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The gut microbiota-immune-brain axis is a feedback network which influences
diverse physiological processes and plays a pivotal role in overall health and
wellbeing. Although research in humans and laboratory mice has shed light
into the associations and mechanisms governing this communication network,
evidence of such interactions in wild, especially in young animals, is lacking.
We therefore investigated these interactions during early development in a
population of common buzzards (Buteo buteo) and their e�ects on individual
condition. In a longitudinal study, we used a multi-marker approach to establish
potential links between the bacterial and eukaryotic gut microbiota, a panel
of immune assays and feather corticosterone measurements as a proxy for
long-term stress. Using Bayesian structural equation modeling, we found no
support for feedback between gut microbial diversity and immune or stress
parameters. However, we did find strong relationships in the feedback network.
Immunity was negatively correlated with corticosterone levels, and microbial
diversity was positively associated with nestling body condition. Furthermore,
corticosterone levels and eukaryotic microbiota diversity decreased with age
while immune activity increased. The absence of conclusive support for the
microbiota-immune-brain axis in common buzzard nestlings, coupled with the
evidence for stress mediated immunosuppression, suggests a dominating role of
stress-dominated maturation of the immune system during early development.
Confounding factors inherent to wild systems and developing animals might
override associations known from adult laboratory model subjects. The positive
association between microbial diversity and body condition indicates the
potential health benefits of possessing a diverse and stable microbiota.
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1 Introduction

A growing body of evidence highlights a crucial relationship
among gut microbes, the environment and host immunity, which
also molds the maturation and function of the central nervous
system (CNS) (Fung, 2020; Chin et al., 2020). This intricate
feedback system encompasses the brain, the autonomic and enteric
nervous systems, the endocrine and immune systems, and the
gut microbiome (Martin et al., 2018). Gut-brain communication
occurs through various mechanisms, including neuroanatomical
pathways and the neuroendocrine axis (hypothalamic-pituitary-
adrenal or HPA axis). However, increasing importance has been
given to the interactions between the microbiota and the immune
system as a fundamental pathway regulating microbiota-gut-brain
communication (Fachi et al., 2019). For example, the products
resulting from themetabolic activities of the gut microbiota include
bioactive peptides such as neurotransmitters, short-chain fatty
acids, intestinal hormones, and branched-chain amino acids that
play pivotal roles in regulating communication between the gut,
brain and the immune system (Sperringer et al., 2017; Cryan
et al., 2019; Ding et al., 2020; Krishnamurthy et al., 2023). These
metabolites are able to enter the circulatory system to communicate
with the brain, eliciting stimulation of the HPA axis (Lynch et al.,
2024; Sudo et al., 2004). Additionally, they exert a direct influence
on the mucosal immune system, where specific metabolites can
function as immune signaling molecules, activating or enhancing
systemic immune responses (Ding et al., 2020; Long-Smith et al.,
2020). In turn, the brain regulates the gastrointestinal tract and
overall organismal homeostasis (Mindus et al., 2021).

The gut microbiota contributes to the development of the host
immune system during early life stages, regulates it to maintain
gut homeostasis and protects the host from the colonization of
potential pathogens (Lo et al., 2021; Berman et al., 2023). As such
increasing importance has been given to the neonatal microbiome
and its developmental trajectory during early life which affects
host immunity and neural activity maturation (Jašarević and Bale,
2019; Ratsika et al., 2023). For example, in humans, the mode
of delivery significantly influences the normal colonization of
the gut microbiota (Ratsika et al., 2023). C-section deliveries
have been linked to immune disturbances (allergies and asthma)
(Roduit et al., 2009; Bisgaard et al., 2011) and disruptions in
the structure and function of the CNS, with indications of
increased neuronal cell death (Castillo-Ruiz et al., 2018) and
deficits in early communication skills and social behavior later in
life (Morais et al., 2020). In murine models, penicillin treatment
during late pregnancy and early postnatal life has been shown to
induce alterations in the gut microbiota, leading to heightened
cytokine expression, altered integrity of the blood–brain barrier,
and significant differences in behavior (Ratsika et al., 2023).
Interactions among these functional systems, particularly during
sensitive developmental periods, carry consequences later in life,
influencing behavior, disease susceptibility, general health and
survival (Strange et al., 2016; Francella et al., 2022; Ratsika et al.,
2023).

Research also shows the importance of glucocorticoids (GC)
in gut-brain communication, with increased GC levels affecting
microbial diversity and composition (Petrullo et al., 2022). Various

factors, including, predation (Mohring et al., 2023), heat stress (Lin
et al., 2006), high energetic demands during reproduction (Fletcher
et al., 2015), and food availability (Romero andWikelski, 2001) can
affect host homeostasis and are known to induce elevated stress
levels in animals. Corticosterone, a key glucocorticoid in various
vertebrate species, is recognized as a classic endocrine response to
stress but also for its role in energy regulation (Almasi et al., 2009).
GCs mediate ongoing stress responses, either via maintaining basal
levels, allowing other aspects of the stress response to act efficiently,
or by actively triggering the stress response (Sapolsky et al., 2000).
An alternative view suggests that GCs may suppress the stress
response, preventing detrimental over-activation (Sapolsky et al.,
2000).

Substantial evidence emphasizes the importance of the
microbiota-immune-brain axis in humans and laboratory animals
(Fung, 2020). Yet, the understanding of these links in wild animals
remains limited (Hird, 2017; Davidson et al., 2020). Studies in
birds associated exploratory behavior with microbiota diversity,
while learning and memory performance have been correlated
with compositional differences (Florkowski and Yorzinski, 2023;
Slevin et al., 2020). The gut microbiota’s links to stress have also
been explored: in common toad tadpoles (Bufo bufo), elevated
baseline corticosterone associates with higher microbial diversity
(Gabor et al., 2022), while American red squirrels (Tamiasciurus

hudsonicus) show lower alpha diversity and fewer gastrointestinal
pathogens in response to elevated glucocorticoids (Petrullo et al.,
2022). Studies of themicrobiota-immune axis in wild barn swallows
(Hirundo rustica) and Egyptian fruit bats (Rousettus aegyptiacus)
demonstrate that antigen challenges (phytohaemagglutinin and
lipopolysaccharides, respectively) can induce changes in gut
microbiota composition, which in turn predict the strength of the
immune response (Kreisinger et al., 2018; Berman et al., 2023).
However, since the majority of these studies have involved adult
individuals, it is uncertain whether similar patterns would be
observed in nestlings and juveniles. In a rare exception, Stoffel
et al. (2020) found that a small proportion of the variation
in beta diversity among northern elephant seal juveniles was
explained by health status (assessed by counting various white
blood cell populations) yet a clear pattern emerged where healthier
individuals exhibited higher microbiota diversity.

