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Cloning and transfer of long-stranded DNA in the size of a bacterial whole

genome has become possible by recent advancements in synthetic biology.

For the whole genome cloning and whole genome transplantation, bacteria

with small genomes have been mainly used, such as mycoplasmas and related

species. The key benefits of whole genome cloning include the e�ective

maintenance and preservation of an organism’s complete genome within a

yeast host, the capability to modify these genome sequences through yeast-

based genetic engineering systems, and the subsequent use of these cloned

genomes for further experiments. This approach provides a versatile platform for

in-depth genomic studies and applications in synthetic biology. Here, we cloned

an entire genome of an insect-associated bacterium, Spiroplasma chrysopicola,

in yeast. The 1.12 Mbp whole genome was successfully cloned in yeast, and

sequences of several cloneswere confirmed by Illumina sequencing. The cloning

e�ciency was high, and the clones contained only a few mutations, averaging

1.2 nucleotides per clone with a mutation rate of 4×10−6. The cloned genomes

could be distributed and used for further research. This study serves as an initial

step in the synthetic biology approach to Spiroplasma.

KEYWORDS
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Introduction

The synthetic biology has expanded greatly in recent years, making it possible to handle

long DNA and conduct research using it (Kelwick et al., 2014; Venter et al., 2022). Bacteria

with small genomes, such as Mycoplasma species and allied bacteria, have been used as

targets in synthetic biology. Several studies have reported that their entire genomes were

synthesized, cloned, modified, and transplanted into other bacterial cells. For example,

whole genome cloning of several bacteria were reported includingMycoplasma genitalium

(Gibson et al., 2008), Mycoplasma mycoides (Benders et al., 2010; Gibson et al., 2010),

Mycoplasma capricolum and related species (Labroussaa et al., 2016), Acholeplasma

laidlawii (Karas et al., 2012), Synechococcus elongatus PCC 7942 (Noskov et al., 2012),

Prochlorococcus marinus MED4 (Tagwerker et al., 2012), and Mesoplasma florum (Baby

et al., 2018). The entire genome of M. mycoides and its related species were transplanted

intoM. capricolum recipient cells (Lartigue et al., 2007, 2009; Labroussaa et al., 2016; Baby

et al., 2018). The entire genome of M. mycoides was chemically synthesized, cloned into

yeast, and transplanted intoM. capricolum recipient cell to create JCVI-syn1.0, a bacterium
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with a chemically synthesized genome (Gibson et al., 2010).

Based on JCVI-syn1.0, a minimal cell JCVI-syn3.0, whose genome

retains only essential genes, was constructed (Hutchison et al.,

2016). Techniques for editing the entire genome of bacteria

cloned into yeast have also been reported (Chandran et al., 2014;

Tsarmpopoulos et al., 2016; Zhao et al., 2023). The advantages of

enabling whole genome cloning encompass the ability to preserve

the entire genome of an organism, the possibility of genome

modification using the genetic engineering system in yeast, and its

subsequent use in further research.

Members of the genus Spiroplasma comprise a bacterial group

closely related to Mycoplasma (Davis et al., 1972). Spiroplasma

species, characterized by their spiral cell shape and rotational

swimming motility, infect a wide range of hosts including plants,

insects, crustaceans, and mammals (Whitcomb, 1980; Cisak et al.,

2015). Spiroplasma citri and Spiroplasma kunkelii are notorious

to cause significant damage to citrus and corn, respectively

(Whitcomb et al., 1986). Spiroplasma mirum is reported to cause

cataracts and neurological damage in suckling mice (Tully et al.,

1982). Spiroplasma species are detected in a wide variety of insects

(Regassa and Gasparich, 2006; Cisak et al., 2015; Kakizawa et al.,

2022), some of which cause male-killing phenotypes in fruit flies

and other insects. In Drosophila fruit flies, Spiroplasma poulsonii

induces male-killing, wherein an effector protein named Spaid was

identified to induce male-specific apoptosis during embryogenesis

(Harumoto and Lemaitre, 2018; Harumoto, 2023). Thus far, many

Spiroplasma species remain unculturable, making it extremely

difficult to elucidate their detailed characteristics. Furthermore, the

absence of genetic knockdown or overexpression systems in most

Spiroplasma strains has impeded experimental studies on their

functional aspects. Recently, however, this difficulty was overcome,

at least partially, by adoption of heterologous expression system in

Mycoplasma cells. When cytoskeletal genes mreBs of Spiroplasma

were expressed in Mycoplasma cells, the transformed Mycoplasma

cells showed spiral cell shape and swimmingmotility (Kiyama et al.,

2022; Lartigue et al., 2022). Such a new approach to investigate the

genetic and functional aspects of Spiroplasma is anticipated.

