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Acanthamoeba, are ubiquitous eukaryotic microorganisms, that play a pivotal 
role in recognizing and engulfing various microbes during predation, offering 
insights into microbial dynamics and immune responses. An intriguing 
observation lies in the apparent preference of Acanthamoeba for Gram-negative 
over Gram-positive bacteria, suggesting potential differences in the recognition 
and response mechanisms to bacterial prey. Here, we comprehensively review 
pattern recognition receptors (PRRs) and microbe associated molecular patterns 
(MAMPs) that influence Acanthamoeba interactions with bacteria. We analyze 
the molecular mechanisms underlying these interactions, and the key finding 
of this review is that Acanthamoeba exhibits an affinity for bacterial cell surface 
appendages that are decorated with carbohydrates. Notably, this parallels 
warm-blooded immune cells, underscoring a conserved evolutionary strategy 
in microbial recognition. This review aims to serve as a foundation for exploring 
PRRs and MAMPs. These insights enhance our understanding of ecological and 
evolutionary dynamics in microbial interactions and shed light on fundamental 
principles governing immune responses. Leveraging Acanthamoeba as a model 
organism, provides a bridge between ecological interactions and immunology, 
offering valuable perspectives for future research.
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Introduction

Microbial interactions are one of the main driving forces governing ecosystem dynamics, 
influencing nutrient re-cycling and even disease transmission. Among the diverse cast of 
microorganisms, Amoebozoa, the phylum closest to fungi and animals demonstrate 
remarkable versatility in their relationship with other microorganisms. Key representatives 
from the genera are Acanthamoeba (see glossary) and Dictyostelids (Thewes et al., 2019).

Acanthamoeba, are free-living ubiquitous unicellular eukaryotes, and stand out as masters 
of microbial interactions (Rayamajhee et al., 2022). Beyond their ecological role, Acanthamoeba 
are significant in medical contexts as they can cause serious infections such as keratitis, an eye 
infection that can lead to vision loss (Rayamajhee et al., 2021b; Zhang et al., 2023), and 
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granulomatous amoebic encephalitis, a fatal infection of the central 
nervous system (Das et al., 2020). Understanding Acanthamoeba is 
thus crucial for both environmental and human health considerations.

The study of Acanthamoeba-bacteria interactions has evolved 
significantly over the years. Historically, research began with the 
characterization of Acanthamoeba as free-living amoebae with a 
unique predatory role in the environment, these early studies focused 
on their general biology and ecological impact. As research progressed, 
the interest shifted toward understanding their interactions with 
bacteria, particularly due to the amoebae’s complex predatory behavior 
and their role in microbial ecology. This body of research has expanded 
to explore the genetic and molecular mechanisms underlying these 
interactions, highlighting the evolutionary and ecological significance 
of these processes (Anderson, 2018; Shi et al., 2021, 2024).

Acanthamoeba serve as valuable model organisms for studying 
host-pathogen interactions due to their predatory phagocytic nature, 
resembling that of more complex immune cells like macrophages 
(Khan and Siddiqui, 2014; Price Christopher et  al., 2024). Their 
interactions with other microorganisms have been shown to result in 
lateral gene transfer (LGT) between Acanthamoeba and their prey 
(Clarke et  al., 2013). The first whole genome assembly of 
Acanthamoeba castellanii Neff strain (ATCC 30010) revealed ~450 
genes (20%) of the 15,455 compact intron-rich genes had been 
co-opted into its genome through inter-kingdom LGT. This likely 
enabled Acanthamoeba adaptation to diverse environments which is 
evident by the diversity of pattern recognition receptors (PRRs); 
elemental receptors that recognize specific molecular structures on the 
surface of microbes (Li and Wu, 2021). Many Acanthamoeba PRRs 
share predicted orthologous functions with innate immune 
phagocytes in higher eukaryotes like monocytes, neutrophils, and 
macrophages (Li and Wu, 2021). Acanthamoeba and prey interactions 
is a complex process that hinges on microbe-associated molecular 
patterns (MAMPs) on the surfaces of microorganisms (Newman et al., 
2013). The innate immune response, originating from ancient 
evolutionary processes (Kubelkova et  al., 2023), features defined 
receptors for MAMPs, mitogen-associated protein kinase (MAPK) 
activation, and antimicrobial peptide production (Aweya et al., 2022). 
These shared characteristics may have evolved divergently from an 
ancestral unicellular organism predating the divergence of life 
kingdoms (Weiss et al., 2016).

