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Background: Studies have indicated an association between gut microbiota 
(GM) and non-Hodgkin lymphoma (NHL). However, the causality between GM 
and NHL remains unclear. This study aims to investigate the causality between 
GM and NHL using Mendelian randomization (MR).

Methods: Data on GM is sourced from the MiBioGen consortium, while data 
on NHL and its subtypes is sourced from the FinnGen consortium R10 version. 
Inverse variance weighted (IVW) was employed for the primary MR analysis 
method, with methods such as Bayesian weighted Mendelian randomisation 
(BWMR) as an adjunct. Sensitivity analyses were conducted using Cochran’s Q 
test, MR-Egger regression, MR-PRESSO, and the “Leave-one-out” method.

Results: The MR results showed that there is a causality between 27 GMs and 
NHL. Among them, 20 were negatively associated (OR  <  1), and 7 were positively 
associated (OR  >  1) with the corresponding diseases. All 27 MR results passed 
sensitivity tests, and there was no reverse causal association.

Conclusion: By demonstrating a causal link between GM and NHL, this research 
offers novel ideas to prevent, monitor, and cure NHL later.
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1 Introduction

NHL is a prevalent malignancy tumor in the haematology system, accounting for about 90% 
of lymphomas overall. It can be classified into three basic types: B-cell type, T-cell type, and 
NK-cell type (Shankland et al., 2012). The prevalence of NHL is progressively rising on an annual 
basis. Based on statistical data, the number of new NHL cases in 2020 was 544,000, with 
approximately 260,000 deaths (Mafra et al., 2022). The number of new cases is projected to reach 
778,000 by 2040, an increase of about 43% compared to 2020 (Chu et al., 2023). While the etiology 
of NHL is not fully understood, infection, immunosuppression, immunodeficiency syndromes, 
and autoimmune diseases are commonly recognized as significant risk factors for the onset of 
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NHL (Ansell, 2015; Armitage et al., 2017). In terms of treatment, from 
the anti-CD20 monoclonal antibody (rituximab) in 1982 (Miller et al., 
1982), to the current immune checkpoint inhibitors (ICI) and bispecific 
antibodies (Bock et al., 2022; Abou Dalle et al., 2024), immunotherapy 
combined with chemotherapy has always been a focus in the treatment 
of NHL. Despite some progress made in these treatment methods, the 
therapy of relapsed/refractory NHL is still a major dilemma in the field, 
with many unmet needs in NHL therapy (Chaudhari et al., 2019).

The gastrointestinal tract, as the most common extranodal site 
involved in NHL (Hanafy et  al., 2020), harbors a large number of 
microbes, such as bacteria and fungi. This subset of microorganisms is 
collectively referred to as GM (Costea et al., 2017). Recently, the close 
connection between GM and NHL has been increasingly confirmed. 
Research has shown that the abundance of GM in diffuse large B-cell 
lymphoma (DLBCL) patients is markedly greater than that in healthy 
individuals, as revealed by 16S rRNA gene sequencing (Yuan et al., 
2021). In terms of NHL occurrence, studies have found an association 
between mucosa-associated lymphoid tissue (MALT) lymphoma and 
the invasion of GM such as Burkholderia. GM like Burkholderia may 
influence the mechanism of MALT lymphoma occurrence through the 
synthesis of Mvin protein (Kuo et  al., 2019; Tanaka et  al., 2021). 
Regarding the diagnosis of NHL, some scholars have suggested that GM 
can serve as a diagnostic marker for NK/T cell lymphoma (Shi et al., 
2023). In addition, GM can also modulate the efficacy of immunotherapy. 
Studies have shown that the treatment response of cancer patients 
receiving immune checkpoint inhibitors (ICIs) is associated with the 
composition of GM. For example, GM such as Bacteroides may enhance 
patients’ anti-tumor capacity by improving the function of effector T 
cells in the tumor microenvironment (Gopalakrishnan et al., 2018). 
Furthermore, studies have shown that oral administration of 
Akkermansia muciniphila and fecal microbiota transplantation can 
restore the efficacy of immune checkpoint inhibitors (ICI) in drug-
resistant tumor mice through an interleukin-12-dependent mechanism 
(Routy et al., 2018). Therefore, by modulating GM, it is possible to 
improve the therapeutic effect of immunotherapies such as ICB, lower 
associated side effects (Park E. M. et  al., 2022), and mitigate the 
development of resistance to ICIs in cancer patients (Routy et al., 2018). 
Myeloablative conditioning and the use of broad-spectrum antibiotics 
before hematopoietic stem cell transplantation (HSCT) can damage the 
intestinal epithelium and mucosal barrier, leading to gastrointestinal 
mucositis, and consequently increasing the risk of infections in patients 
(Keefe et al., 2007). Meanwhile, GM can influence the immune system 
and maintain intestinal homeostasis by regulating cells such as Treg and 
TH17 (Arpaia et al., 2013; Smith et al., 2013). Based on differences in 
GM, it is possible to predict and assess pre-transplant risks in NHL 
patients undergoing HSCT, aiding in the identification and prevention 
of high-risk individuals (Montassier et al., 2016). For instance, assessing 
the diversity of gut microbiota (GM) in patients on the day of transplant 
surgery can predict those at high risk of mortality during HSCT (Taur 
et al., 2014). In the future, GM may be a novel diagnostic biomarker and 
therapeutic target for NHL. Therefore, research on the causal 
relationship between the two is necessary.