In this study, we report cloning of the whole genome of

Spiroplasma chrysopicola isolated from a deer fly Chrysops sp.

(Diptera: Tabanidae) (Whitcomb et al., 1997; Ku et al., 2013) and

the whole genome resequencing of the obtained clones. Although

the size of the entire genome as large as 1.12 Mbp, the cloning

efficiency was high, and the cloned sequences contained only a

small number of mutations (1.2 nucleotides per clone), confirming

that the whole Spiroplasma genome can be cloned in yeast cells

with little alteration to the original genome information. This

study serves as an initial step in the synthetic biology approach

to Spiroplasma.

Materials and methods

Spiroplasma and yeast strains, cultivation,
and culture media

The bacterial strain S. chrysopicola DF-1 was obtained from

the American Type Culture Collection (ATCC 43209), which

was cultured statically at 30◦C using SP-4 medium (Tully et al.,

1979). The cell growth was judged by the color of phenol

red, a pH indicator. Cell morphology of S. chrysopicola was

observed by optical microscope (IX71; Olympus). The yeast strain

Saccharomyces cerevisiae VL6-48 was obtained from the ATCC

(ATCC MYA-3666), which was cultured at 30◦C using YPDA

medium or SD-His medium (synthetic defined media lacking

histidine, Clontech 630312) (Noskov et al., 2010).

Preparation of genomic Spiroplasma DNA
for TAR cloning

Preparation of circular genomic DNA from S. chrysopicola

cells was performed according to a previously reported method

(Lartigue et al., 2007). Briefly, S. chrysopicola cells were cultured,

collected by centrifugation, suspended in a buffer (10mM Tris-

HCl, pH 6.5, 500mM sucrose, 50mM EDTA), mixed with an equal

volume of 2% UltraPure low melting point agarose (Invitrogen),

and poured into plug molds (BioRad) to prepare agarose gel plugs.

The cells were digested for 2 days using 1 mg/ml Proteinase K and

1% SDS solution at 55◦C, thoroughly washed with a washing buffer

(20mM Tris-HCl, pH 8.0, 50mM EDTA), and stored at 4◦C. The

circular genomes within the plugs were digested with restriction

enzymesAscI, SfiI, and I-CeuI (New England Biolabs), and then the

agar plugs were melted using thermostable beta-agarase (Nippon

Gene). Pulsed-field gel electrophoresis (PFGE) was performed as

described (Gibson et al., 2010). The condition of electrophoresis

was 6V, 50–90 sec pulse time for 22 h at 14◦C. DNA bands were

visualized with GelRed (Biotium Inc.).

Preparation of yeast artificial chromosome
cloning vector

A summary of the plasmid YAC vector construction is shown

in Supplementary Figure S1. PCR was performed using pRS313

plasmid as a template and primers (ROC800 and ROC801) to

amplify a 4.2 kbp fragment containing his3 gene, a selection marker

gene in yeast. PCR was performed using the M. mycoides JCVI-

syn1.0 genome as a template and primers (ROC802 and ROC803)

to amplify a 6.2 kbp fragment containing yeast centromere. These

PCR products were purified using PCR purification kit (QIAquick

PCR Purification Kit; Qiagen), introduced into yeast VL6-48 cells,

and assembled by in vivo homologous recombination to create

pRC65 vector (10,415 bp). The pRC65 plasmid could multiply

both in yeast and Escherichia coli, and be used as YAC cloning

vector. The pRC65 plasmid was extracted from the yeast cells

using Miniprep kit (QIAprep Spin Miniprep Kit; Qiagen) and

introduced into E. coli DH5-alpha cells. The plasmid samples

were extracted from the E. coli cells using Miniprep kit (Qiagen)

and then sequenced by the Sanger sequencing method. PCR was

performed using the pRC65 as a template and SChry_TAR primers

to obtain a 6.8 kbp PCR product. These primers include flanking

sequences homologous to the terminal regions of each genomic

fragment within the S. chrysopicola genome. The PCR products

were purified using PCR purification kit (Qiagen) and used as
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vectors for the whole genome cloning. Primer sequences are shown

in the Supplementary Table S1.

Primer design for colony PCRs

Primers for colony PCR to confirm the inserts were designed

based on single-copy genes in the S. chrysopicola genome (Ku et al.,

2013) to ensure specific amplification of certain genomic locations.