Acanthamoeba preferentially feed on Gram-negative bacteria 
(Bottone et al., 1994; Khan and Siddiqui, 2014; Rayamajhee et al., 
2021a, 2023). This preference may derive from the multitude of 
receptors encoded in the genome of A. castellanii Neff strain that may 
facilitate recognition and subsequent predation. This recognition 
potential likely arise from the unique surface structure and 
biochemical composition of Gram-negative bacterial cell walls 
compared to Gram-positive bacteria. Interestingly, interactions 
between Acanthamoeba and Listeria monocytogenes, a Gram-positive 
bacterium distinguished by its capability to invade eukaryotic cells 
(Bierne and Cossart, 2002; Cossart and Toledo-Arana, 2008), have 
been reported to be random encounters, where phagocytosis occurs 

as a consequence of trapped cells (de Schaetzen et  al., 2022). In 
contrast, interactions with the Gram-negative bacteria Campylobacter 
jejuni depend on glycans decorating the flagella, a cell surface 
appendage (Nasher et al., 2018). The implications of this interactions 
for microbial ecology and immune responses are significant and these 
interactions can influence the transmission and pathogenicity of 
bacterial infections, potentially increasing the risk of disease outbreaks 
(Rayamajhee et al., 2024a,b).

Given these observations, a comprehensive review of 
Acanthamoeba’s interactions with various bacteria is warranted, 
particularly focusing on the recognition mechanisms of cell surface 
structures. This review highlights similarities and differences between 
Acanthamoeba and immune cells of warm-blooded hosts. 
Understanding these interactions, influenced by bacterial cellular 
components, holds broad implications for microbial ecology, 
evolutionary dynamics, and host immune responses, contributing to 
the ecology and evolution (eco-evo) perspective of pathogenomics 
(Pallen and Wren, 2007). This review is aimed to set the scene for 
future research by providing an overview of the intricate interactions 
between Acanthamoeba and bacteria.

A multifaceted approach to 
recognition and interaction

Recognition of bacterial surface structures adorned with glycans 
is crucial for phagocytic cells like macrophages and neutrophils, as it 
forms a central aspect of the immune response against invading 
microorganisms [detailed review available here (Prado Acosta and 
Lepenies, 2019)]. Post-translational modifications of bacterial 
structures, specifically through glycosylation, act as key MAMPs for 
phagocytes, underscoring the significance of bacterial glycans in host 
recognition. These carbohydrate patterns exhibit considerable 
variability among different cell types, prompting phagocytes to evolve 
mechanisms to distinguish between self and non-self. Similar to 
phagocytic cells in higher organisms, Acanthamoeba also recognize 
and respond to bacterial glycans (Nasher and Wren, 2023), 
highlighting the conserved nature of glycan-mediated mechanisms 
across different organisms and the adaptive benefits of recognizing 
these molecules (van Kooyk and Rabinovich, 2008; Prado Acosta and 
Lepenies, 2019).

Post-translational modification of 
bacterial cell surface structures as 
MAMPS

These carbohydrate patterns on MAMPS include common 
eukaryotic sugars such as glucose, galactose, N-acetylglucosamine, 
N-acetylgalactosamine, and sialic acid, along with a diverse array of 
unique bacterial sugars. Bacterial glycans feature rare deoxy amino 
sugars, including pseudaminic acid, legionaminic acid, d-bacillosamine, 
d-2,4-diacetamido-2,4,6-trideoxygalactose (DATDG), d- and l-N-
acetylfucosamine (l-FucNAc), l-N-acetylrhamnosamine (l-RhaNAc), 
l-N-acetylpneumosamine (l-PneNAc), and l-N-acetylquinovosamine 
(l-QuiNAc) (Barrett and Dube, 2023). These sugars may vary based on 
microbial type and environmental conditions, further influencing host 
pathogen interactions.

