyceryl-3-

phosphorylcholine

M383T42 Male Pinanethromboxane a2

M388T194 Male Lys-Ile-Lys

M430T421 Male N-(sec-butyl)-n-(4-(sec-butyl(trifluoroacetyl)

amino)phenyl-2,2,2-trifluoroacetamide

M412T191 Male Cyclopamine

M338T43_2 Male N-cis-hexadec-9-enoyl-l-homoserine lactone

M656T186 Male 2-epahsa [dmed-fahfa]

M426T164 Male Oleoyl-l-carnitine

M590T190 Male 3-alahpda [dmed-fahfa]

M400T167 Male L-palmitoylcarnitine

M212T290 Male Brimonidine

M337T43_2 Male Prostaglandin f2.alpha. Alcohol methyl ether

M260T215 Male Propranolol

TABLE 3 Differences in serum metabolites between male and female 
chickens in negative ion mode.

ID Enriched 
group

Annotated metabolites

M688T146 Female Pe 32:1

M748T82 Female 1-palmitoyl-2-oleoyl-phosphatidylglycerol

M647T30 Female N-[1,3-dihydroxyoctadec-4-en-2-yl]tetracos-15-

enamide

M312T344 Female 5-hydroxydiclofenac

M746T82 Female Pg 34:2

M124T601 Female N-(2-furoyl)glycine

M431T69 Male Eplerenone hydroxy acid

M143T603 Male Bisdemethoxycurcumin

M429T49 Male (1-acetyloxy-3-hydroxy-6,8a-dimethyl-7-oxo-3-

propan-2-yl-2,3a,4,8-tetrahydro-1 h-azulen-4-yl) 

4-hydroxybenzoate

M309T188 Male Prostaglandin f2.beta.

M275T29 Male Methyl salicylate

M329T109 Male 11beta-Hydroxytestosterone

M279T42 Male Linoleic acid
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FIGURE 6

Correlations between differential serum metabolites and bacterial species. (A) Correlation of three sphingomyelin metabolites. (B) Heatmap depicting 
correlations between differential serum metabolites (negative mode) and differential bacterial species in difference sex chickens. (C) Heatmap 
depicting correlations between differential serum metabolites (positive mode) and differential bacterial species. *p  <  0.05; **p  <  0.01; and ***p  <  0.001 
were calculated using Spearman’s rank correlation test. Positive (in purple) and negative (in dark green) correlations are indicated.

chickens (Cui et al., 2021). In contrast, we found that cecal microbiota 
diversity did not differ significantly between male and female chickens. 
However, our network analysis indicated that sex could have a 
significant selection effect on cecal microbial interactions, and female 
chickens possessed a more complex and stable microbiome (Wang 
et al., 2021). Greater complexity and stability translate into greater 
resistance to the external environment (Coyte et al., 2015), and this 
implicates sexual traits with a significant selection effect on the 
microbiome. One possible reason for these effects is due to longer 
colon transit times in female chickens (Degen and Phillips, 1996; Graff 
et  al., 2001), and longer colon transit times were associated with 
higher gut microbial complexity (Roager et al., 2016). Interestingly, 
previous studies in humans and other mammals have not consistently 
shown this (Haro et al., 2016; Gao et al., 2018; Takagi et al., 2019). 
However, reports of sex bias in the chicken gut microbiome have been 
inconsistent and may have been due to noise introduced by factors 
such as breed, diet, and feeding mode (Lee et al., 2017).

4.3 Enrichment of specific bacteria in the 
cecum of chickens of different genders

Prior chicken studies have reported the presence of characteristic 
microbiota for male and female chickens. Unlike these results of 

previous research results (Lee et al., 2017; Cui et al., 2021), we found 
that the abundance of Lactobacillus and Family _XIII_UCG-001 was 
significantly higher in the cecal microbiota of male chickens, while 
Eubacterium_nodatum_group, Blautia, unclassified_Anaerovoraceae, 
Romboutsia, Lachnoclostridium, and norank_Muribaculaceae were 
more abundant in female chickens. Multiple previous studies have also 
confirmed that Lactobacillus is an important gender-differentiated 
microbe and its abundance in male chickens was significantly higher 
than for female chickens (Sha et al., 2013; Poutahidis et al., 2014; 
Sherman et al., 2018; He et al., 2019) and enrichment for Lactobacillus 
salivarius, Lactobacillus crispatus, and Lactobacillus aviaries was 
identified in male chickens (Torok et al., 2013). These studies indicated 
that Lactobacillus may be an important gut microbe relevant to male 
chickens. The presence of Lactobacillus in human or animal males has 
also been linked to inhibition of inflammation and increased 
testosterone levels (Poutahidis et al., 2014). Dietary supplementation 
with probiotic Lactobacillus reuteri could prevent age-related testicular 
atrophy in mice and male hypogonadism in humans (Cross et al., 
2018). Conversely, studies in mice have reported a different pattern 
where females exhibited a more abundant presence of Lactobacillus in 
their bacterial community, which was linked to their stronger 
immunological response to pathogenic bacteria infection than males 
(Ge et al., 2006). We found that Blautia was enriched in the ceca of 
female chickens and was consistent with human studies that linked 
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Blautia with adult women (Markle et al., 2013). Eubacterium in pigs 
has also been reported to be  sex-differentiated (He et  al., 2019). 
However, unclassified_Anaerovoraceae, Romboutsia, 
Lachnoclostridium, and norank_Muribaculaceae (this study) have not 
been previously reported.