Here, we investigated the gut microbiota-immune-brain axis
in a wild vertebrate population, drawing on predictions based
on human and murine models. Using a wild population of
common buzzards (Buteo buteo), we sampled nestlings and
collected information on bacterial and eukaryotic microbiota
diversity (microbiota component). Long-term stress was measured
from feather corticosterone (brain component). In addition we
performed a series of immune assays (immune component) and
estimated the body condition of each individual. Furthermore, we
assessed each component at two distinct time points throughout
nestling development to incorporate developmental trajectories
and dynamic changes. Our approach diverges from traditional
methodologies, which often rely on single-point estimates. All
components were subsequently integrated into a structural
equation modeling framework (Grace, 2006; Lefcheck, 2016)
incorporating the following assumptions: 1. All components of the
axis exert an influence on the body condition of the nestlings; 2.
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The immune system is influenced by both stress levels and the
microbiota; 3. Corticosterone levels affect microbiota diversity. In
common buzzards we have previously shown that as individuals
mature, microbiota diversity declines suggesting a shift toward
a stable community following uncontrolled colonization after
hatching (Pereira et al., 2024). Building on that knowledge we
expect that, as individuals age their gut microbiota diversity will
decline, their immune system will mature (increased immune
capacity), and stress levels will decrease, leading to a state of
homeostasis and improved body condition.

2 Methods

2.1 Study system

The common buzzard (Buteo buteo) is a long-lived raptor (up
to 25 years) widely distributed across Europe (Walls and Kenward,
2020). This study examines a population that has been closely
monitored for over 25 years within a 300 km2 area (Krüger, 2004;
Jonker et al., 2014). Predominantly a resident species, common
buzzards breed in tall trees (over 10 meters) from March to July.
Adults typically form long-term pairs, build stick nests, and rear
on average two nestlings per brood, with reproductive success
closely tied to vole availability, their primary food (Kostrzewa and
Kostrzewa, 1990; Panek, 2021). During their ≈5-week nestling
period (≈35 days), nestlings are entirely dependent on parental care
and feeding. Even after fledging (≈47 days), they stay close to the
nest and continue receiving parental support (Fachi et al., 2019).
Parental care (mostly by the female) decreases during this period:
initially, females provide active brooding beyond just feeding times
(0–8 days), but as the nestlings grow, female presence decreases (9–
30 days), eventually mirroring the care level of males (Hubert et al.,
1995). While diet seems to remain consistent (as inferred from
observational data), there is a shift in feeding practices: parents
transition from directly provisioning nestlings to depositing prey
in the nest, allowing the nestlings to gradually consume whole prey
items.

We used existing microbiome data from Pereira et al. (2024)
and complemented these with new data on feather corticosterone
and a set of immune markers. We successfully obtained all
sample types from a set of 43 common buzzard individuals, each
sampled at two different time points during their nestling phase,
totalling 86 samples. Individuals were sampled from 23 nests
with an average brood size per nest of two nestlings (Table 1; see
Supplementary Tables S1, S2 for n◦ of ASVs per marker). These
were sampled across two different habitats: North of the Teutoburg
Forest and south of the Teutoburg Forest (8◦ 25′E and 52◦ 6′N;
Eastern Westphalia, Germany), as described in Krüger (2004) and
Jonker et al. (2014).

2.2 Sample collection

In brief, body weight and wing length were recorded at each
sampling event, with a nine-day interval on average. The first
sampling occurred on average at 19 days of age (mean± s.d. = 19.3
± 5.29 days) and the second at 28 days (mean ± s.d. = 27.8 ± 5.16

days). Due to difficulties in precise age estimation prior to sampling
(the hatching date was estimated by the number of droppings on
the ground below the nest; age was determined following the initial
visit to the nest and subsequent measurement of wing length),
it was impossible to sample individuals at exactly the same age
at sampling points 1 and 2. Nestling age was calculated (post-
first sampling) using a sex-specific polynomial regression model
on wing length (Bijlmsa, 1999). Body condition index (BCI) was
determined by extracting the residuals of a logarithmic regression
of weight on wing length, adjusting for sex. Blood samples (500
µl) were collected from the ulnar vein and stored in heparinized
tubes. A small blood drop was used for smears, a portion was
stored in ethanol for sex determination, and the remaining volume
was centrifuged in the field until separation of plasma was visible.
Separated plasma was transferred to a new tube, stored in dry
ice, and subsequently stored at −80◦C until further analysis. The
remaining red blood cells were resuspended in PBS solution and
stored at −20◦C. Cloacal swabs for gut microbiota analysis were
obtained and stored in RNAlater, first in dry ice and then long term
at−80◦C. In order to assess corticosterone levels, one interscapular
feather was pulled from each bird and these were individually
stored in paper envelopes.

2.3 Microbiome profiling: DNA isolation,
sequencing, and data processing

For detailed procedures on microbiome sequencing data
processing see Pereira et al. (2024).

2.3.1 DNA isolation and sequencing
Cloacal swabs underwent DNA extraction using a modified

phenol-chloroform protocol. For gene library preparation, the
“Illumina 16S Metagenomic Library Preparation Guide” (15044223
Rev.B) was followed. A multimarker approach was used, targeting
the V4 region of the 16S ribosomal RNA (rRNA) gene with the
primers 515F (Parada) (Parada et al., 2016) and 806R (Apprill)
(Apprill et al., 2015). To be able to capture not only bacteria but also
eukaryotes, the D8-D9 region of the 28S rRNA gene was targeted
with the primers GA20F (Van der Auwera et al., 1994)/RM9Rb
(Machida and Knowlton, 2012). PCRs were conducted in 25 µl
reaction volumes containing 5 µl DNA, 12.5 µl KAPA HiFi
HotStart ReadyMix, 1 µl of each primer (1 µM), and 6 µl of
PCR-grade water. Index-PCRs utilized Illumina Nextera XT V2
index kits. Libraries were equimolarly pooled, and sequenced on
an Illumina MiSeq platform (0.4% MiSeq run) with a 2 × 300 bp
paired-end reads protocol.