Abbreviations: MBPs, Mannose binding proteins; RBLs, Rhamnose binding lectins; 

MD-2, Myeloid differentiation factor 2; GlcNAc, N-Acetylglucosamine; DC-SIGN, 

Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; 

Kdo2, 3-deoxy-d-manno-oct-ulosonic acid.

https://doi.org/10.3389/fmicb.2024.1405133
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nasher and Wren 10.3389/fmicb.2024.1405133

Frontiers in Microbiology 03 frontiersin.org

This review focuses on bacterial cell surface appendages and their 
PTM with glycans, which are critical for their recognition and 
subsequent phagocytosis by Acanthamoeba. Flagellin is the protein 
subunit of bacterial flagella, essential for motility and recognized by 
immune receptors such as Toll-like receptor 5 (TLR5) (Nedeljković 
et al., 2021). Lipopolysaccharide (LPS), a major component of the 
outer membrane of Gram-negative bacteria, consists of lipid A, core 
polysaccharide, and O antigen, and is a potent endotoxin recognized 
by TLR4 (Mazgaeen and Gurung, 2020). Lipoteichoic Acid (LTA), 
found in the cell walls of Gram-positive bacteria, plays a role in cell 
wall maintenance and is recognized by TLR2 (Li and Wu, 2021). 
Capsular Polysaccharides (CPS), which are polysaccharide layers 
surrounding some bacteria, provide protection against phagocytosis 
and environmental stresses and are recognized by specific receptors 
on phagocytic cells (Gao et al., 2024). These insights underscore the 
ancient origins and fundamental importance of glycan recognition in 
immune defense mechanisms.

Mannose-binding proteins (MBPs)

Acanthamoeba employ a sophisticated array of molecular players 
to interact with prey, including C-type lectins. C-type lectins have 
major functional roles of innate and adaptive immune responses 
(Kalia et al., 2021). These proteins are characterized by carbohydrate-
recognition domains (CRDs), which exhibit calcium-dependent 
binding with specific carbohydrate ligands (Weis and Drickamer, 
1994). The genome of A. castellanii Neff strain encodes two distinct 
mannose-binding proteins (MBPs), MBP1 (Q6J288) and MBP2 
(L8GXW7), which share a conserved DUF 4114 domain 
(DUF-domain of unknown function) (Corsaro, 2022). Positioned on 
the surface membrane, Acanthamoeba MBPs are mannose-containing 
glycoproteins, lacking N-acetyl-galactosamine (GalNac) but modified 
by N-linked glycosylation (Garate et al., 2005).

MBPs bind to carbohydrates with hydroxyl groups at specific 
positions on the pyranose ring (Feinberg et al., 2000; Ng et al., 2002). 
Consequently, MBPs exhibit pronounced affinity for ligands like 
mannose and GlcNAc. While MBPs generally show minimal binding 
affinity to carbohydrates with incompatible steric arrangements like 
galactose, certain contexts, such as specific structural conformations 
or modifications, may still facilitate interactions with carbohydrates 
like sialic acid (Weis and Drickamer, 1994). For example, interactions 
with bacterial components that are composed of sialic acid polymers 
might involve other receptors or co-factors that enhance binding 
affinity. This steric precision coupled with variations in the spatial 
arrangement of its ligands, MBPs facilitate the selective identification 
of carbohydrates structures on the surface of microorganisms 
(Veldhuizen et  al., 2011; Paurević et  al., 2024). While the exact 
molecular targets of MBPs on bacterial surfaces remain elusive, its 
affinity for carbohydrates possessing hydroxyl groups at the 3- and 
4-positions of the pyranose ring implies potential interactions with a 
range of microbial components. These include lipopolysaccharides 
LPS (Raetz and Whitfield, 2002) on Gram-negative bacteria, CPS 
(Azurmendi et al., 2020), and LTA on Gram-positive bacteria (Zhang 
et al., 2006). Functionally versatile, Acanthamoeba MBPs serve as 
receptors for a spectrum of pathogens, including Legionella 
pneumophila (Declerck et al., 2007) and Escherichia coli (Carvalho 
et al., 2003). The recent availability of more robust Acanthamoeba 

genome sequences (Sharma et  al., 2022) have enabled a deeper 
understanding of Acanthamoeba MBPs mechanisms and 
interactions, shedding further light on its divergence that lead to 
variations in bacterial interactions efficiency (Matthey-Doret 
et al., 2022).

d-Galactoside/l-Rhamnose-binding 
lectins (RBLs)

A. castellanii Neff strain genome also revealed the presence of 11 
d-galactoside/l-Rhamnose-binding lectins (RBLs) domain-
containing proteins which are absent in other Amoebozoa (Clarke 
et  al., 2013). Similarly to MBPs, RBLs play pivotal roles as PRRs, 
aggregating bacteria by interacting with LPS and LTA (Subi and 
Shabanamol, 2022; Wang et al., 2023). Notably, carbohydrate binding 
RBLs are structurally similar to sea urchin egg lectins (SUEL) 
(Sugawara et al., 2020) and have a higher affinity for smooth LPS than 
they do for rough LPS variants (Tateno et al., 1998; Tateno, 2010), 
highlighting the significance of the O-antigen in host responses.