To detect single-copy genes, BLAST analysis was performed on

the S. chrysopicola genome using all S. chrysopicola genes as

queries, and genes for which only one homolog was detected

were designated as single-copy genes. Among detected single-copy

genes, those that were evenly distributed across the genome were

selected. In total 28 primer sets were designed on the genome, with

seven sets for each genomic fragment. The positions of the designed

primers and names of selected single-copy genes are listed in the

Supplementary Figure S2, and sequences of the designed primers

are shown in Supplementary Table S1.

Transformation-associated recombination
cloning

The cloning method followed previously reported methods

(Lartigue et al., 2009; Benders et al., 2010; Kouprina and Larionov,

2016). The circular S. chrysopicola genome was digested with the

same restriction enzymes, and a mixture of 100 ng of the vector

fragment and 1 µg of digested S. chrysopicola genome was used for

yeast transformation.

In brief, the yeast strain was cultured in 50ml of YPDA

medium at 30◦C with shaking until the OD600 reached 6.0–7.0.

After harvesting by centrifugation (1,900×g, 4◦C, 5min), the cells

were suspended in a 1M sorbitol solution and incubated at 4◦C

overnight. The cells were then treated with the cell wall lytic

enzyme Zymolyase (NACALAI TESQUE) to prepare spheroplasts

in a phosphate buffer (pH 7.5) containing 1M sorbitol, 10mM

EDTA, and 0.2% (v/v) beta-mercaptoethanol. After washing with

the 1M sorbitol solution, the cells were resuspended in STC

buffer (1M sorbitol, 10mM Tris-HCl, pH 7.5, 10mM CaCl2) and

incubated at room temperature for 10min. The cells were then

mixed with vector and genomic DNA inserts and incubated at

room temperature for 10min. A 20% polyethylene glycol (PEG)

8000 solution was added, mixed gently, and incubated at room

temperature for 20min. The cells were collected by centrifugation

(3,200×g, 5min), resuspended in SOS solution (1M sorbitol, 6mM

CaCl2, 0.3% yeast extract, 0.6% peptone), and incubated at 30◦C

for 30min. Finally, the cells were mixed with the heat-melted SD-

His TOP agar medium containing 1M sorbitol, 2% glucose, and 3%

agar, then spread onto SD-His agar plates. Selection of transformed

yeast strains was performed on SD-His medium.

Analysis of YAC clones

To visualize insert bands in YAC clones, combination

of conventional agarose gel electrophoresis and PFGE were

performed. To exclude yeast chromosomes, conventional agarose

gel electrophoresis was performed. The yeast clones containing the

S. chrysopicola genome were cultured in SD-His medium until the

OD600 reached 1.0 – 1.5 and embedded in agarose plugs. After

treatment of the agarose plugs with Zymolyase, Proteinase K, and

SDS for 2 days at 55◦C, linear yeast chromosomes were flushed

out from the agarose plugs by conventional electrophoresis (1%

agarose gel, 100V for 3 h at 4◦C). This method is based on the

phenomenon that only linear DNA migrates from the agarose

plugs during electrophoresis, while circular, large DNA persists

in the agarose plugs (Lartigue et al., 2009). After electrophoresis,

agarose plugs were picked up from the agarose gel, washed with

the washing buffer, and treated with NotI restriction enzyme for

2 h at 37◦C. Since the cloning vector has two NotI recognition sites

(Supplementary Table S1), the circular YAC vector including the

genome insert was digested between the vector-insert boundaries.

Then, the agarose plugs were washed with the washing buffer, and

subjected to PFGE under the conditions of 6V, 50–90 sec pulse time

for 22 h at 14◦C. DNA bands were visualized with GelRed.

The yeast clones containing the S. chrysopicola genome were

cultured and embedded in agarose plugs, and liner DNAs were

removed as described above. Then, from the agarose plugs,

remaining circular DNA consisting of YAC including the S.

chrysopicola genome was extracted using NucleoSpin Tissue kit

(Macherey-Nagel). The extracted DNA was amplified using phi29

DNA polymerase (Thermo Scientific) and subjected to Illumina

sequencing. The sequence reads were mapped onto the original

genome sequence (GenBank accession number NC_021280.1),

then mutations in cloned genomes were detected using CLC

Genomics Workbench (Filgen).