MR explores the causality between exposure and outcome by 
utilizing instrumental variables (IVs) (Davies et al., 2018). Under the 
principle of random assignment, MR studies could avoid confounding 
factors or reverse causation interference (Davey Smith and Hemani, 
2014), resulting in more stable and reliable research outcomes. For the 
research, we employ a two-sample MR methodology to investigate the 
causality between GM and NHL.

2 Methods

2.1 Data sources

MiBioGen consortium provided genetic variation data on GM 
(Kurilshikov et al., 2021). This research involved 18, 340 persons and 
generated corresponding genetic sequencing and genotyping data. It 
included 211 GMs, classified into five categories: phylum, class, order, 
family, and genus. Three unknown families and twelve unknown 
genera were excluded. Eventually, the study included nine phyla, 
sixteen classes, twenty orders, thirty-two families, and one hundred 
nineteen genera, totaling 196 GMs. The genetic variation data for 
NHL originates from the FinnGen consortium R10 version GWAS 
summary data (Kurki et  al., 2023). It includes NHL and its five 
subtypes: follicular lymphoma (FL), DLBCL, marginal zone B-cell 
lymphoma (MZBL), T/NK cell lymphoma, and mantle cell lymphoma 
(MCL) (Table 1). The diagnostic criteria for NHL refer to ICD-10 
codes C82, C83, C84, C85; The diagnostic criteria for FL refer to 
ICD-10 code C82; The diagnostic criteria for DLBCL refer to ICD-10 
code C83.3; The diagnostic criteria for MZBL refer to ICD-10 codes 
C83.80, C83.89; The diagnostic criteria for T/NK cell lymphoma refer 
to ICD-10 code C84; The diagnostic criteria for MCL refer to ICD-10 
code C83.1.

2.2 Selection of IVs

IVs were screened based on the following criteria (Figure 1): (1) 
In order to obtain IVs that are strongly correlated with GM and have 
robust relationships, we set the significance threshold at p < 1.0 × 10−8. 
However, the number of obtained IVs was small and difficult to meet 
the requirements of this study. Therefore, we  referred to previous 
research (Sanna et  al., 2019) and set the significance threshold at 
p < 1.0 × 10−5. At the same time, to ensure the mutual independence of 
the selected IVs, we  removed linkage disequilibrium in the IVs 
(r2 < 0.001, kb = 10,000); (2) To ensure the independence of the IVs, 
the IVs are unrelated to any confounding factors; (3) IVs can only 
influence the occurrence of NHL through GM and cannot affect NHL 
through other pathways. Additionally, to avoid bias from weak IVs, 
we excluded weak IVs using the F-statistic (F > 10). We also removed 
palindromic sequences from the IVs.

2.3 Positive MR analysis and sensitivity 
analysis

We utilized six methods, including IVW, MR Egger, weighted 
median, simple mode, weighted mode, and BWMR, to investigate the 
causality between GM and NHL. However, IVW was the primary 
evaluation method (Hemani et al., 2018). Given the uniqueness of 
GWAS data, the IVW method is widely recognized as the primary 
method for exploring causal relationships in MR analysis. By 
conducting a meta-analysis of each Wald ratio of the included valid 
IVs, it can provide the most accurate estimate of the effect. This 
approach is also commonly seen in other literature (Legason et al., 
2017; Lu et al., 2023; Martín-Masot et al., 2023; Ruan et al., 2023; Li 
et al., 2024; Zheng et al., 2024). The IVW method is divided into 
random-effects IVW and fixed-effects IVW, with the selection based 
on heterogeneity in MR results (Greco et al., 2015). Since no single 
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method can perfectly suit all situations, additional methods such as 
MR Egger and weighted median are used as supplements (Bowden 
et al., 2015, 2016). For instance, when there is pleiotropy present, the 
MR Egger method is more suitable for inferring causal relationships. 
Finally, to mitigate the effects of multi-genic structure and pleiotropy, 
we utilized the BWMR method to further validate the obtained causal 
relationships (Zhao et al., 2020).