Role of O-antigen in bacterial 
recognition

The O-antigen is a crucial component found in both LPS and 
bacterial capsules. LPS, a well-studied virulence factor in Gram-
negative bacteria. LPS is composed of three distinct domains dictating 
its biological and immunological properties (Bertani and Ruiz, 2018). 
LPS serves as a key determinant in bacterial recognition by 
Acanthamoeba (Tezcan-Merdol et  al., 2004). Interestingly, while 
certain bacterial serotypes may influence the efficiency of bacterial 
consumption (Liu and Koudelka, 2023a), recent studies suggest that 
Acanthamoeba recognizes the more conserved components of LPS, 
such as the core OS region, for detection and phagocytosis (Arnold 
et al., 2016; Liu and Koudelka, 2023b). This ability is reminiscent of 
dendritic cells recognition of LPS core OS by DC-SIGN (Dendritic 
Cell-Specific Intercellular adhesion molecule-3-Grabbing 
Non-integrin), a mannose-binding protein that mediates phagocytosis 
(Svajger et al., 2010). Additionally, monoclonal antibodies against the 
core OS of various bacteria can bind this feature in the intact 
membrane, suggesting that its proximity does not block the ability to 
be  bound by proteins (Shenep et  al., 1987; Bos et  al., 2004). This 
interaction is characteristic of the eco-evo dynamic and sheds light on 
the co-evolution of bacteria and protists in their natural environment.

A recent study using strains of E. coli that share the same inner 
core sugars demonstrated that the Kdo2 moiety within the inner core 
of LPS is necessary and adequate for E. coli recognition and 
internalization by A. castellanii (Liu and Koudelka, 2023b). Also, the 
specific composition of the variable outer core region influences the 
efficiency of consumption by A. castellanii. This suggests that 
Acanthamoeba may sense and recognize the more conserved 
components of LPS, and it is quite likely that rough-form LPS is also 
recognized by Acanthamoeba similarly. Intriguingly, it was proposed 
that Lipid A possibly evolved in response to persistent interactions 
with protists in the natural environment, rather than the occasional 
infective interactions in humans and animals (Liu and 
Koudelka, 2023b).
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In studies on Salmonella enterica serovars, variations in their 
internalization by Acanthamoeba have been observed. Serovars such as 
S. enterica Dublin are internalized more efficiently compared to others like 
S. enterica Enteritidis or Typhimurium (Tezcan-Merdol et al., 2004). This 
differential recognition and internalization efficiency can be attributed to 
variations in the O-antigen, which often contains mannose (Reeves et al., 
2013), underscoring the importance of this component in bacterial-
protozoan interactions. The preference of Acanthamoeba for specific 
Salmonella serogroups suggests an adaptive mechanism in which these 
protists have evolved to recognize and differentiate between bacterial 
strains based on their O-antigen (Wildschutte et al., 2004). This dynamic 
interaction further illustrates the ongoing evolutionary arms race between 
bacteria and their protistan predators.

Capsular polysaccharides (CPS) and 
their role in immune evasion

The O-antigen is also a key component of bacterial CPS. CPS 
protects bacteria from phagocytes due to their hydrophilic and 
negatively charged properties (Cress et al., 2014), this creates repulsive 
forces when they encounter phagocytes, hindering interaction 
(Whitfield et al., 2020). E. coli K1 fulfills this paradigm (Arredondo-
Alonso et al., 2023), however, the K1 CPS presents a unique scenario 
when interacting with Acanthamoeba.