Results

Preparation of whole Spiroplasma genome

Intact circular genomic DNA of S. chrysopicola was prepared

from cultured bacterial cells embedded in agarose plugs. The

agarose gel plugs were digested with restriction enzymes AscI, SfiI,

and I-CeuI, and then subjected to PFGE. Length of all the fragments

cut by the enzymes AscI, SfiI, and I-CeuI were similar with the

expected band patterns (Figure 1). Note that it has been estimated

that PFGE has an uncertainty in size determination ranging from

5% to 27% (Huang et al., 1999; Duck et al., 2003; Ferris Matthew

et al., 2004). These digested fragments were used for further cloning

experiments. By digestion with three enzymes (AscI, SfiI, and I-

CeuI), four fragments were generated, all of which were used for

genome cloning. Additionally, two types of whole genomes, each

digested with either SfiI or I-CeuI, were also used for genome

cloning (Supplementary Table S2). Figure 2 illustrates the entire

process from the isolation of the S. chrysopicola genome to cloning.

Preparation of cloning vector and whole
genome cloning

Four partial genome fragments and two whole genome

fragments of S. chrysopicola were used for cloning. As a result,
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FIGURE 1

Genomic features of S. chrysopicola. (A) Spiral cell morphology of S. chrysopicola. (B) Genome map of S. chrysopicola DF-1 strain (1,123 kbp).

Recognition sites for restriction enzymes AscI, SfiI and I-CeuI used, and four genome fragments produced by digestion with the enzymes are shown.

(C) PFGE profiles of the S. chrysopicola genome after digestion with the restriction enzymes. Bands are indicated by yellow arrowheads. Four

genome fragments, which correspond to those shown in (B), are labeled on the left. Lane labels: Triple, triple digestion with AscI, SfiI and I-CeuI; SfiI

& I-CeuI, double digestion with SfiI and I-CeuI; AscI, single digestion with AscI; SfiI, single digestion with SfiI; M, Saccharomyces cerevisiae

chromosome marker (BioRad). Sizes of marker bands are shown on the right.

FIGURE 2

Schematic diagram of experimental procedures for the whole genome cloning of S. chrysopicola.

a large number of transformed yeast colonies were obtained

for all the genome fragments (Supplementary Table S2). Sixteen

clones were isolated for each of the genome fragments, the

presence of the insert was checked by colony PCRs, and

positive clones were obtained for most of the genome fragments

(Supplementary Table S2). It was observed that the smaller the

insert size, the higher the proportion of positive clones. Particularly

in the fragment No. 2 (153 kbp), 100% of the clones (16/16)

were judged positive by colony PCRs. Subsequent PFGE showed

that most clones exhibited the expected fragment size (Figure 3).

To exclude yeast chromosomes, the agarose plugs were subjected

to conventional agarose gel electrophoresis in advance, but the

removal was not complete and the remnant chromosomal DNAs

persisted as background. Notwithstanding this, the sizes of the

inserted genome fragments were clearly recognizable on the PFGE

gels (Figure 3).

Notably, for two clones (3-2 and 5-1), their insert sizes were

different from the expected ones. Particularly for the clone 5-1
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FIGURE 3

PFGE profiles of YAC clones inserted with genome fragments of S. chrysopicola. Yellow arrowheads indicate specific bands of expected size, whereas

red arrowheads show specific bands of unexpected size. Lane labels: M1, Saccharomyces cerevisiae chromosome marker (BioRad), whose band

sizes of bands are shown in black; M2, λ ladder marker (BioRad), whose band sizes are shown in blue; M3, Hansenula wingei chromosome marker

(BioRad), whose band sizes are shown in red. For the other labels, see fragment numbers and clone numbers shown in Figure 1 and

Supplementary Tables S1, S2.

(whole genome cut with SfiI), although some colony PCRs failed

to yield expected products presumably due to the absence of some

genomic regions, PFGE results suggested that the insert size was

longer than expected (Figure 3). For the clone 3-2, the insert size

was shorter than expected, suggesting that the insert sequence

would be partially missing.

