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Introduction: The oropharyngeal microbiome plays an important role in
protection against infectious agents when in balance. Despite use of vaccines
and antibiotic therapy to prevent respiratory tract infections, they remain
one of the major causes of mortality and morbidity in Low- and middle-
income countries. Hence the need to explore other approaches to prevention
by identifying microbial biomarkers that could be leveraged to modify the
microbiota in order to enhance protection against pathogenic bacteria. The
aim of this study was to analyze the oropharyngeal microbiome (OPM) of
schoolchildren in Coéte d'Ivoire presenting symptoms of upper respiratory tract
infections (URTI) for better prevention strategy.

Methods: Primary schools’ children in Korhogo (n = 37) and Abidjan (n = 39)
were followed for six months with monthly oropharyngeal sampling. Clinical
diagnostic of URT infection was performed and nucleic acid extracted from
oropharyngeal swabs were used for 16S rRNA metagenomic analysis and
RT-PCR.

Results: The clinical examination of children’s throat in Abidjan and Korhogo
identified respectively 17 (43.59%) and 15 (40.54%) participants with visible
symptoms of URTIs, with 26 episodes of infection in Abidjan and 24 in Korhogo.
Carriage of Haemophilus influenzae (12%), Streptococcus pneumoniae (6%)
and SARS-CoV-2 (6%) was confirmed by PCR. A significant difference in
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alpha diversity was found between children colonized by S. pneumoniae and
those that were not (p = 0.022). There was also a significant difference in
alpha diversity between children colonised with H. influenzae and those who
were not (p = 0.017). No significant difference was found for SARS-CoV-2.
Sphingomonas, Ralstonia and Rothia were significantly enriched in non-carriers
of S. pneumoniae; Actinobacillus was significantly enriched in non-carriers of
H. influenzae; Actinobacillus and Porphyromonas were significantly enriched in
non-carriers of SARS-CoV-2 (p < 0.001).

Discussion: Nearly 40% of children showed clinical symptoms of infection
not related to geographical location. The OPM showed an imbalance during
H. influenzae and S. pneumoniae carriage. This study provides a baseline
understanding of microbiome markers in URTIs in children for future research,
to develop targeted interventions aimed at restoring the microbial balance and

reducing the symptoms associated with RTls.

KEYWORDS

oropharyngeal microbiome, upper respiratory tract infections, SARS-CoV-2, 16S rRNA
metagenomic, microbial markers, Céte d'lvoire

1 Introduction

The human microbiome, represented by 10 to 100 trillion
symbiotic microbial cells, is considered beneficial to the human
host; it is involved in the differentiation of mucosal structure
and function, and stimulates innate and adaptive immune systems
(Ursell et al., 2012). The composition of the pharyngeal microbiota
and the collection of its genetic information, "microbiome", plays
a crucial role in maintenance of respiratory health by providing
"colonization resistance”" against pathogen invasion (Blaser and
Falkow, 2009). However, an imbalance in its composition, for
example through acquisition of new pathogens, viral co-infection,
or other host or environmental factors, has been associated with
increased risk of infections such as pneumonia, cystic fibrosis,
colds, Covid-19, and meningitis (de Koff et al., 2016; Piters et al.,
2016; Xiang et al., 2020; Diallo et al., 2023).

Respiratory tract infections (RTIs) are a major cause of
morbidity and mortality worldwide, despite effective treatments
with antibiotics and availability of certain vaccines. According
to a recent World Health Organization (WHO) report, they
are the leading cause of death among children and adults
worldwide, and are responsible for around 4.25 million deaths
worldwide every year (Mayor, 2010; Bogaert et al, 2011;
World Health Organization, 2020).

In the inter-tropical zone of Cote d'Ivoire these RTTs are one of
the ten leading causes of death among children and represent the
second cause of morbidity after malaria according to the annual
Health report of 2020, with a morbidity rate of 54.77%¢ (Centers
for Disease Control and Prevention, 2023). Although little studied,
restoring the airway microbiome is a possible route to prevent
RTIs and could become an additional intervention tool alongside
antibiotics and vaccines (Cho and Blaser, 2012). In the airways of
children, viruses such as rhinoviruses, influenza viruses, respiratory
syncytial virus, adenoviruses and coronaviruses are the main
causes of viral respiratory infections (Mahony, 2008). Bacteria such
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as Haemophilus influenzae, Corynebacteria species, Streptococcus
pneumoniae, Staphylococcus aureus, Moraxella catarrhalis and
Prevotella melanino-genica frequently cause bacterial respiratory
infections (Brook et al., 1981; Karaman et al., 2009; Maleki et al.,
2020).