Mutations to neuDB gene cluster, which is essential for CPS 
production, lead to reduced internalization and decreased survival of 
E. coli K1 within Acanthamoeba (Jung et al., 2007). This indicates that 
the capsule is crucial for Acanthamoeba interactions and intracellular 
survival. Interestingly, Acanthamoeba interactions with the K1 
capsule, which contains a polymer of alpha−2,8-linked 
N-acetylneuraminic acid (sialic acid) (Arredondo-Alonso et al., 2023), 
is facilitated by specific receptors or mechanisms that can recognize 
sialic acid. This surprising interaction highlights Acanthamoeba 
ability to respond to different carbohydrates on CPS, which leads 
to phagocytosis.

CPS likely also provides protection to the bacteria from the 
amoebae. This phenomenon was recently illustrated in Klebsiella 
pneumoniae, where interactions with A. castellanii led to 
K. pneumoniae CPS hypermucoviscosity (Huang et al., 2023). CPS 
molecular compositions vary extensively even within strains of the 
same species, with some species from different orders producing 
identical structures (Whitfield et al., 2020). The presence of highly 
similar machinery responsible for producing identical polysaccharides 
in different microbes suggests that capsular gene clusters may have 
been acquired through LGT or functional convergent evolution 
(Whitfield et al., 2020). Understanding these dynamics is crucial for 
elucidating the intricate mechanisms underlying Acanthamoeba 
interactions with bacteria, as CPS structures likely play a significant 
role in prey recognition and predation preferences.

Interaction with lipoteichoic acid (LTA)

In contrast to LPS and CPS, there has only been a single report 
investigating Acanthamoeba interactions with LTA (52). Like LPS, 
A. castellanii was shown to readily respond to LTA from Staphylococcus 
aureus as an attractant. This interaction may involve recognition of 

glycosylated components of the glycerolphosphate polymer, as some 
studies suggest glycosylation of the hydroxyl component of 
glycerolphosphate allows for lectin-like receptor binding (Weidenmaier 
and Peschel, 2008; Percy and Gründling, 2014). However, at high 
concentration LTA was reported to be toxic to the amoebae and act as 
a repellent (Schuster and Levandowsky, 1996). While both LTA and 
LPS share pathophysiological properties (Percy and Gründling, 2014), 
it is noteworthy that they possess distinct chemical structures and 
originate from different bacterial types. LTA, found predominantly in 
Gram-positive bacteria, differs structurally from LPS, the hallmark 
component of Gram-negative bacterial outer membranes. These 
structural disparities may underlie variations in their interactions with 
Acanthamoeba and further investigation into how these structural 
differences influence Acanthamoeba behavior could provide insights 
into their microbial preferences and ecological roles.

Secreted immune-related proteins

Acanthamoeba also possess a diverse array of predicted secreted 
immune-related proteins, including bactericidal/permeability-
increasing proteins (BPIs) and lipopolysaccharide-binding proteins 
(LBPs), which may play crucial roles in host defense mechanisms 
(Clarke et al., 2013). Six members of the BPI/LBP-like family proteins 
(ACA1_147410, ACA1_212480, ACA1_238450, ACA1_374090, 
ACA1_388520, and ACA1_388570) have been identified in 
Acanthamoeba, characterized by the presence of N-terminal signal 
peptides, suggesting their secretory nature and potential binding to 
hydrophobic ligands. In vertebrates, BPI and LBP are key components 
of the innate immune system, recognizing and responding to bacterial 
infections, particularly those caused by Gram-negative bacteria LPS 
(Theprungsirikul et al., 2021). While mammalian LBP exhibits direct 
binding to the outer membrane of Gram-negative bacteria and 
facilitates endotoxin conveyance, BPI demonstrates a strong affinity 
for unmodified endotoxin aggregates, isolated outer membranes 
(OM), and intact, live Gram-negative bacteria, thereby preventing 
harmful immune hyperactivation in the host (Krasity et al., 2011; 
Bülow et al., 2018). However, it remains to be investigated whether 
similar mechanisms exist in Acanthamoeba. In addition, A. castellanii 
genome also encodes a membrane-bound Myeloid Differentiation 
factor 2 (MD-2) protein. In mammalian cells, MD-2 is required for 
LPS signaling of TLR4 and opsonophagocytosis (Shimazu et al., 1999). 
LPS is extracted from the bacterial membrane by LBPs and transferred 
to MD-2, LPS binds to the hydrophobic cavity of this protein, and this 
interaction directly mediates TLR4/MD-2 complex homodimerization 
and results in downstream signaling in vertebrates (Shimazu et al., 
1999). Acanthamoeba lack TLR4, therefore the role of MD-2  in 
sensing and phagocytosis remains unclear. We therefore speculate that 
MD-2 activation in Acanthamoeba could enhance phagocytosis of 
bacterial cells.

