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Phosphorylation is a major post-translation modification (PTM) of proteins 
which is finely tuned by the activity of several hundred kinases and phosphatases. 
It controls most if not all cellular pathways including anti-viral responses. 
Accordingly, viruses often induce important changes in the phosphorylation 
of host factors that can either promote or counteract viral replication. Among 
more than 500 kinases constituting the human kinome only few have been 
described as important for the hepatitis B virus (HBV) infectious cycle, and most 
of them intervene during early or late infectious steps by phosphorylating the 
viral Core (HBc) protein. In addition, little is known on the consequences of HBV 
infection on the activity of cellular kinases. The objective of this study was to 
investigate the global impact of HBV infection on the cellular phosphorylation 
landscape early after infection. For this, primary human hepatocytes (PHHs) were 
challenged or not with HBV, and a mass spectrometry (MS)-based quantitative 
phosphoproteomic analysis was conducted 2- and 7-days post-infection. The 
results indicated that while, as expected, HBV infection only minimally modified 
the cell proteome, significant changes were observed in the phosphorylation 
state of several host proteins at both time points. Gene enrichment and 
ontology analyses of up- and down-phosphorylated proteins revealed common 
and distinct signatures induced by infection. In particular, HBV infection resulted 
in up-phosphorylation of proteins involved in DNA damage signaling and 
repair, RNA metabolism, in particular splicing, and cytoplasmic cell-signaling. 
Down-phosphorylated proteins were mostly involved in cell signaling and 
communication. Validation studies carried out on selected up-phosphorylated 
proteins, revealed that HBV infection induced a DNA damage response 
characterized by the appearance of 53BP1 foci, the inactivation of which by 
siRNA increased cccDNA levels. In addition, among up-phosphorylated RNA 
binding proteins (RBPs), SRRM2, a major scaffold of nuclear speckles behaved as 
an antiviral factor. In accordance with these findings, kinase prediction analysis 
indicated that HBV infection upregulates the activity of major kinases involved in 
DNA repair. These results strongly suggest that HBV infection triggers an intrinsic 
anti-viral response involving DNA repair factors and RBPs that contribute to 
reduce HBV replication in cell culture models.
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1 Introduction

Despite the availability of an efficient preventive vaccine, nearly 
300 million people worldwide are chronically infected with the 
Hepatitis B virus (HBV), making it a major contributor to liver 
diseases, especially cirrhosis and hepatocellular carcinoma (HCC).1 
Current antiviral treatments, primarily nucleotide analogs, can reduce 
viremia and the incidence of HCC (Wu et al., 2012). However, these 
treatments cannot completely eliminate the infection due to the 
persistence of a transcriptionally active viral genome in the nucleus of 
hepatocytes (Fanning et al., 2019).

The infection of human hepatocytes by HBV occurs through 
the recognition of its primary and secondary receptors on the cell 
surface, followed by the endocytosis of viral particles (Tsukuda and 
Watashi, 2020). After release into the cytosol, the capsid is directed 
toward the nucleus, where it binds to nuclear pores via its 
interaction with importins, before translocating through the 
nuclear channel and disassembling in the inner nuclear basket 
(Blondot et al., 2016; Diogo Dias et al., 2021). These early events 
result in the release of Core (HBc) protein, the unique structural 
component of the capsid, and of the partially double-stranded (ds) 
circular genome known as relaxed circular DNA (rcDNA) to which 
the viral polymerase is covalently attached. The rcDNA is then 
repaired and loaded with cellular histones and other transcriptional 
regulators to form an extra-chromosomal covalently-closed 
circular DNA (cccDNA) which constitutes the template for 
production of viral RNAs (Diogo Dias et al., 2021; Wei and Ploss, 
2021). During these early phases, two viral proteins also associate 
with cccDNA: HBc, derived from incoming capsids (240 
monomers per capsid) or de novo translation (Lucifora et al., 2021; 
Locatelli et al., 2022), and HBx, the major HBV regulatory protein 
(Diogo Dias et  al., 2021; Wang et  al., 2023). Notably, HBx 
production by the infected cell is necessary for continuous viral 
transcription due to its capacity to induce the degradation of the 
smc5/6 complex (Lucifora et  al., 2011; Decorsiere et  al., 2016; 