Some of these potential pathogens are also commonly found
as members of the normal flora of the human oral cavity and can
be detected in nasal or respiratory secretions. The asymptomatic
or symptomatic presence of these microorganisms, combined with
a general lower application of hygiene measures, make children
more likely to transmit these pathogens to others. The likelihood of
transmission is further enhanced when large numbers of children
are gathered, such as in day care centres and schools (Msd
Manual Consumer Version, 2023). It is therefore important to
characterize the composition of the OPM of schoolchildren in
order to better prepare public health interventions. The concept
of using microbial markers as a non-invasive diagnostic tool for
diseases has been gradually developed due to new sequencing
technologies (Gao et al,, 2021). The presence of microorganisms,
and their associated metabolites, can provide signatures specific
to an infection (Times, 2020). Microbial signatures are used, not
for the diagnosis of infections as such, but to predict certain
aspects of classical infectious diseases, such as disease severity and
progression (Khanna et al., 2016). Microbiome can be affected
by multiple factors, such as life style, diet, environment and
therefore studies in a particular setting may not be representative
of the microbiome elsewhere. However, in Cote d’Ivoire, to our
knowledge, there are no studies of the OPM in children and
therefore no baseline data to build on.

A better understanding of the interactions between micro-
organisms in the oropharynx will contribute to the development of
new therapeutic agents or preventive measures likely to improve
respiratory health outcomes and help stratify at-risk populations
to better target current interventional approaches. This study aims
to characterize the variations in the OPM of school children from
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northern and southern Cote d’Ivoire with visible clinical upper
respiratory tract infections (URTT) in order to determine potential
biomarkers that could be used for surveillance and responses.

2 Materials and methods

2.1 Study sites and participants

Two sites were selected for this study conducted in Cote
d’Ivoire, West Africa: one in the northern town of Korhogo and
one in the southern city of Abidjan. A public school was targeted
in both cities. Children between 8 and 12 years old were invited
to participate in the study that was conducted from November
2020 to April 2021. A cohort of schoolchildren was selected
and followed in two primary school in Korhogo (n = 37) and
Abidjan (n = 39). These numbers derived from published studies
of the nasopharyngeal microbiome that used a similar sample
size and were able to identify a distinct microbial profile and
relevant changes (Biesbroek et al., 2014; Borges et al., 2018). The
inclusion factors were school enrolment, age between 08 to 12 years
and consent from parents. Children outside this age range were
excluded.

That cohort was skewed toward girls, with a total of 29 girls
(76.3) and 9 boys (23.7) in Abidjan. Korhogo had a more balanced
male-female ratio, with 19 girls (51.4%) and 18 boys (48.6%).

Prior to inclusion in the study, informed consent was
obtained from parents or legal guardian and written assent from
the participant older than 10 years. Ethical approval from the
National Ethical Committee was also obtained (IRB000111917).
A questionnaire on infection risk factors and oral health was also
administered to participants (Supplementary Tables 1, 2) by the
team medical doctor.

Oral health questionnaire was completed by the team doctor
every month prior to sampling. The criteria for consideration as
symptomatic URTTs were the presence of visible signs such as nasal
discharge, swelling, redness, irritation of the throat.

The risk factor questionnaire was completed by children’s
parents or legal guardians after obtention of the signed informed
consent. Nutritional status was defined in terms of the child’s body
mass index. The modalities considered for the analysis were: Mild
malnutrition, Moderate malnutrition, Severe malnutrition, normal,
obesity and excess weight. A nurse from the school’s associated
clinic, part of the health system in Cote d’Ivoire, was also present
at each visit to attend to the children care and refer them, to the
clinic if deemed necessary. Children aged from 8 to 12 years were
invited to participate based on the school administration list, using
a random selection to obtain the total number of participants. One
participant dropped out of the study in Abidjan (S2), the other
variation in number of participants were due to children absence
from school on respective sampling days.

2.2 Sample collection

Oropharyngeal swab samples were collected monthly from
each participant using sterile swabs. Swabs were stored in 1 ml of
RNAprotect to protect RNA stability. RNAprotect samples were
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aliquoted into two different tubes and stored at —80°C. The first
sample was used for 16S rRNA sequencing and RT-PCR detection
of S. pneumoniae and H. influenzae. The second one was used for
detection of SARS-CoV-2.

All swab samples were collected by qualified medical personnel
trained in the study’s sampling procedures under the supervision
of school medical officers. The physician performed a clinical
examination of the children’s oral health prior to any sampling to
determine the presence of infections or visible irritations in the
children’s throats. This made it possible to identify a number of
children with visible sign of URTIs throughout the cohort (nasal
discharge, swelling, redness and irritation of the throat); as well as
children with no clinical signs of infection.

2.3 DNA extraction

DNA samples were extracted from the oropharyngeal samples
using a Qiagen DNeasy PowerSoil kit (Qiagen, Germany) following
the manufacturer’s instructions. DNA samples were quantified
by a Qubit 4 fluorometer (Invitrogen, Carlsbad, CA, USA), and
molecular size was estimated by 1% agarose gel electrophoresis.