Sensitivity analysis includes heterogeneity testing, leave-one-out 
testing, and multivariate testing (Hemani et al., 2018). We evaluated 
the potential bias in the results by examining the pleiotropy of genes 
and the heterogeneity of the data. Cochran’s Q test assesses 
heterogeneity, based on whether the p-value in Cochran’s IVW is less 
than 0.05. MR-Egger regression detects horizontal pleiotropy, 
determined by the difference between its intercept and 0. MR-PRESSO 
can detect and lower horizontal pleiotropy (Burgess et  al., 2020). 
Additionally, “leave-one-out” analysis can identify outlier SNPs within 
the SNPs, thus avoiding bias introduced by individual outlier SNPs on 
the overall MR results and enhancing the stability of the results.

2.4 Reverse MR analysis

In order to avoid interference from reverse causal relationships on 
the positive MR results, we conducted a reverse MR analysis with 
NHL and its five subtypes as exposure and GM as the outcome.

2.5 Statistical analysis

The statistical analyses in R 4.3.0 used the “TwoSampleMR” package.

3 Results

3.1 Obtained IVs

412 IVs related to non-Hodgkin lymphoma and its subtypes were 
obtained through screening (Supplementary Table S1). Among them, 
there were no palindromic sequences, and the F > 10 (range 17.421–
88.429). The included GMs were divided into five categories, so there 
may be overlaps among SNPs under each GM.

3.2 Results of positive MR analysis

The IVW results showed that there were 34 GMs associated with 
NHL and its subtypes. Among them, 8 were associated with NHL, 6 
with FL, 4 with DLBCL, 5 with MZBL, 6 with MCL, and 5 with T/NK 
cell lymphoma (Figure 2).

According to the IVW analysis results, phylum Cyanobacteria 
(OR: 0.622, CI: 0.426–0.908, p = 0.014), order Bifidobacteriales (OR: 
0.715, CI: 0.512–0.998, p = 0.049), genus Ruminococcus gnavus group 

TABLE 1 Detailed information on GMs and NHLs with their subtypes.

Trait Year Population Case Control PMID/URL 
(Datadownload)

Exposure Gut microbiota 2023 European – – 33462485

Outcome

Non-Hodgkin 

lymphoma
2023 European 1,072 314193

https://storage.googleapis.com/

finngen-public-data-r10/summary_

stats/finngen_R10_C3_

NONHODGKIN_EXALLC.gz

Follicular lymphoma 2023 European 1,181 324650

https://storage.googleapis.com/

finngen-public-data-r10/summary_

stats/finngen_R10_CD2_

FOLLICULAR_LYMPHOMA_

EXALLC.gz

Diffuse large B-cell 

lymphoma
2023 European 1,050 314193

https://storage.googleapis.com/

finngen-public-data-r10/summary_

stats/finngen_R10_C3_DLBCL_

EXALLC.gz

Marginal zone B-cell 

lymphoma
2023 European 202 314193

https://storage.googleapis.com/

finngen-public-data-r10/summary_

stats/finngen_R10_C3_MARGINAL_

ZONE_LYMPHOMA_EXALLC.gz

Mantle cell 

lymphoma
2023 European 210 314193

https://storage.googleapis.com/

finngen-public-data-r10/summary_

stats/finngen_R10_C3_MANTLE_

CELL_LYMPHOMA_EXALLC.gz

T/NK-cell 

lymphomas
2023 European 363 324650

https://storage.googleapis.com/

finngen-public-data-r10/summary_

stats/finngen_R10_CD2_TNK_

LYMPHOMA_EXALLC.gz
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(OR: 0.679, CI: 0.499–0.924, p = 0.014), genus Bifidobacterium (OR: 
0.660, CI: 0.475–0.916, p = 0.013), and genus Lachnospiraceae 
UCG010 (OR: 0.570, CI: 0.352–0.923, p = 0.022) were negatively 
associated with an increased risk of NHL. Class Gammaproteobacteria 
(OR: 1.876, CI: 1.002–3.513, p = 0.049), genus Faecalibacterium (OR: 
1.571, CI: 1.037–2.381, p = 0.033), and genus Sellimonas (OR: 1.542, 
CI: 1.220–1.948, p = 0.0002) were positively associated with an 
increased risk of NHL.