1 https://www.who.int/news-room/fact-sheets/detail/hepatitis-b

Murphy et al., 2016; Niu et al., 2017; Abdul et al., 2022). The late 
phase of the HBV cycle occurs in the cytoplasm and involves the 
assembly of newly formed capsids in which the viral pregenomic 
RNA (pgRNA) is packaged along with the viral polymerase 
required for its reverse-transcription into rcDNA. Subsequently, 
these capsids are enveloped within multi-vesicular bodies and 
released into the extracellular space as infectious particles 
(Prange, 2022).

Most viral infections are characterized by the induction of strong 
intrinsic and innate anti-viral responses, against which viruses have 
developed sophisticated strategies to counteract them. In particular, 
viral infections can trigger a cellular DNA damage response (DDR), 
due to the recognition of viral genomes, which can prevent their 
replication (Weitzman and Fradet-Turcotte, 2018; Lopez et al., 2022). 
Cellular RBPs, participating in all steps of RNA metabolism, may also 
be engaged in a conflictual relationship with viral replication (Garcia-
Moreno et al., 2018; Girardi et al., 2021; Lisy et al., 2021). In addition, 
cells can mount an innate response, intimately linked to the intrinsic 
one, resulting in the production of interferons or inflammatory 
cytokines which further amplify the anti-viral effect of both infected 
and neighboring cells (Guillemin et al., 2021; Justice and Cristea, 2022; 
Lopez et al., 2022).

In contrast to most viruses, infection of primary hepatocytes with 
HBV was reported to neither induce innate responses nor alter the 
transcription level of cellular genes and was, therefore, qualified as 
“stealth” (Mutz et al., 2018; Suslov et al., 2018). Nevertheless, whether 
HBV infection can tune cellular proteins by acting at a post-
translational level, is presently unknown. In particular little is known 
about the effect of HBV infection on the activity of cellular kinases or 
phosphatases, and the downstream consequences on the 
phosphorylation of host proteins. So far, a unique study performed on 
infected hepatoma cells indicated that HBV can alter the host cell 
phospho-proteome and, in particular, target proteins involved in RNA 
processing, further suggesting that HBV infection could activate 
kinases involved in RBPs phosphorylation (Lim et al., 2022). Even 
though interesting, these results may be biased by the cellular model 
used for these analyses, HepG2 cells, which, as most cancerous cell 
lines, have dysregulated pathways, in particular those involved in viral 
sensing (Yang et al., 2014; Arzumanian et al., 2021).

The objective of this study was to investigate the global impact of 
HBV infection on the cellular phosphorylation landscape of PHHs. 
Our analyses indicate that HBV infection triggers important changes 
on the host cell phospho-proteome, in particular up-phosphorylation 
of several RBPs and some major factors implicated in DNA damage 
signaling and repair. Among these factors, we  identified the RBP 
SRRM2, and the DNA damage sensor, 53BP1 as having antiviral 
activities that modulate the level of viral RNAs and cccDNA, 
respectively. Altogether, these analyses indicate that HBV infection is 
sensed by the host cell and triggers an anti-viral response, mediated 
by changes in the level of phosphorylation of specific proteins, that 
restrains viral replication.

Abbreviations: caRNAs, Chromatin-associated RNAs; cccDNA, Covalently-closed 

circular DNA; DDR, DNA damage response; dHepaRG, Differentiated HepaRG; 

dpi, Days post-infection; DSBs, DNA double-stranded breaks; HBV, Hepatitis B 

Virus; HIV-1, Human immunodeficiency virus 1; IF, Immunofluorescence; IU/ml, 

International Units/ml; KD, Knock-down; MOI, Multiplicity of infection; MS, Mass 

spectrometry; NHEJ, Non-homologous end-joining; PEIU/ml, Paul Erlich Institute 

Units/ml; pgRNA, Pregenomic RNA; PHHs, Primary human hepatocytes; PPIs, 

Protein–protein interactions; RBPs, RNA-binding proteins; rcDNA, Relaxed circular 