2.4 PCR amplification of the V3-V4
region

The V3-V4 hypervariable region of the 16S rRNA gene was
targeted for sequencing. Forward and reverse primers targeting this
region were generated with an Illumina adapter overhang sequence
appended to the primer pair for compatibility with Illumina index
and sequencing adapters (Klindworth et al., 2013). Amplifications
were done in 25 pl reactions with 12.5 pl Q5® Hot Start High-
Fidelity 2X Master Mix (NEB), 5 pl of 1 wM forward and reverse
16S primer and 2.5 pl of template. Reactions were carried out on
ABI Veriti thermocyclers (Applied Biosytems) under the following
conditions: 95°C for 3 min, 25 cycles of; 95°C for 30 s, 55°C for
30 s, 72°C for 30 s, followed by 72°C for 5 min and a final hold at
4°C. The amplified products were then verified on 1.5 % agarose gel
with a product of ~550 bp expected.

2.5 Library preparation and sequencing

Amplified products were further purified using Agencourt
AMPure XP beads (BeckmanCoulter) for library preparation.
Libraries were then prepared by ligating Illumina dual indices and
Ilumina sequencing adapters to the purified amplicons using the
NexteraXT index kit. Attachment of the indices was performed
using 5 wL of the 16S amplicon DNA, 5 pL of Illumina Nextera
XT Index Primer 1 (N7xx), 5 wL of Nextera XT Index Primer
2 (S5xx), 25 pL of Q5® Hot Start High-Fidelity 2X Master Mix
(NEB), and 10 pL of PCR-grade water (Ambion). The reactions
were carried out on ABI Veriti thermocyclers (Applied Biosytems)
under the following conditions 95 °C for3 min, followed by 8
cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s, a
final extension at 72°C for 5 min and a final hold at 4°C. The
libraries were then purified using Agencourt AMPure XP beads
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(BeckmanCoulter) and thereafter size distribution and library
quality control performed using the Agilent 2100 Bioanalyzer
(Agilent) to confirm the expected size distribution and the quality.
The libraries were finally quantified using the Qubit dsDNA HS
kit on the Qubit 4.0 flourometer (Life Technologies) normalized
and pooled at equimolar concentration based on the Qubit results.
A total of 10pM of the pooled library was then spiked with 8% Phix
(v3) for sequencing. Sequencing was done on the Illumina MiSeq
system using 2 x 300 bp PE sequencing with the MiSeq® Reagent
Kit v3 (600 cycle).

2.6 ldentification of pathogens by
RT-PCR

All the RT-PCR tests were done retrospectively on stored
samples multiple months after the end of the sample collection.

e Bacterial RT-PCR

Detection of Streptococcus pneumoniae and Haemophilus
influenzae was done

S. pneumoniae, H.

using a multiplex assay targeting
influenzae and Neisseria meningitidis.
A mastermix of 15 pL was prepared as follow: 7.5 pL of 2x
Master Mix, 0.5 L of each primer and probe, and 1 pL of MgCI2
along with 2 pL of DNA previously extracted for the 16SrNA
sequencing. Primers and probes used are in Table 1.

2.7 RNA extraction

Ribonucleic acid (RNA) extraction was performed on
oropharyngeal samples using the QIAamp viral RNA kit
for viral pathogens (Qiagen, Germany) according to the
manufacturer’s recommendations. RNA quality was checked
using the Qubit RNA HS kit.

e RT-qPCR for SARS-CoV-2

RT-qPCR of SARS-CoV-2 was performed in 20 L of reaction
medium containing 10 wL of Luna Universal Probe One-Step
Reaction Mix (2X), 1 pL of Luna WarmStart RT Enzyme Mix
(20X), 0.8 LL of each E Sarbeco Forward and reverse primer
(10 M), 0.4 L of E Serbeco Probe, 5 wL of Nuclease-free Water,
and 2 pL of RNA. Primers and probe used have shown in Table 2
(Corman et al., 2020).

2.8 16S data processing

The raw 16S rRNA sequences were analyzed using R-
4.2.1 software. They were quality filtered and denoised using
the filterAndTrim function of DADA2 (Divisive Amplicon
Denoising Algorithm) (Callahan et al., 2016). Poor quality ends
were truncated, with a truncation length of 270 nts and 260
nts for forward and reverse reads respectively. The resulting
sequences were then dereplicated, denoised and merged, and the
removeBimeraDenovo function was used to remove chimeras in
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these sequences. The resulting amplicon sequence variants (ASVs)
were classified by taxonomy and mapped to a reference set of
operational taxonomic units (OTUs) at 99% sequence similarity
using the Silva database (Silva_nr_v138) (Quast et al., 2013) with
the assign-Taxonomy function. The data set was decontaminated
using the "decontam" package (Nm et al., 2018) and then combined
into a phyloseq object.

2.9 Statistical analysis

Shannon index, alpha-diversity and relative abundances (at
phylum and genus level) were performed using the phyloseq
package (McMurdie and Holmes, 2013). Prior to statistical analysis,
the data were rarefied with a depth of 30000 reads per sample.
Shapiro-Wilk test were used to test data normality for quantitative
variables before comparing microbial diversity between the groups.