2.3.2 16S rRNA gene sequence data processing
Sequence data were imported into QIIME2 (Quantitative

Insights Into Microbial Ecology 2, version 2022.11) (Bolyen et al.,
2019). Quality assessment was done by visualizing quality plots
and Amplicon Sequencing Variants (ASVs) were inferred using
the Divisive Amplicon Denoising Algorithm pipeline (DADA2)
(Callahan et al., 2016). Taxonomy was assigned using a SILVA
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TABLE 1 Summary of number of individuals per marker.

N individuals N samples Nests Males Females North South

16S rRNA dataset 43 86 23 24 19 39 4

28S rRNA dataset 42 72 23 24 18 38 4

138.1-trained naive Bayes taxonomic classifier (Quast et al., 2012).
Contaminants were identified and removed with the decontam
package version 1.18 (Davis et al., 2018). ASVs assigned to
Mitochondria, Chloroplast, Vertebrata, Eukaryota, and unassigned
taxa were filtered out using QIIME2. Singletons and samples
with a minimum frequency below 500 reads were removed. The
remaining ASVs were aligned with MAFFT (Katoh et al., 2002) and
used to construct a phylogeny with FastTree (Price et al., 2010),
both implemented in QIIME2.

2.3.3 28S rRNA gene sequence data processing
Demultiplexed Illumina sequence data were imported into R

version 4.2.2 (R Core Team, 2022). Locus-specific primers were
removed using Cutadapt (version 4.4) (Martin et al., 2018). In
QIIME2, quality assessment was performed through visualization
of quality plots. ASV inference was conducted using DADA2
following the methodology outlined by Callahan et al. (2016).
Sequences were trimmed to eliminate low quality regions and
paired-end reads were concatenated. In QIIME2, taxonomy was
assigned using the naive Bayes taxonomic classifier trained on the
SILVA 138.1 database. The decontam pipeline in R was applied
to remove contaminants and to perform taxonomy-based filtering
(host reads, Mitochondria, Chloroplast, Vertebra and unassigned
reads were removed), removal of unique features, and filtering of
samples with fewer than 500 reads in QIIME2. The resulting ASVs
were aligned using MAFFT, and a phylogeny was constructed using
FastTree.

2.4 Assessment of immunity

Due to the complexity of the immune system, we measured
four innate immune parameters [bacterial killing activity against
Escherichia coli (BKA), lysozyme and haptoglobin concentrations,
natural antibodies (HA) and complement (HL) titers] and one
component of the acquired immune system [total immunoglobulin
Y (IgY) concentration]. All these assays are regularly used in wild
bird species, including raptor nestlings, both in comparative and
within-species studies (see references below).

2.4.1 Bacterial killing activity
The bacterial killing activity (BKA) against Escherichia coli

(ATCC No 8739) was used to characterize the functional activity of
a bird’s constitutive innate immune system (Irene Tieleman et al.,
2005) using a spectrophotometric version of the assay (Nebel et al.,
2021; Brust et al., 2022; Vincze et al., 2022). This assay measures
the plasma’s capacity to kill microbes ex vivo, determining the
organism’s ability to eliminate bacterial pathogens encountered,

providing an environmentally relevant immune response (Millet
et al., 2007; Tieleman, 2018). The assay evaluates the synergic
function of several immune components (humoral ones in
case of working with plasma), including antibacterial enzymes,
complement components, and natural antibodies (French and
Neuman-Lee, 2012). Briefly, 12 µl of 1:7 PBS-diluted sample was
pipetted in duplicate into 96-well-plate andmixed with 4µl of≈1.5
× 105 colony-forming units (CFU)/ml. A positive (not containing
any plasma) and a negative control (not containing any E. coli or
plasma) was run on each plate. After incubation for 30 min at 37◦C,
83µl of tryptic soy broth (#22092, Fluka) was added to each well.
Absorbance at 300 nm was measured with a spectrophotometer
(Biotek; µQuant Microplate Spectrophotometer) to determine
background absorbance and again after the plates had been
incubated for 12 h at 37◦C. The BKA was quantified as the bacteria
growth in plasma after 12 h (in %) subtracted by the background
absorption in relation to the positive control (Brust et al., 2022).

2.4.2 Lysozyme
Lysozyme is an antibacterial enzyme that causes rapid cell

lysis, especially in Gram-positive bacteria. It is part of the
constitutive innate immune system and is often measured to assess
inflammation-induced levels in plasma (Millet et al., 2007). To
measure its concentration in plasma, we used the lysoplate assay
(Prüter et al., 2020; Brust et al., 2022): 10 µl of sample was
inoculated in the test holes of a 1% Noble agar gel (A5431, Sigma)
containing 50 mg/100 ml lyophilized Micrococcus lysodeikticus

(M3770, Sigma), a bacterium which is particularly sensitive
to lysozyme concentration. Crystalline hen egg white lysozyme
(L6876, Sigma) (concentration: 0.5, 0.8, 1, 2, 4, 8, 10, 20, and
40 µg/ml) was used to prepare a standard curve for each plate.
After 20h incubation at 37◦C, a clear zone developed in the area
of the gel surrounding the sample inoculation site corresponding
to the bacterial lysis. The diameters of the cleared zones are
proportional to the log of the lysozyme concentration. This area was
measured three times digitally using the software ImageJ (version
1.48, ImageJ) and the mean was converted to a semi-logarithmic
plot into hen egg lysozyme equivalents (HEL equivalents, expressed
in µg/mL) according to the standard curve (Prüter et al., 2020;
Brust et al., 2022).

2.4.3 Haptoglobin
Haptoglobin, is an acute-phase protein in birds and is part

of the induced innate immune system. Acute phase proteins are
key indicators of immunological function. Their concentrations
fluctuate over time, reflecting changes in health and physiological
condition (Hõrak et al., 2002, 2003). Levels can rise quickly in
response to infection, inflammation, or trauma (Millet et al.,
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2007). Elevated plasma haptoglobin often signifies the onset
of a non-specific immune response (Matson et al., 2012). We
measured haptoglobin concentrations with a commercial kit
(TP801, Tri-Delta Diagnostics, Inc.) following the instructions
of the manufacturer. Haptoglobin concentrations (mg/ml) in
undiluted plasma samples were calculated according to the
standard curve on each plate (Prüter et al., 2020; Nebel et al., 2021).