According to the IVW analysis results, order Pasteurellales (OR: 
0.747, CI: 0.565–0.988, p = 0.041), genus Alistipes (OR: 0.554, CI: 
0.327–0.939, p = 0.028), genus Coprobacter (OR: 0.728, CI: 0.537–
0.987, p = 0.041), genus Haemophilus (OR: 0.702, CI: 0.502–0.983, 
p = 0.040), and genus Ruminococcaceae NK4A214 group (OR: 0.598, 
CI: 0.389–0.920, p = 0.019) were negatively associated with an 
increased risk of FL. Genus Catenibacterium (OR: 1.448, CI: 1.011–
2.076, p = 0.044) was positively associated with an increased 
risk of FL.

According to the IVW analysis results, genus Alistipes (OR: 
0.521, CI: 0.311–0.873, p = 0.013), genus Ruminococcaceae UCG011 
(OR: 0.749, CI: 0.574–0.978, p = 0.034) were negatively associated 
with an increased risk of DLBCL. Family Desulfovibrionaceae (OR: 
1.579, CI: 1.033–2.487, p = 0.049), genus Bilophila (OR: 1.777, CI: 
1.053–3.000, p = 0.031) were positively associated with an increased 
risk of DLBCL.

According to the IVW analysis results, family Streptococcaceae 
(OR: 0.290, CI: 0.113–0.746, p = 0.010), genus Eubacterium 
ruminantium group (OR: 0.505, CI: 0.283–0.900, p = 0.021) were 
negatively associated with an increased risk of MZBL. Order 
Gastranaerophilales (OR: 2.445, CI: 1.064–5.616, p = 0.035), family 
Veillonellaceae (OR: 2.344, CI: 1.055–5.207, p = 0.036), genus 
Ruminococcaceae NK4A214 group (OR: 2.789, CI: 1.104–7.044, 
p = 0.030) were positively associated with an increased risk 
of MZBL.

According to the IVW analysis results, class Clostridia (OR: 
0.317, CI: 0.107–0.935, p = 0.037), genus Bifidobacterium (OR: 0.441, 
CI: 0.211–0.920, p = 0.029), genus Marvinbryantia (OR: 0.328, CI: 
0.115–0.938, p = 0.038), genus Parasutterella (OR: 0.441, CI: 0.207–
0.939, p = 0.034), genus Ruminiclostridium 6 (OR: 0.397, CI: 0.70–
0.926, p = 0.032) were negatively associated with an increased risk of 
MCL. Genus Faecalibacterium (OR: 2.755, CI: 1.084–7.005, p = 0.033) 
was positively associated with an increased risk of MCL.

According to the IVW analysis results, class Methanobacteria 
(OR: 0.574, CI: 0.371–0.887, p = 0.012), family Lactobacillaceae (OR: 
0.538, CI: 0.308–0.941, p = 0.030), genus Christensenellaceae R 7group 
(OR: 0.359, CI: 0.134–0.960, p = 0.041), genus Lachnospiraceae 
UCG001 (OR: 0.350, CI: 0.196–0.627, p = 0.0004), genus 
Ruminococcaceae UCG014 (OR: 0.412, CI: 0.205–0.829, p = 0.013) 
were negatively associated with an increased risk of T/NK 
cell lymphoma.

Using BWMR to validate the 34 pairs of causalities between the 
obtained GMs and NHL (Figure  3), the results showed that class 
Gammaproteobacteria (p = 0.340) and order Bifidobacteriales 
(p = 0.051) were not causally related to NHL; genus Catenibacterium 
(p = 0.050) and genus Coprobacter (p = 0.052) were not causally related 
to FL; family Desulfovibrionaceae was not causally related to 
DLBCL. Comparing these 5 pairs of relationships between the results 
of BWMR and IVW (Table  2), it was found that although causal 
relationships existed in the IVW results, their p-values were close to 
0.05. Therefore, these 5 pairs of relationships were excluded from 
our study.