Wilcoxon rank sum tests and Kruskal-Wallis were used to
compare microbial diversity in participant groups. Fisher or Chi-
square tests were used for categorical data from the risk factors
questionnaire, as well as the relationship between clinical symptom
of infections and geographical location. Values of p < 0.05
were considered significant. All data were plotted using the
ggplot2 package.

Principal coordinate analysis (PCoA) was performed according
to the Bray-Curtis dissimilarity matrix for beta diversity. The
association between oropharyngeal microbiome and symptomatic
URTIs was also tested by permutational multivariate analysis of
variance using the vegan package.

Bacteria genus differentially enriched according to status
(COVID-19 and not; H. influenzae and not; S. pneumoniae and not)
were analyzed at OTUs level using the DESeq2 method (McMurdie
and Holmes, 2013). The package DESeq2 provides methods to
test bacteria differentially enriched by use of negative binomial
generalized linear models.

3 Results

3.1 Clinical and RT-PCR diagnosis of
upper respiratory tract infections

During the study, 17 (43.59%) participants in Abidjan and
15 (40.54%) in Korhogo had visible signs of URTI following the
clinical examination, with 26 episodes of infection in Abidjan and
24 in Korhogo. Eleven children had repeated episodes of infection.

The prevalence of these symptoms by site, visit and sex
is presented in Table 3. These symptoms of infection (runny
nose, coughing, redness and throat irritation) were not differently
associated with geographical location (p > 0.05; Fisher test).
The change in prevalence of clinical symptoms of respiratory
infections was significant throughout the different visits in the
north (p = 0.026, Fisher test), but not in the south (p > 0.05), with
a high prevalence in February and April. There was no significant
difference between the application of hand hygiene measures, the
nutritional status of participants (in terms of the child’s body mass
index), promiscuity or contact with animals in the two study sites
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TABLE 1 List of primers and probes used for bacterial RT-PCR.

10.3389/fmicb.2024.1412923

Organisms | Primers and probes | Sequences (5-3') 3’ quencher | References
S. pneumoniae IytA- CDC-F ACGCAATCTAGCAGATGAAGCA Carvalho et al., 2007
IytA-CDC-R TCGTGCGTTTTAATTCCAGCT
IytA- CDC-Probe TGCCGAAAACGCTTGATACAGGGAG ROX BHQ2
SP_2020_F TAAACAGTTTGCCTGTAGTCG Tavares et al., 2019
SP_2020_R CCCGGATATCTCTTTCTGGA
SP_2020_Probe AACCTTTGTTCTCTCTCGTGGCAGCTCAA Cys5 BHQ2
H. influenzae HelS-F CCGGGTGCGGTAGAATTTAATAA Arjarquah et al.,
2022
HelA-R CTGATTTTTCAGTGCTGTCTTTGC
Hel- Probe ACAGCCACAACGGTAAAGTGTTCTACG FAM BHQ1

TABLE 2 Primers and probe used to target the SARS-CoV-2 E gene in
oropharyngeal samples.

Primer/probe Sequences (5’-3) ‘

E_Sarbeco_F1 ACAGGTACGTTAATAGTTAATAGCGT

E_Sarbeco_R2 ATATTGCAGCAGTACGCACACA

E_Sarbeco_P1 FAM-ACACTAGCCATCCTTACTGCGCTTCG-

BBQ

(p > 0.5). We also found no link between socio-economic factors
and clinical symptoms of URT infections (p > 0.5).

In addition to the clinical signs of infection identified, the
proportions of micro-organisms targeted per site, visit and gender
are shown in Table 4. Haemophilus influenzae (12%), Streptococcus
pneumoniae (6%) and SARS-CoV-2 (6%) were identified in
participants presenting symptoms of URTIs (Table 5). Co-infection
between H. influenzae and S. pneumoniae (2%) was also observed
in some children with clinical suspicion of URTI. The prevalence of
H. influenzae and S. pneumoniae was associated with geographical
location (p < 0.001; Chi-square tests) with a higher prevalence in
Korhogo than in Abidjan.

3.2 Characterization of the structure of
the oropharyngeal microbiome based on
16S rRNA analysis

Of the 434 samples received after sequencing, 427 passed
the filter for 16S rRNA analysis. Of these sequences, 46 were
from participants with clinical symptoms of infection out of 50.
Analysis of alpha diversity showed that there was no significant
difference between the microbial profile of children with clinical
suspicion of upper respiratory infection and that of uninfected
children using Shannon’s diversity index (p = 0.25) (Figure 1).
A geographical difference was however observed in the microbial
profile of children from the two study sites (Abidjan and
Korhogo) showing a greater abundance and microbial diversity
in individuals from Abidjan than in those from Korhogo using
a Shannon diversity index (p < 0.001, Wilcoxon rank-sum
test) (Figure 2). No significant difference was observed in the
microbial profile of participants over time and according to gender
(p > 0.5).
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Microbial diversity of each individual who had at least one
URTI symptom during the cohort was plotted over time (per
visit). This showed a generally high microbial abundance in the
presence of infection. More people were infected when Shannon
diversity was high in Abidjan, with values between 2.4 and 4
(Figure 3).