2.4.4 Haemolysis–haemagglutination assay
The levels of the natural antibodies and complement were

assessed by using a haemolysis-haemagglutination assay as
described by Matson et al. (2005), Nebel et al. (2021), and Brust
et al. (2022). Natural antibodies, quantified as Haemagglutination
(HA) titers, bind non-specifically to various antigens and play
crucial roles in opsonization (Ochsenbein et al., 1999; Forthal,
2014). Haemolysis (HL), facilitated by the complement system, is
a component of the innate immune system, its activation leads
to cell lysis, particularly of cells that have been opsonized (Nauta
et al., 2004). After pipetting 10 µl of plasma into the first two
columns of a U-shaped 96-well microtiter plate, 10 µl sterile PBS
was added to columns 2–12. The content of the second column
wells was serially diluted (1:2) until the 11th column, resulting
in a dilution series for each sample from 1/1 to 1/,1024. The
last column of the plate was used as negative control, containing
PBS only. Ten microliter of 1% rabbit red blood cells (supplied
by Innovative Research) suspension was added to all wells and
incubated at 37◦C for 90 min. After incubation, in order to increase
the visualization of agglutination, the plates were tilted at a 45◦

angle at room temperature. Agglutination and lysis, which reflect
the activity of the natural antibodies and the interaction between
these antibodies and complement (Matson et al., 2005; Prüter
et al., 2020), was recorded after 20 and 90 min, respectively.
Haemagglutination is characterized by the appearance of clumped
red blood cells as a result of antibodies binding multiple antigens,
while during haemolysis, the red blood cells are destroyed. Titers
of the natural antibodies and complement were given as the log2
of the reciprocal of the highest dilution of serum showing positive
haemagglutination or lysis, respectively (Matson et al., 2005; Prüter
et al., 2020; Brust et al., 2022).

2.4.5 Total immunoglobulin Y concentration
Total IgY, the avian equivalent to mammalian immunoglobulin

G, is the primary humoral effector of the adaptive immune system,
playing a critical role in neutralizing pathogens (Warr et al., 1995).
IgY is essential for long-term immunity, providing protection
against recurrent infections. Total IgY was measured using an
ELISA with commercial anti-chicken antibodies (Bourgeon et al.,
2010; Hanssen et al., 2013). Ninety-six well high-binding ELISA
plates (82.1581.200, Sarstedt) were coated with 100 µl of diluted
plasma sample (1:4,000 diluted in carbonate–bicarbonate buffer, in
duplicates) and incubated first for 1 h at 37◦C and then overnight at
4◦C. After incubation, the plates were washedwith a 200µl solution
of PBS and PBS–Tween, before 100 µl of a solution of 1% gelatine
in PBS–Tween was added. Plates were then incubated at 37◦C for
1 h, washed with PBS–Tween and 100 µl of polyclonal rabbit anti-
chicken IgY conjugated with peroxidase (A-9046, Sigma) at 1:250

(v/v) was added. Following 2 h incubation at 37◦C, the plates were
washed again with PBS–Tween three times. After washing, 100µl of
revealing solution [peroxide diluted 1:1,000 in ABTS (2,20-azino-
bis-(3-ethylbenzthiazoline-6-sulphonic acid))] was added, and the
plates were incubated for 1 h at 37◦C. The final absorbance
was measured at 405 nm using a photometric microplate reader
(µQuant Microplate Spectrophotometer, Biotek) and subsequently
defined as total serum IgY levels (Brust et al., 2022).

2.5 Feather-corticosterone determination

The entire feather was weighed and placed in a tube. For every
10 mg of feather, 1 ml of 100% methanol (p.a.) was added, followed
by crushing with scissors. Subsequently, the samples were subjected
to an ultrasonic bath incubation at 30◦C for 30 min, followed
by overnight incubation in an overhead shaker (25 rpm). On the
following day, centrifugation (2 min, 19,800 × g) was performed,
and the supernatant transferred to a new tube. The feather pellet
underwent two washes, each with half of the extraction volume
(2 min each at 19,800 × g); the resulting supernatants were then
combined and one further centrifugation was performed for 10
min at 19,800 × g. The supernatant was then filtered through a
PTFE membrane (Merck Millipore: Ultrafree-CL), and the filtrate
was temporarily stored at −20◦C. A defined amount of methanol
(500 µl) from the temporarily stored filtrate was evaporated
in a vacuum concentrator. The samples were re-suspended in
250 µl ELISA buffer (Cayman Chemicals Inc. [# 501320])
and stored at −20◦C for at least overnight before conducting
the ELISA. Corticosterone concentrations were determined in
triplicate following the manufacturer’s instructions. f-CORT assay
validation is presented in Supplementary Data Sheet 6.

2.6 Statistical analysis

In order to evaluate sequencing depth and sample coverage,
rarefaction curves were constructed in QIIME2. Rarefaction was
then applied to the 16S rRNA dataset at 4,000 reads and to the 28S
rRNA dataset at 2,000 reads. Utilizing the q2-diversity alpha plugin,
three alpha diversity metrics were calculated: Shannon diversity
index (Shannon, 1948); Faith’s Phylogenetic Diversity (Faith PD)
(Faith and Baker, 2006) and number of observed ASVs. Prior to
constructing the Structural Equation Model (SEM), we explored
associations of the variables of interest (BCI, f-CORT, immune
assays) with host and environmental factors examined by Pereira
et al. (2024). These included sex, habitat and rank (dominance
hierarchy within the brood). We have previously established that
none of these variables affects microbiota alpha diversity (Pereira
et al., 2024). This preliminary analysis aimed to assess the relevance
of these variables for the construction of the SEM. For each variable
of interest, individual linearmixedmodels (LMMs) with a Gaussian
distribution were constructed using the lmer function from the
lme4 package in R (Bates et al., 2015). The significance of factors
was assessed through analysis of variance (ANOVA). To account
for repeated samples and nest sharing, Nest ID and Individual ID
were incorporated as nested random effects (Individual ID nested
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within Nest ID). Additionally, the Benjamini-Hochberg method
was applied to correct the p-values for multiple hypothesis testing
(Benjamini and Hochberg, 1995). Scripts and results are presented
in Supplementary Data Sheet 2.