Peptidoglycan recognition proteins 
(PGRPs)

The A. castellanii Neff strain genome sequence also identified two 
peptidoglycan recognition proteins (PGRPs), which share structural 
similarities with bacteriophage T7 lysozyme and are conserved across 
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various species, from insects to mammals (Clarke et al., 2013; Bastos 
et  al., 2020). PGRPs serve as PRRs, binding or hydrolyzing 
peptidoglycans found on both Gram-negative and Gram-positive 
bacteria (Bastos et al., 2020). While some PGRPs possess catalytic 
activities, breaking the amide bond between MurNAc and L-alanine 
components of peptidoglycans, others are predicted to have receptor 
functions on the cell surface (Dziarski et al., 2003; Wang et al., 2003; 
Bastos et al., 2020). However, the specific functions of Acanthamoeba 
PGRPs remain to be elucidated.

Sensing and signal transduction

Recognition and interactions with prey requires sensing of signal 
cues. Acanthamoeba exhibit directed movement in response to an 
array of bacterial products (Schuster and Levandowsky, 1996). The 
displayed movement toward certain molecules hints at the presence of 
distinct receptors geared toward specific molecules. The A. castellanii 
Neff strain genome encodes multitude of receptors catering to 
extracellular cues, among these, the G-protein-coupled receptors 
(GPCRs), stand out as a prominent group (Clarke et al., 2013; Matthey-
Doret et al., 2022). The genome sequence of A castellanii Neff strain 
also encodes multiple genes for phosphor-tyrosine signaling, mediated 
through a network of tyrosine kinases (PTKs), tyrosine phosphatases 
(PTPs), and proteins with Src homology 2 (SH2) domains (Clarke 
et  al., 2013). Interestingly, the genome also encodes homologs of 
Dictyostelids atypical MAPK proteins ErkA and ErkB (Nichols et al., 
2019). It is conceivable that a substantial subset of these receptors are 
dedicated to the vital task of sensing diverse food sources, including 
other microorganisms (Figure 1).

H-type lectin domain proteins

The genome sequence of A. castellanii Neff strain revealed the 
presence of H-type lectin domain protein, a recently identified family 
of lectins which are known to specifically recognize glycosylated 
proteins containing GalNAc or galactose (Gal), these are associated 
with components of bacterial cell wall structures, such as LPS and 
peptidoglycans (Cummings et al., 2022). In other invertebrates, H-type 
lectins were speculated to be  involved in antibacterial defense 
mechanism by aggregating bacteria (Mathieu et al., 2010). The family’s 
name originates from the quaternary structure of Helix pomatia 
agglutinin (HPA), which forms a hexamer (Sanchez et al., 2006). To get 
a better understanding of A. castellanii H-type lectin, we performed a 
multiple alignment of H-type lectin domains from, A. castellanii Neff 
strain (L8GSR8_ACACF), H. pomatia (Q2F1K8_HELPO) and 
D. discoideum [discoidins 1 (DIS1_DICDI) and II (DIS2_DICDII)] 
(Supplementary Figure S1). The amino acid residues crucial for ligand-
binding, which were previously characterized in H. pomatia (Sanchez 
et al., 2006; Pietrzyk-Brzezinska and Bujacz, 2020), across all examined 
sequences were found to be conserved. This was also observed when 
predicted protein structures were aligned (Supplementary Figure S2). 
However, we note that A. castellanii H-type lectin domain shows some 
amino acid variation at these ligand-binding site, this divergence may 
potentially impact their binding specificities and/or functional 
characteristics. H-type lectins exhibit varying specificities for either 
αGalNAc or βGalNAc anomers (Sanchez et al., 2006), with exceptions 

to D. discoideum discoidins I and II which have the capacity to bind 
both anomers (Aragão et  al., 2008). While it is suggestive that 
Acanthamoeba H-type lectin domain may also display a preference for 
GalNac anomers due to their similarities with Dictyosteleae, caution 
must be  exercised in interpreting these findings and needs to 
be supported by experimental data.