Analysis of alpha diversity showed a significant difference
between symptomatic carriers and non-carriers of S. Pneumoniae
and H. influenzae (p < 0.05). Microbial diversity was lower in
participants carrying both micro-organisms. Alpha diversity
showed no association between symptomatic carriers and
non-carriers of SARS-CoV-2 (p = 0.94) (Figure 4). Beta
diversity results (Supplementary Figure 1) also revealed that
and non-carriers of S. Pneumoniae
OPM

symptomatic carriers
and H. influenzae
(p = 0.001).

The most represented phyla in the samples were Proteobacteria,

have distinct compositions

Bacteroidota, Firmicutes and Fusobacteriota with proportions
higher than 15%. At the genus level, 18 different genera
were detected in the children’s oropharynx, with an abundance
greater than 1%. Taxonomic classification also showed that the
relative abundances of the different bacterial genera in the
participants’ upper respiratory tracts differed from one infection to
another. We found that the genus Streptococcus were significantly
more abundant in children who had no clinical symptoms of
infection than in those who did (17.37% VS 11.92%, p = 0.001)
(Figure 5).

When zooming only on children that had clinically diagnosed
URTI, Leptotrichia was dominant in carriers of S. pneumoniae
compared to non-carriers (4.27%; 1.45%; p = 0.028). The
abundance of Actinobacillus was also very low in all three types
of carriage (Figure 6). The proportions of these different genus in
terms of abundance are shown in Table 6. Identification to species
level was not possible for all ASVs.

3.3 Determination of microbial markers
involved in symptomatic upper
respiratory tract infections

Microbial markers were identified as predominant in carriage
of each microorganism. The results revealed that the genera
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TABLE 3 Prevalence of suspected clinical infections in both study sites.

Visits Gender ‘ Total
S1 ‘ S2 ’ S3 ’ S4 Boys Girls Episodes of
infection

Abidjan total (n) 38 38 38 38 37 36 53 172

Infection Yes n (%) 3(7.9) 10 (26.3) 3(7.9) 2(5.26) 4(10.81) 4(11.11) 1(1.89) 25 (14.5) 26
Infection No n (%) 35(92.1) 28 (73.7) 35(92.1) 36 (94.7) 33(89.2) 32(88.9) 52 (98.1) 147 (85.5) 199
Korhogo total (n) 37 37 37 37 36 36 107 113

Infection Yes n (%) 1(27) 3(8.11) 1(2.7) 8(21.62) 4(11.11) 7 (19.44) 7 (6.6) 17 (15) 24
Infection No n (%) 36 (97.3) 34(91.9) 36 (97.3) 29 (78.4) 32(88.9) 29 (80.6) 100 (93.4) 96 (85) 196

For visits, S represents the different surveys (S1=Survey 1, S6=Survey 6).

TABLE 4 RT-PCR identification of H. influenzae, S. pneumoniae, and SARS-CoV-2 by site, visit and gender.

Visits Gender
S2 S3 S4 N p- Boys Girls Total
value episodes of | value
infection
Total Abidjan (n) 38 38 38 38 37 36 53 172
H. influenzae Yes n (%) 4(10.5) 5 5 3(7.89) 7 2 (5.56) 0.57 8 18 26 0.5
(13.16) | (13.16) (18.92) (15.09%) | (10.47%)
H. influenzae No n (%) 34 33 33 35 30 34 45 154 199
(89.5) (86.84) (86.84) (92.1) (81.08) (94.44) (84.91%) (89.53%)
S. pneumoniae Yes n (%) 0 3(7.89) 1(2.63) 0 1(2.70) 1(2.78) 0.32 3 3 6 0.14
(5.66%) | (1.74%)
S. pneumoniae No n (%) 38 35 37 38 36 35 50 169 219
(100) (92.11) (97.37) (100) (97.30) (97.22) (94.34%) (98.26%)
SARS-CoV-2 Yes n (%) 0 0 0 1(2.63) 1(2.70) 3(8.33) 0.06 1 4 5 1
(1.89%) (2.33%)
SARS-CoV-2 No n (%) 38 38 38 37 36 33 52 168 220
(100) (100) (100) (97.37) (97.30) (91.67) (98.11%) (97.67%)
Total Korhogo (n) 37 37 37 37 36 36 107 113
H. influenzae Yes n (%) 5 7 9 12 11 12 0.28 31 25 56 0.31
(13.51) | (18.92) | (2432) | (3243) | (30.56) | (33.33) (28.97%) | (22.12%)
H. influenzae No n (%) 32 30 28 25 25 24 76 88 164
(86.49) (81.08) (75.68) (67.57) (69.44) (66.67) (71.03%) (77.88%)
S. pneumoniae Yes n (%) 6(16.2) 2 (5.41) 4 13 3(8.33) 8 0.006 22 14 36 0.15
(10.81) | (35.14) (22.22) (20.56%) | (12.39%)
S. pneumoniae No n (%) 31 35 33 24 33 28 85 99 184
(83.8) (94.59) (89.19) (64.86) (91.67) (77.78) (79.44%) (87.61%)
SARS-CoV-2 Yes n (%) 0 0 0 7 3(8.33) 0 <0.001 5(4.7%) 5 10 1
(18.92) (4.42%)
SARS-CoV-2 No n (%) 37 37 37 30 33 36 102 108 210
(100) (100) (100) (81.08) (91.67) (100) (95.3%) (95.58%)

“Yes” and “No” indicate the presence or absence of microorganisms. For visits, S represents the different surveys (S1 = Survey 1, S6 = Survey 6).