2.6.1 Structural equation modeling approach
In order to tackle the complex interactions within the gut

microbiota-immune-brain axis and their impact on individual
condition, we employed a SEM strategy. SEM is a statistical
methodology that allows for the simultaneous testing of complex
relationships among multiple variables. Integrating factor analysis
and multivariate regression analysis, SEM provides enhanced
flexibility, enabling variables to both depend on and influence
other variables. Furthermore, SEM allows for the incorporation of
mediation effects, facilitating the quantification of direct, indirect,
and total effects (Grace, 2006; Lefcheck, 2016). Of particular
relevance to this study is SEM’s capability to construct and model
latent variables: ones that cannot be directly measured but are
hypothesized to exist (Bollen, 2002; Lefcheck, 2016).

2.6.2 Exploratory factor analysis
We started by constructing a latent variable representing

Immunity; for this, an exploratory factor analysis (EFA) was
performed using the “lavaan” (version 0.6-16) package (Rosseel,
2012) in R. The latent variable model incorporated all immune
assays as indicators, with “cluster= Individual ID” set to address
repeated sampling and Full Information Maximum Likelihood
(FIML) utilized for handling missing data. Estimation was
performed using Maximum Likelihood with robust standard errors
(MLR), and standardization of values for the latent variable
was implemented (“std.lv =T”). Model fit was evaluated through
the examination of fit indices, including the chi-squared p-
value, Comparative Fit Index (CFI), Root Mean Square Error of
Approximation (RMSEA), and Standardized Root Mean Square
Residual (SRMR). The conventional “rule of thumb”: CFI > 0.9;
RMSEA < 0.08; SRMR < 0.08 was used for model fit evaluation
(Hu and Bentler, 1999; MacCallum et al., 1996; Sharma et al.,
2005). Predicted values for the latent construct were extracted
using the “lav.predict” function from “lavaan” with default settings.
During the initial assessment, it became evident that haptoglobin
concentration did not significantly load on the latent variable
Immunity (Figure 1), leading to lower model fit (Table 2). As a
result, haptoglobin concentration was subsequently removed and
treated individually.

2.6.3 Bayesian SEM
A Bayesian structural equation model (Kaplan and Depaoli,

2012) was fitted using the brms R package (Bürkner, 2017; Bürkner,
2018), which incorporates the probabilistic coding language Stan
(Carpenter et al., 2017). Four distinct models were inputted into
the multivariate analysis in order to test our main hypotheses:

Path 1:

BCI∼ alpha diversity + f-CORT + Immunity + Age + (1|Nest

ID/Individual ID)

Path 2:

Immunity∼ f-CORT + alpha diversity + Age + (1|Nest

ID/Individual ID)

Path 3:

Alpha diversity∼ f-CORT + Age + (1|Nest ID/Individual ID)

Path 4:

f-CORT∼ Age + (1|Nest ID/Individual ID)

Path 1 allowed us to infer the contributions of the different
components of the axis for nestling body condition, while the
remaining paths were designed to capture the dynamics of the gut
microbiota-immune-brain. Statistical constraints impose that we
assume directionality a priori, although we are aware that these are
bidirectional relationships. To account for repeated samples and
nest sharing, a nested random effect (individual ID nested within
nest ID) was incorporated into the model. Given our sampling
design, where individuals of different ages were sampled at each
time point (age as a continuous variable), the only way to account
for age effects was to include age as a fixed effect. The model was
run with four chains, each run with 100k iterations, a warm-up
phase of 50k iterations and default priors. Model fit was assessed
by examining the convergence of the runs, mixing of chains and
performing posterior predictive checks (comparing predicted vs.
observed posterior distribution). Marginal and conditional Bayes
R2 (Gelman et al., 2019) were calculated using the “bayes R2”
function in brms. Scripts and intermediate results can be found in
Supplementary Data Sheets 3, 4.

2.7 Di�erential abundance analysis

Analysis of Compositions of Microbiomes with Bias Correction
2 (ANCOM-BC2) with default parameters was implemented in
the R package ANCOMBC version 2.0.2 (Lin and Peddada, 2020;
Lin et al., 2022). Body condition index, f-CORT, Immunity and
age were specified as fixed effects. A nested random effect to
account for Individual ID within Nest ID was fitted with the option
“rand formula”. The Holm-Bonferroni method with a significance
cutoff of padj < 0.05 was used to correct P-values for multiple
testing (Holm, 1979). Detailed scripts and results are presented in
Supplementary Data Sheet 5.

3 Results

We examined the potential contribution of sex, habitat and
brood rank to the variation of BCI, f-CORT, and the various
immune assays. The analysis revealed no substantial evidence
linking body condition, corticosterone levels, or immune capacity
to these variables. However, slight variations in lysozyme and
haptoglobin levels were observed among different habitats. These
patterns appear to be largely influenced by imbalances in the sample
design and the presence of outliers (Supplementary Figure S9).
Thus, we assume that the tested variables should not play a
significant role in the SEM construct. For a comprehensive
overview of the analysis pipeline and detailed results, see
Supplementary Data Sheet 2.
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FIGURE 1

Latent variable model for “Immunity”. Arrows point to di�erent immune assays, which serve as components of the latent variable. Values are
indicating the strength of the relationship between the latent variable and its indicators. Red values indicate variables that loaded significantly in the
model while black values denote non-significant loadings. ***p < 0.01; *p < 0.05.

TABLE 2 Model fit indices for exploratory factor analysis.

p-value χ2 CFI RMSEA SRMR

EFA without haptoglobin 0.20 0.99 0.07 0.04

EFA with haptoglobin 0.00 0.85 0.19 0.11

CFI, Comparative Fit Index; RMSEA, Root Mean Square Error of Approximation; SRMR, Standardized Root Mean Square Residual.

The presented p-values correspond to the Chi-square test of model fit.

3.1 Exploratory factor analysis

Exploratory factor analysis (EFA) derived a latent variable
representing the underlying structure of immune parameter
values. We synthesized the results of the immune assays into a
composite variable denoted as Immunity, which included all of
the immune parameters except haptoglobin concentration (see
above). Components of the innate immune system (Hemolysis and
Hemagglutination) displayed the strongest factor loadings (λHA =

0.94, λHL = 0.90), followed by IgY (λIgY = 0.50) representing the
adaptive immune system (Figure 1).