4.4 Differences in serum metabolome of 
chickens from different genders

Metabolome analysis was carried out in the current study, 
revealing clear differences in serum metabolites between male and 
female chickens. Three sex hormones were enriched in male chicken 
serum (prostaglandin F2α and its alcohol methyl ether isomer and 
11β-hydroxytestosterone), while no characteristic steroid hormone 
metabolites were identified in female chickens. Male chickens in this 
study were 18 weeks old and had reached sexual maturity, and this is 
most likely the reason for these results. In addition, we identified other 
serum metabolites showing significant differences by gender and 
included three sphingomyelin metabolites (N-tetracosenoyl-4-
sphingenine, sphingomyelin, and N-[1, 3-dihydroxyoctadec-4-en-
2-yl] tetracos-15-enamide) that were enriched in female chickens. 
Metabolite pathway enrichment analysis also verified that the 
sphingolipid metabolism pathway was the primary metabolic pathway 
enriched in female chicken, sera and sphingomyelin is essential for egg 
yolk formation (Yang et al., 2018). Sex hormones are the primary 
causes of sexual dimorphism in animals (Degen and Phillips, 1996; 
Org et al., 2016; Lee et al., 2017). Chickens in our study were already 
mature sexually, and some began to lay eggs. Female chickens began 
to shift from growth and development to reproduction and gradually 
prepared for the formation of follicles (Kim et al., 2020), and this 
might be  the reason for the elevated levels of sphingomyelin 
metabolites we found. In addition, linoleic acid was enriched in male 
sera, and this result was also verified in metabolic pathway analysis. 
Linoleic acid could change the structure of cumulus granulosa cell 
membranes and interfere with gonadotropins thereby inhibiting 
oocyte maturation (Prades et al., 2003). Our female chickens were 
physiologically prepared for laying eggs with associated elevated 
estrogen levels, and this could exert a negative (inhibitory) effect on 
linoleic acid production.

4.5 Sex-specific cecal bacteria participate 
in the metabolic process of serum 
metabolites

Since the gut microbiota was involved in the excretion and 
circulation of sex hormones, researchers have proposed the concept 
of a microgenderome to characterize the microbiome associated 
with sex hormone metabolism (Yoon and Kim, 2021). In our study, 
we identified numerous significant pairs and intensity of correlation, 
and some serum metabolites displayed strong correlations with the 
cecal microbiomes. A correlation analysis was conducted between 
gender-differential sex hormone metabolites in serum and gender-
differential microbiota, and Blautia and 11β-hydroxytestosterone 
displayed a significant negative correlation. Blautia has been 
reported as an important characteristic genus in women (Markle 
et  al., 2013). Notably, we  also found that three sphingomyelin 

metabolites were positively correlated with Blautia, unclassified_
Anaerovoraceae, Romboutsia, and Lachnoclostridium. These 
associations suggested that the cecal microbiota may be involved in 
the synthesis or metabolism of these sphingolipid metabolites or 
that these metabolites had a role in regulating the composition of 
the chicken cecal microbiome. Humans possess numerous 
sphingolipid-producing bacteria including Bacteroides and 
Parabacteroides (Gupta and Lorenzini, 2007; Heaver et al., 2018). 
Sphingomyelin was also linked to the regulation of the abundance 
of specific microbes in the intestine. For example, 1% purified 
glycosylceramide (N-[1,3-dihydroxyoctadec-4-en-2-yl]tetracos-15-
enamide, this study) fed continuously to mice for 1 week increased 
the abundance of Blautia coccoides, and this species could degrade 
glycosylceramide into ceramide that female chickens can metabolize 
into fatty acids and sphingosine that could be  absorbed by the 
intestine and exert beneficial effects on the host (Hamajima et al., 
2016). In addition, unclassified_Anaerovoraceae, Romboutsia, and 
Lachnoclostridium have not been previously reported to be linked 
with host serum sphingomyelin metabolism (Hannun and Obeid, 
2018; Heaver et al., 2018). Together with our study, these reports 
point to an important causal relationship between cecal microbes 
and sphingomyelin metabolites, and this extends to the female 
chicken microbiome.

5 Conclusion

Our results support the role of sex differences in shaping cecal 
microbial communities in chickens, and we identified Lactobacillus, 
Family_XIII_UCG-001, Eubacterium_nodatum_group, Blautia, 
unclassified_Anaerovoraceae, Romboutsia, Lachnoclostridium, and 
norank_Muribaculaceae as important gender-related microbes. 
Androgen and sphingomyelin metabolites appear to be responsible in 
part for these sex differences, and specific cecal microbes were closely 
related to the levels of some of these types of serum metabolites. 
Revealing these interactions between the cecal microbiome and the 
serum metabolome by gender could ultimately lead to the 
identification of novel factors that influence production performance 
and improve diagnostic and precision feed design.

However, although this study initially established the relationship 
between gender, the microbiome, and the metabolome, there were 
also some limitations that should be  addressed or avoided in 
subsequent studies. First, our study only compared the differences 
between cecal microbiota and serum metabolome but not in 
conjunction with economic traits. Second, this study focused more on 
establishing the association among sexual dimorphism, cecal 
microbiota, and metabolites. The causal relationship among them 
needs further experimental confirmation. Therefore, future research 
should combine specific economic traits and explore the impact of 
chicken gender differences on the trait formation mechanism by 
experimental verification.
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