Sphingomonas, Ralstonia and Rothia were significantly enriched
in the absence of S. pneumoniae (5.71%; 4.23%; 2.08%) when
compared to carriers (0%) (p < 0.001; log2 fold-change: —26.1;
—24.8; —9.9). Actinobacillus was significantly enriched in the

4 Discussion

The importance of respiratory infections in children,
particularly in low- and middle-income countries, is very

absence of Haemophilus influenzae (2.73% VS 0%; p < 0.001);
Actinobacillus and Porphyromonas were microbial markers of
presence of SARS-CoV-2 (0%; 0.39%) when compared to non-
carriers (2.54%, 7.57%; with p < 0.001; log2 fold-change: —25.8 and
—5.1) (Table 7).
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evident as it has been shown that 30% of the annual mortality
rate in children is associated with acute respiratory infections (Liu
et al., 2018). This study is the first to report on the oropharyngeal
microbiome in children with suspicions of URTIs in Céte d’Ivoire
using 16S rRNA sequencing.
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Several participants were attending school despite harboring

3 (6%)
39 (9.9%)

symptoms of respiratory tract infections such as nasal discharge,

swelling, redness and irritation of the throat. This suggests
that common URTIs symptoms (runny nose, coughing, etc.)

o
3 are not considered alarming enough for some parents to

keep children at home. Previous research has shown that
= 2 infectious disease management in schools is essential to
% S minimize the spread of respiratory infections (Ridenhour
S 3 et al, 2011). In addition, health campaigns promoting hand

hygiene and use of hand sanitiser have been shown to be
effective in reducing illness and absenteeism (White et al., 2005;
Azor-Martinez et al., 2014).
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Variation in clinical symptoms of respiratory infections was
significant throughout the year in participants in Korhogo (north)
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2 ~°§ = these three types of infections were more strongly detected in
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g g ‘»f; influenzae remained the most common species carried in the
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Heat map of the relative abundances of differential OTUs in the group of positive samples whose sequences were received. Each point represents
the visit during which the participant had a symptom of irritation, redness or inflammation in the throat (A). Bar plot showing the number of people
with clinical infections as a function of Shannon diversity at each study site (blue in Abidjan and red in Korhogo) (B). (B) Produced taking into

account the Shannon diversity of the first figure.

These results are in line with a previous study showing the
persistence of Haemophilus influenzae as a major cause of acute
respiratory infections in sub-Saharan Africa (Lagare et al., 2015).

The fact that the prevalence of carriage of these micro-
organisms is considerably different from one area to another
may be due to a number of factors, such as seasonal difference
between the two sites and promiscuity (Wimalasena et al., 2021).
The link between seasonality and respiratory infections has also
been demonstrated in another study in Kenya that showed
an association between the rainy season and nasopharyngeal
carriage of Streptococcus pneumoniae and Haemophilus influenzae
independent of the effect of age (Abdullahi et al., 2008).
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The role of children in the transmission of COVID-19 has
been a subject of debate worldwide (Dattner et al., 2021). A study
by Jichao et al. (2020) of children diagnosed with COVID-19
indicates that the potential risk of transmission from infected
children to adult contacts should not be overlooked. Our study
retrospectively identified COVID-19 patients with what can be
considered benign to mild symptoms. SARS-CoV-2 was identified
in this study in 15 participants between February and March
2021 (05 in Abidjan and 10 in Korhogo), coinciding with a
period of high virus spread in Cote d’Ivoire according to WHO
(World Health Organization, 2024). This results reinforce the idea
that children were mostly asymptomatic carriers during the
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pandemic and could have played a role in the transmission of
the virus to their household members (Zhu et al., 2020). More
carriage studies in African children could have helped better study
the diversity of the virus.

16S rRNA sequencing analysis showed that the oropharyngeal
microbial diversity was significantly reduced in children who were
symptomatic carriers of H. influenzae and S. pneumoniae infection,
indicating the presence of oropharyngeal microbial dysbiosis in
these children. Recent data using whole genome sequencing have
also shown a reduction in the diversity of the oropharyngeal
microbiome in elderly and adult patients with Streptococcus
pneumoniae associated pneumonia (Piters et al., 2016). Laufer et al.
(2011) also observed lower microbial diversity in the presence of
S. pneumoniae in the URT of children with otitis media. These
results suggest that dysbiosis of the URT microbiome may be
associated with various respiratory infections, underlining the
importance of maintaining a healthy microbial balance in this
region.