3.2 Bayesian SEM

The Bayesian SEM revealed no evidence for a
relationship between gut microbiota diversity and
either Immunity/Haptoglobin or f-CORT (Figures 2, 3;
Supplementary Figures S1–S3). However, a negative correlation
emerged between Immunity and f-CORT, showing a decrease
in immune capacity with rising levels of f-CORT (Figures 2–
4A; Supplementary Figures S1, S2). Conversely, no evidence
was found for a link between Haptoglobin and f-CORT
(Figures 2, 3; Supplementary Figure S3). A negative association
was evident between f-CORT and BCI (Figures 2–4B;
Supplementary Figures S1–S3). Shannon bacterial diversity
was associated with BCI, indicating that higher diversity levels
corresponded to elevated BCI (µ = 0.18; CI [0.01, 0.35];

Figures 2, 4C). Conversely, no evidence was found for the
effects of Immunity/Haptoglobin on body condition (Figures 2,
3; Supplementary Figures S1–S3). Eukaryotic microbiota
diversity exhibited no connection with BCI (Figures 2, 3;
Supplementary Figures S1–S3). We found no evidence for age-
related effects on bacterial microbiota diversity (Figures 2, 3;
Supplementary Figures S1, S2). However, there was credible
support for a decrease of eukaryotic Faith PD and the number
of observed ASVs with age [Faith PD: µ = −0.28; CI (−0.55,
−0.01); Number of ASVs: µ = −0.28 CI (0.56, −0.01);
Supplementary Figure S4]. Additionally, f-CORT levels decreased
as individuals matured, while Immunity increased with age
(Figures 2, 3; Supplementary Figures S1–S4). As the results for the
number of observed ASVs were similar to those for Faith PD, they
are presented in Supplementary Figure S1.

3.3 Deferentially abundant taxa

In the ANCOM-BC2 models incorporating the latent variable
Immunity, two eukaryotic ASVs exhibited differential abundance.
Specifically, one ASV was linked to BCI (Genus:Dothideales), while
another was associated with age (Phylum: Phragmoplastophyta)
(see Supplementary Figure S5). However, the latter failed to
retain statistical significance following sensitivity analysis (see
Supplementary Table S21). The genus Dothideales demonstrated
a log-fold decrease per unit of BCI (Supplementary Figure S5).
Notably, no bacterial taxa displayed differential abundance
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FIGURE 2

Diagrams representing the Bayesian structural equation models for the di�erent bacterial microbiota diversity metrics. Illustrated are the results of
the models incorporating the latent variable, with results for the Haptoglobin assay superimposed. Values represent the estimated mean e�ect of a
predictor (µ) on the outcome variable. Credible intervals (95% CI) are provided for predictors that explain the outcome variable.

correlated with the studied variables (Supplementary Figure S5).
In contrast, when incorporating the Haptoglobin immune assay
into the models, no deferentially abundant taxa were identified
(Supplementary Figure S6; Supplementary Table S22).

4 Discussion

The gut microbiota-immune-brain axis shapes a variety of
physiological responses through multidirectional communication
among the gut microbiota, immune system, and the central
nervous system (CNS) (Sylvia and Demas, 2018). This feedback
system is known to influence immune function, neuroendocrine
pathways, and behavior (Martin et al., 2018; Cryan et al.,
2019). Once established, disruptions to this axis may lead to
the development of disorders (e.g., irritable bowel syndrome;
ulcerative colitis; Alzheimer’s and Parkinson’s disease in humans)
significantly impacting individual health (Rhee et al., 2009;
Ghaisas et al., 2016). Here, we used gut microbial diversity
measurements, various innate and adaptive immune markers
and feather-corticosterone levels (a proxy for stress) to explore
relationships among the three components of the axis and the
repercussions to body condition in a wild population of common
buzzard nestlings.

4.1 Gut microbial diversity, not associated
with Immunity and stress

In contrast to our assumptions, our results revealed no
association between microbial diversity, Immunity and stress (f-
CORT) (Figures 2, 3). However, several parts of the feedback
cascade appeared to be functional (see below). Despite the well-
established influence of the gut microbiota on immune system
modulation and its impact on the CNS, these tripartite connections
remain elusive in wild populations (Hird, 2017; Davidson et al.,
2020; Madden et al., 2022; Pereira et al., 2023), particularly during
the early stages of development, in contrast to the studies in humans
and mice (Martin et al., 2018; Francella et al., 2022; Lynch et al.,
2024).

Contrary to our findings, recent research by Francella et al.
(2022) demonstrated clear links between gut microbiota, the
immune system and stress in the early-life stages of laboratory-
reared mice. Their study showed that immunocompromized
mice had increased stress levels, decreased microbial diversity,
and alterations in gut microbiome composition post-weaning;
additionally, stress impacted the abundance of specific taxa that, in
turn, were associated with specific behavioral traits. Furthermore,
these behavioral changes were observed after just 1 week of
age, demonstrating that stress can interact with host immunity
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FIGURE 3

Diagrams representing the Bayesian structural equation models for the di�erent eukaryotic microbiota diversity metrics. Illustrated are the results of
the models incorporating the latent variable, with results for the Haptoglobin assay superimposed. Values represent the estimated mean e�ect of a
predictor (µ) on the outcome variable. Credible intervals (95% CI) are provided for predictors that explain the outcome variable.

FIGURE 4

Regression plots illustrating the main results of the SEM model. (A) Negative relationship between immunity and f-CORT; (B) Negative correlation
between body condition and f-CORT; (C) Increase in bacterial microbiota Shannon diversity with body condition.

during early development. Discrepancies between the results of the
mice study and ours can be explained by various non-mutually
exclusive factors. It is important to consider that their research
was conducted under laboratory conditions, which lack ecologically
relevant environmental factors, whereas our study was performed
under ecologically realistic, natural circumstances. Indeed captivity
is known to have an effect on each components of the axis
(Slevin et al., 2020; Florkowski and Yorzinski, 2023), the studies

also focused on different aspects of the immunity (cellular vs.
humoral) and made use of immunocompromised/gene knockout
mice. Furthermore species have different diets and life-history
strategies in terms of fast–slow life-history continuum (Réale et al.,
2010; Bing et al., 2022).