Role of flagellin in host interaction

Flagellin is a MAMP and serves as adhesins and plays a central 
role in the invasion of host cells (McSweegan and Walker, 1986; 
Nachamkin et al., 1993; Savelkoul et al., 1996; Feldman et al., 1998; 
Inglis et  al., 2003). O-linked glycosylation of bacterial flagellin 
significantly affects flagellar assembly, motility, and host specificity. 
While motility was reported to be the driving force for interactions 
with Acanthamoeba, recent studies have revealed complexities. In the 
case of C. jejuni, flagellin glycosylation properties independent of 
motility was found to mediate interactions between the bacteria and 
Acanthamoeba (Nasher and Wren, 2023). This finding has added 
another layer of complexity, challenging traditional views on the role 
of motility in microbial interactions. It prompts questions about the 
specific molecular pathways and signaling mechanisms involved in the 
recognition and response to post translational modifications (PTM) 
of bacteria cell surface structures by Acanthamoeba. Additionally, it 
raises broader questions about the evolutionary significance of such 
adaptations and their implications for microbial ecology and host-
microbe dynamics.

Aggregation and phagocytosis

Some bacteria, such as L. monocytogenes, Pseudomonas 
fluorescens, and C. jejuni form aggregates on the surface on 
Acanthamoeba prior to phagocytosis (Preston and King, 1984; 
Axelsson-Olsson et  al., 2005; Doyscher et  al., 2013). For 
L. moncytogenes, this was proposed as a potential grazing strategy 
driven by Acanthamoeba locomotion to capture motile bacteria (de 
Schaetzen et  al., 2022). This is consistent with the evolutionary 
adaptations that Acanthamoeba may have developed to flourish in 
their natural environment, potentially with the assistance of lectins. 
However, it is also worth considering that specific carbohydrate 
interactions driven equally by both organisms may contribute to 
bacterial aggregation, thereby fostering interactions between 
Acanthamoeba and microbial communities in their surroundings, 
and ultimately shaping microbial ecosystems. Indeed, this hypothesis 
gains further support from observed mutations at specific 
glycosylation sites on C. jejuni flagellin, which subsequently disrupts 
aggregation on the surface of Acanthamoeba (Nasher and Wren, 
2023). On the other hand, it is worth noting that C. jejuni flagellin 
glycosylation is unique and therefore, this interaction may differ to 
other bacterial species.

Concluding remarks

Bacterial encounters with Acanthamoeba have clearly shaped the 
evolution of both predator and prey, revealing why certain pathogens 
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that mammals do not usually encounter (such as Legionella) are 
pre-armed in terms of survival in the hostile intracellular 
environments of warm-blooded animals (e.g., alveoli cells in the lung). 
This opportunistic nature of some pathogens makes sense when 
viewed from an eco-evo perspective (Pallen and Wren, 2007; Berlanga 
et al., 2021). Adapting to interact with a wide array of bacterial cell 
surface molecular structures, Acanthamoeba not only thrive but also 
play a pivotal role in shaping their intricate ecosystems. Despite their 
evolutionary divergence from warm-blooded host phagocytes, the 
conservation of innate immunity processes across distantly related 
organisms is evident. The interactions between Acanthamoeba and 
bacteria provide insights into microbial dynamics and 
immune responses.

Limitations

Current research on Acanthamoeba-bacteria interactions, 
while insightful, has limitations. Most studies examine 
only a narrow range of bacterial species, which may not capture 
the full spectrum of interactions in natural environments. 
Additionally, findings from laboratory-cultured Acanthamoeba 
strains may not fully reflect the behavior of environmental 
isolates, potentially oversimplifying the complexity of these 
interactions. Furthermore, the molecular mechanisms behind 
Acanthamoeba recognition and response to various bacterial 
MAMPs remain only partially understood, necessitating 
further research.