16S rRNA analysis also showed that the dynamics of the
microbiome between children in the north and south differed
significantly (p < 0.001); with greater bacterial diversity in children
from Abidjan than those from Korhogo. This could be explained
by different lifestyles, including diet, genetics and host physiology
as demonstrated in a previous study conducted on the salivary
microbiome of populations living in different geographical and
climatic environments (Li et al., 2014). It shows that there is
considerable geographic variation in the microbiota of selected
individuals. This diversity should be taken into account in future
control strategies based on microbiota modulation.

The phyla that were highly represented in both groups of
participants (children with clinical suspicion of infections and
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not) are Firmicutes, Proteobacteria and Bacteroidota with relative
abundance above 15%. These are part of the five major bacterial
phyla identified by the Human Microbiome Project (ScienceDirect
Topics, 2007; Gao et al., 2014). Other phyla such as Fusobacteriota
and Actinobacteriota were also represented to a lesser extent in
the microbiome of children in this cohort. The identification of
most of these phyla was also done in the study by Xia et al.
(2022) on the pulmonary microbiome. This could be explained
by the fact that the lungs microbiota represents an extension
of the upper respiratory tract. The oropharynx is the junction
between the mouth, nasopharynx, larynx, lower respiratory tract
and gastrointestinal tract. It is also exposed to exogenous and
endogenous microorganisms (Chen et al., 2021). Therefore, the set
of species in the oropharyngeal microbiota may generally be larger
than in other niches.

Of the microbial in terms of
proportion (Haemophilus, Streptococcus, Prevotella, Neisseria
and Porphyromonas), only Streptococcus showed a statistically

genera most present

significant difference in abundance between the groups of
0.001). The
prevalence of these bacteria in the oropharyngeal microbiome has
been demonstrated in previous studies in healthy and asthmatic

symptomatic and non-symptomatic children (p =

children, those suffering from Cystic Fibrosis, and in studies
focusing on COVID-19 (Charlson et al., 2011; Boutin et al., 2015;
Depner et al., 2017).

The genus Sphingomonas, Ralstonia and Rothia were identified
as microbial markers of symptomatic carriage of S. pneumoniae.
This suggests that their low abundance may also play a role in
the modification of the microbiome and the onset of infection, as
these three bacterial genera were not present in infected children.
These results differ from those of Piters et al. (2016) who showed a
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TABLE 6 Relative abundance of the 18 most abundant bacterial genera in the microbiome of individuals according to whether or not they are symptomatic carriers.

Clinical infections

Yes

Sars-Cov-2 H. influenzae

S. pneumoniae

[\ o) ‘ Yes ‘ [\ o) ‘ ‘ p ‘ [\ fo) ‘ Yes ‘ p ‘ “

Actinobacillus 3.35 2.38 0.499 2.54 0 0.397 273 0 0.205 2.54 0 0.769
Alloprevotella 3.89 5.17 0.792 5.4 1.77 0.4 4.57 9.15 0.187 5.01 7.43 0.165
Campylobacter 1.42 1.67 0.202 1.58 3.07 0.509 1.86 0.45 0.064 1.69 1.42 0.539
Fusobacterium 3.24 425 0.03 436 2.64 0339 4.67 1.47 0.074 445 1.36 0.211
Gemella 277 2.63 0218 278 0.49 0.123 291 0.78 0.082 2.58 3.38 0.982
Granulicatella 1.26 1.27 0.425 13 0.88 0391 1.42 0.26 0.24 1.36 0 0.297
Haemophilus 19.12 18.69 0.852 19.49 7.34 0.065 17.2 28.67 0.08 18.62 19.79 0.767
Leptotrichia 1.72 1.63 0.542 1.37 529 0.111 1.77 0.68 0.36 1.45 427 0.028
Moraxella 3.79 4.28 0.831 4.53 0.7 0.604 4.08 5.57 0.225 4.55 0.41 1
Neisseria 6.72 8.74 0.82 9.27 1.08 0.127 8.74 8.71 0.473 8.65 10.04 0.838
Porphyromonas 6.06 7.1 0.465 7.57 0.39 0.01 7.3 5.77 0.894 7.38 3.09 0.306
Prevotella 7.73 11 0.019 10.76 14.57 0.265 11.59 7.09 0.433 10.89 12.63 0.802
Ralstonia 6.47 3.96 0.196 3.74 7.06 0.191 4.19 241 0.559 4.23 0 0.28
Rothia 1.96 1.95 0.296 2.05 0.49 0.453 091 8.85 0.749 2.08 0 0.1
Sphingomonas 5.42 5.34 0.636 3.84 26.83 0.095 5.44 4.69 0.985 571 0 0.192
Streptococcus 17.37 11.92 0.001 12.01 10.71 0.847 12.47 8.28 0.286 11.59 16.77 0.09
TM7x 232 32 0.555 2.79 8.97 0.057 3.44 1.59 0.534 2.44 14.05 0371
Veillonella 4.14 3.65 0.167 341 7.08 0.4 3.53 4.44 0.432 3.64 3.85 0.601
Others 1.24 117 1.21 0.64 118 1.14 115 1.53