Despite the scarcity of such distinct gut microbiota-immune-
brain studies in other vertebrate species with lower degrees of
experimental manipulation, studies on captive organisms have
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demonstrated a connection between the brain and the gut
microbiota. For instance, higher gut microbiota alpha diversity
in zebra finches (Taeniopygia guttata) has been correlated
with elevated exploratory behavior, and in house sparrows
(Passer domesticus), beta diversity was associated with enhanced
cognitive performance (Slevin et al., 2020; Florkowski and
Yorzinski, 2023). It has been recognized that the gut microbiome
modulates stress responses, particularly through the hypothalamic-
pituitary-adrenal (HPA) axis (Foster and Neufeld, 2013); in
general, higher stress levels tend to be associated with reduced
microbiota diversity, specifically a reduction in the amount of
rare and pathogenic taxa (Petrullo et al., 2022). While the
notion of diverse microbiota being crucial for robust immunity
is widely accepted (Hooper et al., 2012; Lozupone et al.,
2012), extending these conclusions beyond a small number of
experimental study systems is not straightforward, as several
studies have found no association between microbiota diversity
and immune indices. Instead, they observed that compositional
differences or changes in specific taxa were more closely linked
with variations in immune markers (Kreisinger et al., 2018;
van Veelen et al., 2020; Fleischer et al., 2024). Our focus
on microbial diversity, without considering composition (beta
diversity), limits the depth of our analysis (Shade, 2017; Reese
and Dunn, 2018). However, incorporating the complexities of
multivariate metrics into structural equation modeling remains
challenging. Nevertheless, we hope that ongoing advancements in
methodologies for analyzing compositional data (Sweeny et al.,
2023; Fountain-Jones et al., 2024) will facilitate this approach
in future studies. It is also important to consider timing in
the context of stress responses, as short-term and prolonged
stress can induce contrasting physiological reactions (Martin,
2009). Evaluating different measures of HPA axis activity would
offer a more comprehensive understanding of stress response
dynamics (Stothart et al., 2019). Short-term acute stress triggers
an organism’s immune response (Martin, 2009) and enhances
intestinal mucus secretion (Castagliuolo et al., 1996). Conversely,
prolonged stress typically suppresses immunity and reduces mucus
production, impacting the microbiota differently (Estienne et al.,
2010; Shigeshiro et al., 2012).

Several studies of wild populations have delved into some
components of the gut microbiota-immune-brain axis (Noguera
et al., 2018; Petrullo et al., 2022; Berman et al., 2023), yet few
have comprehensively addressed the entire system. An exception
is a recent study on eastern newts (Notophthalmus viridescens),
which explored the effects of experimentally elevated CORT levels
on various immune indices and skin microbiome but did not find
any clear evidence for a relationship among the three components
(Pereira et al., 2023).

The examples provided demonstrate the challenges
encountered in establishing associations among the components
of the gut microbiome-immune-brain axis, either due to the
complexities of wild settings or the specific time window
investigated, or indeed, because there are no discernible
associations in the corresponding systems. These challenges
increase in less controlled study systems (further aggravated by
the fact that studies of completely wild populations are almost
non-existent), particularly when dealing with systems where

certain components of the axis lack experimental challenge,
alteration, or complete knockout. Given this, and considering
the absence of an evident connection with the microbiome
axis, we propose the following possible, not mutually exclusive
mechanisms to be at play: 1. The gut microbiota may not exert
a significant influence in the initial stages of life, especially when
compared to the impacts of stress and the immune system.
This is supported by the robust link between f-CORT and
Immunity, which we find despite the correlative nature of our
study system (Figures 2–4A). Consequently, we suggest that
stress and immune regulation may hold greater importance
for maintaining homeostasis during early development. 2. The
complexity of wild environments introduces many background
effects, potentially including diverse diets, exposure to various
pathogens, and the unpredictable nature of ecological interactions.
These factors might overshadow the subtle and context-dependent
relationships observed in more controlled settings. In reality, the
connections found in these controlled environments may not be
as crucial or representative of the complete picture encountered
in the more realistic complexities of a wild setting. 3. Direct
comparisons between species and generalizations across species
might be challenging due to ecological differences between
the systems.

4.2 Stress, Immunity and body condition

The relationship between stress, immunity, and body condition
is a strong feedback mechanism in animal physiology (Vagasi
et al., 2018). Baseline levels of corticosterone play important
roles in metabolism, development, reproduction, behavior, and
immunity (Sapolsky et al., 2000). While beneficial in the short
term for resolving inflammation and preventing an overshoot of
the immune responses (Dhabhar, 2018), prolonged stress-induced
elevation of corticosterone compromises the immune system over
time (Dhabhar and Mcewen, 1997). A study of house sparrows
revealed that prolonged activation of the stress response inhibits
components of the innate immune system, such as complement-
mediated lysis, bacteria-killing ability, and agglutination. Indeed,
numerous studies have demonstrated the detrimental effects of
high stress levels, for prolonged periods of time, on overall body
condition, survival, and reproductive success (Angelier et al., 2010;
Mikkelsen et al., 2023; Quirici et al., 2021).

We used feather CORT as an indicator of long-term stress.
In birds, circulating CORT accumulates in developing feathers,
serving as a cumulative gauge of hormone concentrations
during feather growth (Jenni-Eiermann et al., 2015; Romero and
Fairhurst, 2016). Our results show a negative association between
Immunity and f-CORT, supporting the established concept that
immunosuppression is expected in the face of allostatic overload
(chronic stress) (Romero et al., 2009). Additionally, prolonged
stress can incur costs for developing individuals, may divert
resources away from essential physiological processes, and impair
an individual’s ability to fend off infections and maintain overall
wellbeing, as evidenced here by a decline in body condition
(Figures 2–4A, B).
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4.3 Bacterial microbiota diversity and body
condition