Finally, sensitivity analysis of the MR results was conducted 
(Supplementary Table S1). The p-values of Cochran’s Q test were all 
>0.05, indicating no heterogeneity. The p-values of the MR-Egger 
intercept (Supplementary Figures S1, S2) and MR-PRESSO results 
were all >0.05, indicating no horizontal pleiotropy. Results from the 
“leave-one-out” method (Supplementary Figures S3, S4) showed that 

FIGURE 1

Three conditions met by filtering IVs.
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removing any single SNP would not significantly affect the 
MR results.

3.3 Results of reverse MR analysis

The reverse MR results showed that NHL and its subtypes were 
associated with 37 GMs (Supplementary Table S3). Among them, 
there were 7 associated with NHL, 10 with FL, 5 with DLBCL, 4 with 

MZBL, 9 with MCL, and 2 with T/NK cell lymphoma. Mapping the 
forest, see Figure 4. After comparing with the results of the forward 
MR, among the 34 forward MR results, FL was inversely associated 
with order Pasteurellales and genus Haemophilus, DLBCL was 
inversely associated with family Desulfovibrionaceae, and no other 
reverse causal associations were found in the remaining forward MR 
results. Sensitivity analysis was conducted for the three reverse causal 
associations mentioned above (Table 3). Except for the presence of 
heterogeneity in the MR results between FL and order Pasteurellales 
(without horizontal pleiotropy), the remaining two MR results showed 
no heterogeneity or horizontal pleiotropy.

Therefore, we  finally identified 27 GMs with clear causal 
relationships with NHL and its subtypes, and presented them in the 
form of a heatmap (Figures 5, 6).

4 Discussion

In the 2020 cancer diagnosis statistics, NHL ranked 11th, and its 
incidence has been increasing year by year (Sung et  al., 2021). 
Although GMs play important roles in the occurrence, development, 
diagnosis, and treatment of NHL (Upadhyay Banskota et al., 2023), 
the specific causality between the two is unknown. Previous studies 
have investigated the causal relationship between lipids (Kleinstern 
et al., 2020) and diet (Zhou et al., 2024), among other factors (Shi 
et al., 2024), and NHL through MR. Our research identified 27 GMs 
with causal relationships with NHL and its subtypes through forward 
and reverse MR analyses, as well as sensitivity analysis. Among them, 
phylum Cyanobacteria, genus Ruminococcus gnavus group, genus 
Bifidobacterium, genus Lachnospiraceae UCG010, genus Alistipes, 
genus Ruminococcaceae NK4A214 group, genus Ruminococcaceae 
UCG011, family Streptococcaceae, genus Eubacterium ruminantium 
group, class Clostridia, genus Marvinbryantia, genus Parasutterella, 
genus Ruminiclostridium 6, class Methanobacteria, family 
Lactobacillaceae, genus Christensenellaceae R 7group, genus 
Lachnospiraceae UCG001, and genus Ruminococcaceae UCG014 
were negatively associated with the disease (OR < 1), indicating a 
protective effect against the corresponding types of NHL. Genus 
Faecalibacterium, genus Sellimonas, genus Bilophila, order 
Gastranaerophilales, family Veillonellaceae, genus Ruminococcaceae 
NK4A214 group, and genus Faecalibacterium were positively 
associated with the disease (OR > 1), serving as risk factors for the 
corresponding types of NHL. It is worth mentioning that in our 
positive MR analysis between GM and NHL, we observed that the 
absence of order Pasteurellales and genus Haemophilus might play a 
promoting role in FL occurrence. However, in the reverse MR analysis, 
we found that the occurrence of FL could inhibit the production of 
order Pasteurellales and genus Haemophilus. Therefore, we cannot 
ascertain whether the lack of order Pasteurellales and genus 
Haemophilus is the cause or the consequence of FL occurrence. To 
avoid interference from reverse causal relationships, we excluded the 
portion of results that exhibited reverse causal associations from the 
positive MR results.

The relationship between GM and NHL is complex. With the 
development of technologies in fields like 16S rRNA sequencing or 
shotgun metagenomics sequencing, researchers have gained a clearer 
understanding of the specific taxonomic groups in the GM and their 
relationship with diseases. Due to the involvement of numerous GM 

FIGURE 2

MR results between 34 GMs and NHL.
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species in NHL and its subtypes in this study, we  focused our 
discussion on the MR results related to NHL.