Sequence analysis of clones

The obtained clones were subjected to Illumina sequencing

analysis. The same clones used for PFGE were also used for

the sequencing analysis. After purification by PFGE, the DNA

samples, which were expected to be inserted YAC clones, were

subjected to whole genome amplification using phi29 DNA

polymerase, and then to Illumina short read sequencing. For

each of all the 10 clones analyzed, a sufficient number of

reads were obtained and mapped onto the target S. chrysopicola

genome (Figure 4; Supplementary Table S3). The proportion of

sequence reads mapped onto the S. chrysopicola genome ranged

from 2.9% to 36.4%, with an average of 18.8%. The remaining

reads were mapped onto yeast chromosomes, mitochondrial

DNA, and vector sequence. Coverage of the cloned inserts

varied from 137 to 591-fold, with an average of 347-fold,

indicating sufficient read quantity. Mapping results showed that

most clones were covered by the mapped reads almost evenly,

in general, across the entire length of the insert, as expected

(Figure 4). For two clones (clone 3-2 and 5-1) whose insert

sizes were estimated by PFGE as different from the expected

sizes (Figure 3), resequencing results also confirmed differences

in length from the reference sequence, indicating partial loss

of the insert. The insert size of the clone 5-1 was estimated

by PFGE as larger than expected (Figure 3), but resequencing

results uncovered some missing regions, suggesting that the

insert sequence might have partially duplicated during the

cloning process.

Comparison with the reference genome revealed that an

extremely low number of mutations, with 0 to 3 mutations

observed in each clone, and some clones had no mutations at

all (Supplementary Table S3). We judged them as mutations when

more than 90% of the mapped reads did not match the reference

genome but supported the mutation (>90% mapped frequency).

Lowering this threshold to 30% detected some additional mutations

(Supplementary Table S4), most of which were in regions with

consecutive A or T bases, with an increase or decrease in the

number of the consecutive bases. This might be due to the

inaccuracy of the phi29 DNA polymerase on the consecutive bases.

The sum of the sizes of all clones (total number of bases cloned),

excluding duplicated regions, was 2,963,696 bases, and the total

number of mutations in these clones was 12 nucleotides, resulting

in an average mutation rate of 4.0 nucleotides per Mb, highlighting

highly accurate genome cloning.
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FIGURE 4

Mapping of Illumina short reads to the genome sequence of S.

chrysopicola. On the left, clone numbers from

Supplementary Table S2 are displayed. Note that the sizes of clones

3-2 and 5-1 are not consistent with the estimation by PFGE (see

Figure 3).

Discussion

Cloning e�ciency

We adopted the transformation-associated recombination

(TAR) cloning method using the yeast S. cerevisiae as host cells

(Kouprina and Larionov, 2016). The cloning efficiency observed

in this study appears to be high. A large number of colonies

were obtained with fewer experimental runs, and many clones

contained inserts with the correct sequences. This might be

related to the extent of repeat sequences in the insert genome

fragments, since large parts of the genome could be lost through

homologous recombination during TAR cloning procedures. It

might also be related to the amount and concentration of the

insert genome fragments (Rideau et al., 2017). It seems that the

shorter the length of the insert, the higher the cloning efficiency,

which is consistent with the characteristics of conventional cloning

procedures. The cloning efficiency for inserts shorter than 200

kbp was exceptionally high, and cloning was possible even for

inserts exceeding 1 Mbp. Circular YAC has been reported to clone

inserts up to 1.66 Mbp (Tagwerker et al., 2012). Since many

bacteria, archaea, and organelles with small genome sizes fall

within this range, cloning their entire genomes seems feasible, in

case that non-sheared, sufficient quantity of genomic DNA can

be prepared.

Sequence analysis of YAC clones

In this study, the YAC insert fragments after cloning were

subjected to Illumina short read sequencing. In order to purify

the inserted YAC vector DNA, we attempted to exclude linear

yeast chromosomes from the agarose plugs by conventional agarose

gel electrophoresis, whereby circular YAC DNA was expected to

persist in the agarose plugs. Then, DNA was recovered from the

agarose plugs, and subjected to phi29 polymerase amplification

and Illumina sequencing. Unexpectedly, however, on average, only

18.8% of sequence reads were mapped onto the insert sequences,

with the remaining reads mapped onto yeast chromosomes and

mitochondrial DNA. Given that YAC behaves as one of the

16 chromosomes in yeast cells, theoretically, if total DNA was

extracted and sequenced directly from yeast cells without any

treatment,∼1% of the reads are expected to originate from the YAC

sequence. Hence, the method adopted in this study could enrich

YAC sequences by an average of 18-fold. Here it should be noted

that, with the recent advancement in next-generation sequencing

analysis, sufficient coverage for large DNA inserts can be achieved

relatively easily by obtaining a large number of reads, even when

insert ratio in the DNA sample is <1%.