Our results show that nestlings with higher Shannon
diversity have better body condition (Figures 2, 4C). This positive
association can be attributed to the enhanced resistance of more
diverse gut communities against pathogenic invasion, increased
stability and resilience to disturbance (Buffie and Pamer, 2013).
Additionally, a more diverse microbiota can potentially offer a
broader range of functions performed by various bacterial taxa,
leading to benefits for the host (Heiman and Greenway, 2016).
Conversely, lower microbiota diversity is typically viewed as being
detrimental to hosts (Le Chatelier et al., 2013), as it implies a
loss of essential functions that could result in reduced nutrient
assimilation or immunodeficiency (Round and Mazmanian, 2009;
Hanning and Diaz-Sanchez, 2015). However, it has also been
shown that high diversity might be associated with a state of
dysbiosis, so a reduction in diversity could signal a return to
homeostasis (Johnson and Burnet, 2016; Kohl et al., 2018; Coyte
and Rakoff-Nahoum, 2019). Our results align with the Anna
Karenina principle, which states that changes in microbiota due
to disturbances lead to shifts from stable to unstable community
states (Zaneveld et al., 2017). We propose that the increase in
Shannon diversity in buzzard nestlings indicates an increase in
stable and abundant taxa, which may offer greater benefits to the
host (Hanning and Diaz-Sanchez, 2015). Metrics like Faith’s PD
and the number of ASVs treat all taxa equally (Faith and Baker,
2006), potentially explaining why they do not show associations
with body condition (Figure 3; Supplementary Figure S1).

The absence of clear links between eukaryotic microbiota
diversity and body condition may indicate a slower rate of change
in the eukaryotic microbiota. Bacterial and eukaryotic taxa are
likely to have distinct roles within the gut ecosystem (Oever and
Netea, 2014; Vemuri et al., 2020). Fast-changing bacterial taxa may
experience stronger competition, leading to positive selection on
the core functionally-relevant taxa (Abt and Pamer, 2014; Coyte
and Rakoff-Nahoum, 2019), whereas changes in the more complex
and less abundant eukaryotic taxa (Chin et al., 2020) may occur at
a slower pace and therefore not be observed during early stages of
host development.

4.4 Age e�ects on stress, Immunity and
eukaryotic microbiota diversity

The positive relationship between age and Immunity, and the
negative association of age and stress levels (f-CORT; Figures 2,
3), most likely reflect nestling development and the maturation
of the immune system. Initially, nestlings rely on innate and
maternal transferred immunity (Klasing and Leshchinsky, 1999;
Palacios et al., 2009). As they mature, exposure to pathogens and
foreign microbes through the environment and diet, contact with
nest material and siblings, challenges and stimulates the immune
system, thus aiding its maturation (Lochmiller and Deerenberg,
2000; Morais et al., 2020; Oldereid et al., 2023). During the
ontogenetic development of birds, exposure to corticosterone
occurs in both the prenatal (embryonic) and postnatal (nestling and

fledgling) periods (Henriksen et al., 2011; Strange et al., 2016). In
the prenatal stage, corticosterone is transferred from the mother
to the embryo through the egg yolk, and is influenced by the
maternal environment, e.g., exposure to predators, competitors and
other stress-inducing cues during egg production, and differences
in environmental quality (Hayward and Wingfield, 2004; Saino
et al., 2005; Love et al., 2008). In the postnatal stage, an initial
surge in corticosterone levels may serve as an adaptive response to
stressors associated with hatching, exposure to a new environment,
and nutritional demands, being beneficial in the short term (Chin
et al., 2009; Spencer et al., 2009; Strange et al., 2016). As nestlings
mature, the HPA axis undergoes maturation, leading to improved
stress response regulation. Initially, nestlings invest significant
energy in growth and development. As they progress through
early life stages, maturation enables more efficient allocation and
prioritization of resources (Smulders, 2021; Spencer et al., 2009).
As mentioned earlier, the maturation of both physiological systems
is not independent; instead, a bidirectional interaction regulates
both the immune system and the HPA axis (Francella et al.,
2022).

We find a decline in eukaryotic microbiota phylogenetic
diversity and the number of ASVs with age. Dominant taxa
show higher resilience to disturbance, securing their positions via
selective filtering and the occupation of core niches (Costello et al.,
2012; Abt and Pamer, 2014; Coyte and Rakoff-Nahoum, 2019).
Rare taxa are primarily acquired through stochastic processes but
still significantly contribute to certain community alpha diversity
measures (like Faith PD and n◦ of observed ASVs). Over time, these
rare taxa are progressively replaced by the more dominant taxa
(Shade et al., 2014). It’s important to emphasize that microbiota
colonization can be either deterministic or stochastic. Studies
in gnotobiotic animals highlight this variability, demonstrating
that some bacterial strains colonize in a deterministic manner,
while others do so stochastically (Vega and Gore, 2017; Jones
et al., 2022; Hayashi et al., 2024). Understanding how these
processes contribute to community assembly during development
in wild populations remains challenging. The dominant taxa also
show closer phylogenetic relationships to one another, suggesting
potential specialization or competitive advantages driving their
prevalence (Janiak et al., 2021; West et al., 2022; Davies et al.,
2022). This hints at an initial diverse gut microbiota in newborns
due to rapid post-hatching colonization (Trevelline et al., 2018;
Pereira et al., 2024). Additionally the decline in microbiota
diversity could be linked to decreased parental care (Hubert et al.,
1995), resulting in less microbial transmission from parents to
nestlings, and to dietary changes as nestlings shift from being
fed individual prey pieces by their parents to consuming whole
prey items left in the nest (Hoffmann et al., 2013; David et al.,
2014).

5 Conclusion

We investigated the interactions of the gut microbiota-
immune-brain axis in raptor nestlings. As far as we are aware,
this represents one of few studies exploring this axis in a
wild vertebrate population and incorporating different time
points during the nestling phase in a longitudinal study design.
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While there was no conclusive evidence for the microbiota-
immune-brain axis in our study system, we did find evidence
for the hypothesized relationships among stress, Immunity,
and body condition. Elevated f-CORT levels were linked
to immunosuppression and adverse effects on overall body
condition, suggesting that immune and stress regulation play
a dominant role in early nestling development. Shannon
bacterial microbiota diversity was positively correlated with
nestling body condition, suggesting a potential benefit of
a diverse and stable gut microbiota. Age plays a crucial
role in influencing immune development, stress responses,
and eukaryotic microbial diversity. The decline in eukaryotic
microbial diversity with age implies an early uncontrolled gut
colonization, followed by selective removal of non-relevant taxa.
Our study thereby contributes to a growing body of knowledge
on the dynamics of the gut microbiota-immune-brain axis in
wild populations.
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