The phylum Cyanobacteria is a group of ancient and diverse 
prokaryotes (Schirrmeister et  al., 2011) that can be  divided into 
different genera such as Aphanothece, Leptolyngbya, and Spirulina 
(Walter et  al., 2017). Research has found that Cyanobacteria can 
synthesize 1,600 types of compounds (Bohlin et al., 2010; Nagarajan 
et al., 2012), which play positive roles in antiviral, antibacterial, and 
immunomodulatory aspects (Sieber and Marahiel, 2005; De Morais 
et al., 2015; Sathasivam et al., 2019), thus they are widely applied in 

various fields. In addition, Cyanobacteria have significant anti-cancer 
effects, for example, Somocystinamide A (ScA), a lipopeptide 
compound isolated from Cyanobacteria, can inhibit tumor cell 
proliferation by inducing programmed cell death (Wrasidlo et al., 
2008, p.  8). Curacin A, produced by Cyanobacteria, is a hybrid 
polyketide-peptide compound and an effective anticancer agent 
(Catassi et al., 2006). It can induce cancer cell death by inhibiting the 
activity of microtubule protein polymerization (Blokhin et al., 1995). 
In the results of this study, the phylum Cyanobacteria was found to 
decrease the risk of NHL, which is similar to the aforementioned 

FIGURE 3

BWMR results between 34 GMs and NHL.
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previous research findings. Based on previous studies, we speculate 
that Cyanobacteria may also exhibit similar anticancer effects in 
NHL. Furthermore, most cancer-related chemotherapy drugs are 
derived from natural products in nature (Sithranga Boopathy and 
Kathiresan, 2010), and Cyanobacteria not only exist in the human gut 
but can also be obtained from marine (Mondal et al., 2020), soil, and 
agricultural runoff (Senousy et al., 2020). Hence, future research could 
delve into the anticancer mechanisms of Cyanobacteria in NHL, 
thereby laying the groundwork for the extraction and development of 
novel drugs related to NHL from natural products.

Ruminococcus gnavus is a Gram-positive anaerobic bacterium 
found primarily within the gastrointestinal tract of humans and 
animals (Qin et al., 2010). In terms of human health, Ruminococcus 
gnavus constitutes a significant proportion of the infant GM 
(Sagheddu et al., 2016), correlating with infant nutrition absorption 
(Yatsunenko et al., 2012) and growth development (Mennella et al., 
2022), with these effects persisting into adulthood. In terms of disease, 
Ruminococcus gnavus is closely associated with gastrointestinal 
diseases and immune regulation. Research revealed that the relative 
abundance of Ruminococcus gnavus in normal humans is usually 
below 1%, while in some inflammatory bowel disease patients, it can 
reach around 70% (Zhang et al., 2023). However, some researchers 
found that after transferring Ruminococcus gnavus and other microbes 
into colorectal cancer mice, Ruminococcus gnavus could inhibit tumor 
growth and activate the immune surveillance function of CD8+ T cells 
(Zhang et al., 2023). Therefore, the role of Ruminococcus gnavus in the 
human body is complex, and its effects on disease are influenced by 
multiple factors. In this study, the genus Ruminococcus gnavus group 
was identified as a beneficial bacterium for NHL, which can reduce 
the risk of its occurrence. Lachnospiraceae and Ruminococcus gnavus 
belong to the phylum Firmicutes. Lachnospiraceae is a family of gut 
bacteria that is widely present in the gastrointestinal tract of fauna 
(Gosalbes et al., 2011; Meehan and Beiko, 2014). It is an important 
member of the human GM, accounting for approximately 10 to 45% 
of the total bacterial population (Liu et al., 2021). Lachnospiraceae can 
be divided into different genera, such as Lachnospira, Oribacterium, 
and Dorea (Vacca et al., 2020), which are the primary contributors to 
short-chain fatty acids that are beneficial to human health (Vital et al., 
2014; Chambers et  al., 2015; Bui et  al., 2021). Meloxicam, a 
nonsteroidal anti-inflammatory drug, is associated with reducing the 
risk of cancer, while Lachnospiraceae can produce meloxicam by 
altering the heterocyclic structure of flavonoids (Sugiyama et al., 2013; 
Braune and Blaut, 2016). Although there is limited research on the 

association between Lachnospiraceae and NHL, and it is not 
commonly found in other hematological tumors (Guevara-Ramírez 
et  al., 2023), the viewpoint of Lachnospiraceae being considered 
beneficial bacteria in previous literature is similar to the results of this 
study. Therefore, more attention should be paid to the study of the 
association between the phylum Firmicutes and NHL as well as blood 
tumors, to clearly elucidate the specific mechanisms by which 
Lachnospiraceae may contribute to the treatment of NHL, thereby 
providing new insights into the prevention and treatment of NHL.