Mutation rate of clones

The resequencing of YAC clones revealed only a small number

of mutations, and several clones were identical to the original

genome sequence. Several single base deletions or insertions were

observed in consecutive A or T bases, which were presumably

introduced by amplification errors of phi29 DNA polymerase,

but frequency of such mutations was low. In this study, circular

whole genomes were extracted directly from cultured bacterial

cells of S. chrysopicola, and theoretically, there are almost no

steps where mutations are introduced into the bacterial genome,

which may account for why the number of mutations in the

inserts was at such a low level. A previous study reported the

possibility of large degradation events in YAC-cloned large genome

inserts after around 60 generations of yeast cultivation (Rideau

et al., 2017). In this study, we used yeast cells cultured for

2-3 passages (12-18 generations) and many clones showed no

mutations at all, indicating that the YAC-cloned large genome

inserts are sufficiently stable at least in such a small number of

yeast passages.
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Future prospects

The entire Spiroplasma genome cloned in this study could be

utilized for a variety of future studies.

First, genetic modifications of the Spiroplasma genome using

yeast genetic engineering tools are possible. In yeast, a variety of

genetic engineering tools are available, e.g., CRISPR/Cas9 system

(Tsarmpopoulos et al., 2016; Ruiz et al., 2019), TREC (Noskov et al.,

2010), and TREC-In (Chandran et al., 2014).

Second, functional analysis through genome transplantation

could also be possible. Thus far, successful whole genome

transplantation has been reported only in a very limited number

of Mycoplasma species in the M. mycoides group (Lartigue et al.,

2007; Labroussaa et al., 2016). Certainly transplantation of the

entire Spiroplasma genome must be challenging, but, considering

the close phylogenetic relationship between M. mycoides group

and Spiroplasma (Lo et al., 2013), it would become feasible

in the future. To achieve this goal, various relevant factors

should be examined systematically, including selection of recipient

cells, modification of genome sequences, improvement of the

transplantation methods, and verification and elimination of

inhibitory effects of restriction enzymes or nucleases (Lartigue

et al., 2009). For example, many bacteria, including Spiroplasma

and Mycoplasma are known to possess restriction modification

systems that confer resistance to phage invasion by cleaving foreign

DNAs. The cloned genome in yeast is not methylated, therefore, it

is likely to be digested when transplanted into bacterial cells. The

efficiency of genome transplantation could be enhanced by using

bacterial methylases to methylate the donor genome extracted from

yeast cells (Lartigue et al., 2007), or by using recipient cells that

lack nucleases (Labroussaa et al., 2023). These approaches might

be also effective in Spiroplasma genome transplantation. If genome

transplantation in Spiroplasma becomes possible, various genetic

modifications would also be feasible, including the knockout or

overexpression of certain genes, as well as the introduction of

complete metabolic pathways or genetic systems. Furthermore,

synthetic biology approaches could facilitate large-scale genomic

deletions, insertions, or replacements. These techniques might

enhance our understanding of Spiroplasma biology.

Third, our sequencing results showed a very limited number of

mutations in the cloned Spiroplasma genomes, indicating that the

genetic information of the cloned bacterial genome in yeast cells

can be stably preserved with minimal alterations. This observation

highlights the possibility that this technique could be potentially

utilized as a tool for preserving and storing the whole undamaged

microbial genomes. For example, preservation, storage, and usage

upon necessity of such microbial genomes that are with extremely

slow growth rates, requiring complex media or specific conditions

for cultivation, or difficult to access, would be enabled by retaining

their entire genomes within yeast cells. Yeast grows easily and

rapidly, its culture medium is inexpensive and easy to prepare,

it does not require specific facilities for cultivation, and yeast

cells can be stably preserved in freezers for long periods. By

making use of sophisticated genetic tools available for yeast, the

whole microbial genomes cloned in yeast can be subjected to

large-scale genetic manipulation of the original genomic DNA,

allowing the cloned genomes to be utilized as genetic resources.

Most of Spiroplasma isolates are cultured in SP-4 medium whose

composition is complex and contains a considerable amount of

expensive fetal bovine serum (Tully et al., 1979). Therefore, the

yeast clones obtained in this study are considered useful for

preparing large quantities of Spiroplasma genomic DNA. The

whole-genome cloning technology is also expected to be useful for

utilizing environmentally inaccessible microorganisms as genetic

resources. We expect that, as the yeast-mediated bacterial whole-

genome cloning technology becomes easier and more accessible,

it will be applied to diverse microbial species and research

purposes, thereby facilitating further utilization of the cloned

microbial genomes.
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cloning, regions homologous to the insert were added as flanking

sequences of PCR primers. The schematic size of each gene does not

correspond to its actual size.
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di�erentiated by agarose gel electrophoresis.
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