FIGURE 1

Hypothetical model of Acanthamoeba pathogen recognition receptors. (1) The process is initiated with the binding of Pattern Recognition Receptors 
(PRRs) to Microbe-Associated Molecular Patterns (MAMPs) or detection through Acanthamoeba cell surface receptors. Key components in this model 
include Mannose binding proteins (MBP), Rhamnose Binding Lectin (RBL) and H-type Lectins, which have a carbohydrate-recognition domain (CRD) 
and bind an array of glycans. Additionally, Lipopolysaccharide-Binding Proteins (LBPs), and Bactericidal/Permeability-Increasing Proteins (BPIs) are 
significant players. BPI and LBP often work together and are likely secreted. However, their respective receptors are yet to be identified. LBP may 
deliver bacterial components to the membrane bound myeloid differentiation factor 2 (MD-2) similar to that of the immune system of warm-blooded 
mammals. Peptidoglycan Recognition Proteins (PGRPs), likely target peptidoglycans found on Gram-positive bacteria. Acanthamoeba utilize various 
cell surface chemosensory receptors, particularly those of G-Protein-Coupled Receptors (GPCRs), to sense and respond to their environment. (2) 
These events trigger protein kinases phosphorylation, and subsequently. (3) This cascade of events leads to essential cellular processes, including 
phagocytosis. For a detailed depiction of the fate of bacteria following phagocytosis, readers are referred to a recent publication (Rayamajhee et al., 
2022), where a comprehensive schematic is provided. Figure was created using Biorender (https://biorender.com/).
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Future directions

Future research should address these limitations by expanding the 
range of bacterial species studied and incorporating environmental 
isolates to better replicate natural conditions. Investigating the 
complete diversity of bacterial interactions and their effects on 
bacterial transmission and pathogenicity could lead to new infection 
prevention and control strategies. Other amoeba such as the 
D. discoideum model can be used to understand these interactions in 
parallel. Key questions to understand the intricate mechanisms of 
immune recognition across the spectrum of life include:

 • To what extent has the evolution of amoebae species been 
influenced by predator–prey relationships, and how does this 
impact their ecological niche and biodiversity?

 • What molecular mechanisms underlie the specific recognition 
and response of Acanthamoeba to the diverse cell surface 
structures of bacteria, and how do these interactions shape 
microbial communities and ecological dynamics?

 • How do the evolutionary adaptations of Acanthamoeba in 
recognizing and engulfing bacteria compare to immune 
responses in higher organisms, and what insights does this 
provide into the conservation of immune mechanisms across 
diverse life forms?
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Glossary

Acanthamoeba Free-living amoebae belonging to the genus Acanthamoeba, which can act as predators of microorganisms, including bacteria

Capsular Polysaccharides (CPS) Polysaccharides that constitute the outermost layer of some bacteria, providing protection against immune responses

Dictyostelid cellular slime molds are a group of social amoebae

Endosymbiosis A symbiotic relationship in which one organism (the endosymbiont) lives within the cells or body of another organism

Flagellin A protein component of bacterial flagella, recognized by host cells as a Microbe-Associated Molecular Pattern (MAMP)

Gram-Negative Bacteria Bacteria with a cell wall structure that includes an outer membrane and a thinner layer of peptidoglycan

Gram-Positive Bacteria Bacteria with a cell wall structure characterized by a thick layer of peptidoglycan

Lateral gene transfer (LGT) the process by which an organism incorporates genetic material from another organism without mating

Lipopolysaccharides (LPS) Complex molecules found in the outer membrane of Gram-negative bacteria, serving as MAMPs and endotoxins

Macrophages Immune cells that engulf and digest pathogens

Mannose A monosaccharide sugar of the aldohexose series of carbohydrates

Microbe-Associated Molecular Patterns 

(MAMPs)

Conserved molecular structures on the surface of microorganisms recognized by host cells to initiate immune responses

N-linked glycosylation The attachment of an oligosaccharide, a carbohydrate consisting of several sugar molecules, sometimes also referred to as glycan, 

to a nitrogen atom (the amide nitrogen of an asparagine (Asn) residue of a protein). N-linked glycosylation occurs widely in 

eukaryotes but rarely in bacteria

Neutrophils White blood cells that are part of the immune system

O-linked glycosylation is the attachment of a sugar molecule to the oxygen atom of serine (Ser) or threonine (Thr) residues in a protein. O-linked 

glycosylation occurs in both eukaryotes and prokaryotes

Pathogen recognition receptors (PRRs) are a class of germ line-encoded receptors that recognize microbe-associated molecular patterns

Phagocytes Cells, such as macrophages, neutrophils, and amoebae, that are capable of engulfing and eliminating microorganisms

Post-Translational Modifications (PTMs) Chemical modifications made to proteins after they are synthesized, often affecting their function

Teichoic Acid (TA) A component of the cell walls of Gram-positive bacteria, including lipoteichoic acid (LTA)
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