Bifidobacterium is a well-recognized beneficial microorganism 
for human health (Hidalgo-Cantabrana et al., 2017; Leser and Baker, 
2023), with functions such as inhibiting intestinal pathogens (Moreno 
Muñoz et al., 2011), preventing gastrointestinal infections (Weizman 
et  al., 2005), improving gastrointestinal symptoms (Waller et  al., 
2011), and regulating the immune system (Roller et al., 2007), thus it 
is widely used in the food and pharmaceutical industries. Studies have 
shown that GM such as Bifidobacterium can influence the therapeutic 
effects of immunotherapy on tumors (Matson et  al., 2018). 
Bifidobacterium can also enhance the efficacy of ICIs in cancer mice 
by producing adenosine (Mager et  al., 2020). Chimeric antigen 
receptor T-cell immunotherapy (CAR-T) is a novel precision-targeted 
therapy for treating malignant tumors of the hematopoietic system. 
Studies have found that GM such as Bifidobacterium are associated 
with the efficacy of Chimeric antigen receptor T-cell therapy in BCL 
and can influence the progression of BCL (Stein-Thoeringer et al., 
2023). In addition, researchers have observed that the diversity of 
Bifidobacterium in multiple myeloma people after receiving CAR-T 
therapy vary depending on the efficacy of the treatment (Hu et al., 
2022). Therefore, the differences in the diversity and abundance of 
Bifidobacterium are important indicators for predicting the 
therapeutic effects of lymphoma and other malignant tumors of the 
hematopoietic system. This study found that Bifidobacterium can 
effectively reduce the risk of NHL, while previous literature has not 
addressed this aspect of research. Therefore, we hope that this study 
can provide valuable reference for future exploration. Moreover, 
existing studies indicate an association between Bifidobacterium and 
the immunotherapeutic effects on tumors such as BCL and multiple 
myeloma, yet they do not directly establish a connection between 
Bifidobacterium and BCL. Therefore, subsequent research can use this 
as a starting point.

In this study, we found that genus Faecalibacterium and genus 
Sellimonas are the only two intestinal microbiota that can increase 
the risk of NHL. However, it is worth noting that genus 

TABLE 2 Comparison of IVW and BWMR results for 5 pairs of GMs and NHL.

Exposure Outcome IVW BWMR

Pval OR(95%CI) Pval OR(95%CI)

class Gammaproteobacteria 

id.3303 Non-Hodgkin lymphoma
0.049 1.876 (1.002–3.513) 0.340 1.386 (0.710–2.706)

order Bifidobacteriales id.432 0.049 0.715 (0.512–0.998) 0.051 0.708 (0.501–1.001)

genus Catenibacterium id.2153
Follicular lymphoma

0.044 1.448 (1.011–2.076) 0.050 1.470 (1.000–2.162)

genus Coprobacter id.949 0.041 0.728 (0.537–0.987) 0.052 0.727 (0.527–1.002)

family Desulfovibrionaceae 

id.3169

Diffuse large B-cell 

lymphoma
0.049 1.579 (1.003–2.487) 0.059 1.611 (0.982–2.641)
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Faecalibacterium is commonly found in the population and is 
generally considered beneficial to health, with the potential to 
become the next generation of probiotics (Langella et al., 2019). For 
example, Faecalibacterium prausnitzii, an important member of the 
genus Faecalibacterium, constitutes more than 5 percent of the 
overall fecal microbiome of healthy individuals. It can maintain the 