The different p-values were calculated using the Wilcoxon rank sum test.
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TABLE 7 Table showing the results for the most significant genera and phyla in the three types of infections using the DESeq2 differential abundance analysis.
baseMean
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significantly higher relative abundance of Rothia in oropharyngeal
microbiota of elderly pneumonia patients, suggesting that Rothia
may play a role in the pathogenesis of the infection. Rothia has also
been implicated in T helper 17 (Th17)-induced lung inflammation
and pneumonia in immunocompromised patients (Segal et al,
2016). Furthermore, abundance of this microorganism in the upper
respiratory tract has also been associated with an increased risk of
otitis media in children (Laufer et al., 2011), suggesting a potential
role for this bacterium in the pathogenesis of respiratory infections
generally. Thus, variations in microbial composition between
different age groups could contribute to differences in susceptibility
to infection (Belibasakis, 2018). Ralstonia, in particular the species
insidiosa, has been isolated from the respiratory tract of cystic
fibrosis patients (Lin et al., 2023). This bacterium has low toxicity
and is a conditional pathogen. However, contraction of bacterial
or viral pathogens, environmental factors or immunological
disturbances can potentially lead to dysbiosis and proliferation of
pathogens, which could result in symptomatic infections due to this
microorganism.

The genus Actinobacilus and Porphyromonas were identified
as microbial markers in symptomatic SARS-CoV-2 carriage with
very low abundance in carriers’ individuals (p < 0.001). This
decrease in Actinobacillus genus and Porphyromonas was observed
in several previous studies in patients with COVID-19 (Ren et al,,
2021; Soffritti et al., 2021; Wu et al,, 2021; Cui et al., 2022; Gupta
et al., 2022; Rafiqul Islam et al, 2022). These results suggest a
potential role for these bacteria in the pathogenesis of COVID-
19. However, further research is needed to fully understand the
impact of these microbial markers in the context of COVID-19.
Actinobacilus has also been identified as a microbial marker in
symptomatic Haemophilus influenzae carriers.

These results demonstrate the importance of conducting
regular surveillance of the carriage of upper respiratory tract
pathogens in order to identify bacteria or viruses that are most
prevalent and to prepare for the deployment of appropriate
public health measures in the event of an epidemic. The
microbiome results presented could be used as baseline data for the
identification of biomarkers involved in URTTIs in children despite
the limited number of individuals.

The human upper respiratory tract microbiome is being studied
more and more thanks to the development of new sequencing tools.
However, the oropharynx has received less attention and, to our
knowledge, few studies have been performed on the microbiome
in Africa, especially on diseases of public health importance (Allali
et al.,, 2021; Diallo et al,, 2023). Additional studies including larger
numbers of participants with a stratified spectrum of respiratory
infections severity, will be useful to better understand the changes
of the microbiota based on the progression of the disease.

The integration of other omics technologies such as RNA
sequencing or metatranscriptomics will provide more specific
gene expression information to better understand the metabolic
characteristics of the children respiratory microbiome (Shakya
et al., 2019). This approach could lead to a better understanding
of the disease and more targeted approaches for treatment and
prevention.

This study has certain limitations. Firstly, it used a cohort
and therefore generalization of the results must be done with
caution. Secondly, we were unable to identify causal relationships
between symptomatic carriage of microorganisms and microbial
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markers in the oropharynx using either functional or mechanistic
data as this would require whole genome metagenomic. Finally,
the monthly sampling may have prevented the identification of
rapidly evolving changes in the microbiome focusing on rather
long-lasting changes.

5 Conclusion

In our study cohort 40% of children showed clinical symptoms
of infection without geographical location variation.

OPM of children is highly diverse and varies considerably
between both sites with greater microbiota diversity in Abidjan
(stable seasonality humid) than in Korogho (variable seasonality
dry/rainy) in children presenting clinical signs of URT infection.
A significant difference in the microbiota diversity was also
found in children that carry S. Pneumoniae and H. influenzae
(P < 0.05) with lower microbial diversity in patients with
both infections. However, the OPM was not significantly
different when comparing children with or without SARS-
CoV-2 carriage. 16S rRNA analysis showed that Sphingomonas,
Ralstonia and Rothia were significantly enriched by non-
carriers of S. pneumoniae; Actinobacillus was significantly
enriched by non-carriers of H. influenzae; Actinobacillus and
Porphyromonas were significantly enriched by non-carriers of
SARS-CoV-2 (p < 0.001). Our study has shown that changes
in the microbiome composition may favor predisposition for
certain microorganisms to cause symptomatic infections. Further
characterization of the response of the microbiota to airway
infections down to the species level as well as gene expression
using novel sequencing technologies such as shotgun sequencing
or metatranscriptomics is needed to better understand the
transcriptional changes of the host and microbiota during
infection. This will provide a better understanding of pathogenesis
of respiratory tract infections in children over the long term,
and will help understand the effects of current and future
preventive measures.
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