stability of the healthy gut environment (Miquel et al., 2013) and 
also act as a probiotic to regulate the intestinal environment of 
Crohn’s disease patients (Sokol et  al., 2008). Additionally, some 
species within the genus Faecalibacterium can produce significant 
amounts of fructose, providing energy for human colonic epithelial 
cells and supporting epithelial cell growth (Fagundes et al., 2021; 
Park J.-H. et  al., 2022). Therefore, the results regarding genus 
Faecalibacterium in this study differ somewhat from previous 
related research. However, some researchers suggest that the 
interaction between Faecalibacterium and its host is not always 
constant (Martín et  al., 2023). Since the discovery of 
Faecalibacterium, with the continuous advancement of techniques 
such as 16S rRNA gene sequence as well as whole-genome 
sequencing, the taxonomy of this genus has been evolving. In 2021, 
two new species were added: Faecalibacterium butyricigenerans and 
Faecalibacterium longum (Zou et al., 2021); and in 2022, three more 
new species were discovered, namely: Faecalibacterium duncaniae, 
Faecalibacterium hattorii, and Faecalibacterium gallinarum 
(Sakamoto et al., 2022). Therefore, the interactions between the 
genus Faecalibacterium and the host are continually being updated. 
Further research is needed to explore the impact of 
Faecalibacterium on NHL.

The causal relationship between GM and NHL is influenced not 
only by internal factors but also by external factors such as diet, 
medication, and delivery type. Dietary fiber is an important nutrient 
that is difficult for the human body to digest and absorb. However, 
there is a significant association between a high consumption of fruits, 
soy, and green vegetables and a reduced risk of NHL (Chiu, 1996; Wei 
et  al., 2016). It is worth noting that certain GM, such as 
Lachnospiraceae, can ferment dietary fiber and produce substances 
like short-chain fatty acids, increasing the content of butyrate in the 
body, thereby promoting apoptosis of lymphoma cells (Wei et al., 
2016; Zaplana et al., 2024). Therefore, increasing the intake of dietary 
fiber in the body appropriately can promote the growth of GM such 
as Lachnospiraceae. Additionally, certain living biotherapeutic 
products (LBPs) associated with Lachnospiraceae have been attempted 
to be developed as probiotics to improve conditions such as metabolic 
syndrome (Gilijamse et al., 2020). Probiotics are a type of beneficial 
active microorganisms for the human body. Bifidobacterium, as a 
crucial member of probiotics, plays an important role in the 
prevention and treatment of cancers such as colon cancer (Bahmani 
et al., 2019), gastric cancer (Devi et al., 2021), breast cancer (Shimizu 
et al., 2020), and lung cancer (An et al., 2020). This study identified a 
significant number of GM, including Bifidobacterium and 
Ruminococcus gnavus, that may potentially reduce the risk of 
NHL. Whether these GM can participate in the prevention and 
treatment of NHL as probiotics or other forms such as LBPs in the 
future is worth exploring.

The research has a few restrictions. Firstly, since the data on GM 
and NHL and its subtypes are all from European populations, 
we  cannot guarantee whether the results are applicable to other 
populations. The GM dataset included in this study is currently the 
largest GWAS dataset of GM, but it predominantly focuses on the 
European population, hence there are limitations in generalizing to 
other populations. As GWAS databases of GM in various populations 
continue to be updated, we will continue to monitor research on the 
causal relationship between GM and NHL in other populations. 

FIGURE 4

Inverse MR results between GMs and NHL.
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Secondly, there are fewer cases in certain subtypes of NHL, such as 
MZBL, MCL, and T/NK cell lymphoma, which limits the scope of the 
study. We will continue to monitor this aspect of the research as the 
FinnGen database is continually updated. Lastly, this study only 
elucidates the causality between GM and NHL, and the underlying 
mechanisms driving this association are not yet clear, requiring further 
research for support.

5 Conclusion

Through this study, we have identified the causality between 
GM and NHL, and determined the beneficial and harmful 
microbiota for NHL. In the future, it may be  considered to 
selectively alter these GM through measures such as diet, 
probiotics, and prebiotics to influence NHL. Additionally, the 

TABLE 3 Sensitivity analysis results for 3 GMs and NHL inverse MR results.

Exposure Outcome Q Q_pval MR-Egger intercept test MR-PRESSO global test

Egger_
intercept

pval RSS obs p-value

Follicular lymphoma
order Pasteurellales 21.424 0.045 −0.006 0.828 25.277 0.058

genus Haemophilus 18.885 0.063 −0.003 0.925 22.189 0.087

Diffuse large B-cell 

lymphoma
family Desulfovibrionaceae 2.775 0.993 0.003 0.876 111.769 0.468

FIGURE 5

Heatmap of ORs in MR results for 27 GMs and NHL.
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development of targeted and effective GM in clinical settings 
holds certain reference significance as novel therapeutic 
modalities and monitoring indicators for NHL. Therefore, this 
research offers novel ideas to prevent, monitor, and cure 
NHL later.
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