DNA; S/MAR, Scaffold/matrix attachment region; SARS-Cov2, Severe acute 

respiratory syndrome coronavirus 2; Vge/ml, Viral genome equivalents/ml; Wt, 

Wild type.
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2 Materials and methods

2.1 Cell culture and infection

HepaRG cells were cultured, differentiated, and infected by HBV 
as previously described (Gripon et  al., 2002). PHHs were freshly 
prepared from human liver resections obtained from the Centre Léon 
Bérard and Hôpital Lyon Sud (Lyon) with French ministerial 
authorizations (AC 2013-1871, DC 2013-1870, AFNOR NF 96900 
September 2011) as previously described (Lecluyse and Alexandre, 
2010). HBV genotype D inoculum (subtype ayw) was prepared from 
HepAD38 (Ladner et  al., 1997) cell supernatant by polyethylene-
glycol-MW-8000 (PEG8000, SIGMA) precipitation (8% final) as 
previously described (Luangsay et al., 2015). The titer of endotoxin 
free viral stocks was determined by qPCR. Cells were infected 
overnight in a media supplemented with 4% final of PEG, as previously 
described (Gripon et al., 2002). Measure of secreted HBs and Hbe 
antigens was performed by CLIA (Chemo-Luminescent Immune 
Assay) following manufacturer’s instructions (AutoBio, China) and 
expressed as international units/ml (IU/ml) and Paul Erlich 
international units/ml (PEIU/ml), respectively.

2.2 Cell extracts and mass 
spectrometry-based quantitative 
proteomic analyses

PHHs purified from liver resections were plated in 15-cm dishes 
(3 plates per time point) and 24 to 48 h later infected with HBV 
(multiplicity of infection (MOI) of 500 viral genome equivalents (vge)/
cell) or mock-infected overnight. The following day, cells were washed 
with media then incubated until 2- or 7-days post-infection (dpi). Two 
independent experiments were performed: one with PHHs from one 
donor (PHH#1, 3 biological replicates per condition were prepared), 
and the other with PHHs from four donors (PHH#4). To prepare 
protein extracts, the cells were washed once with cold 1XPBS and then 
directly lysed on the plate using a buffer containing 8 M Urea in 
50 mM Tris–HCl pH 8.0/75 mM NaCl/1 mM EDTA supplemented 
with protease and phosphatase inhibitors (SIGMA). Cell lysates wee 
sonicated and frozen at −80°C.

Extracted proteins were reduced using 20 mM of dithiothreitol for 
1 h at 37°C before alkylation with 55 mM of iodoacetamide for 1 h at 
37°C in the dark. Samples were then diluted to ½ using ammonium 
bicarbonate and digested with LysC (Promega) at a ratio of 1:200 for 
4 h at 37°C. Then they were diluted again to ¼ and digested overnight 
at 37°C with sequencing grade-modified trypsin (Promega) at a ratio 
of 1:50. Resulting peptides were purified by C18 reverse phase 
chromatography (Sep-Pak C18, Waters) before drying down. Peptides 
were then labeled using an isobaric labeling-based approach, relying 
on tandem mass tags (TMT; Thompson et al., 2003) using the 16plex 
TMTpro isobaric Label Reagent kit (ThermoFisher Scientific) before 
mixing equivalent amounts and desalting using C18 reverse phase 
chromatography (Sep-Pak C18, Waters). An aliquot of labeled 
peptides was kept for total proteome analyses. Phosphopeptide 
enrichment was performed using titanium dioxide beads 
(TitanSphere, GL Sciences, Inc.) as previously described (Sonntag 
et  al., 2017) before purification using C18 reverse phase 
chromatography (Marco SpinColumns, Harvard Apparatus). 

Isobaric-labeled peptides from total proteome and phosphoproteomes 
were then fractionated into eight fractions using the Pierce High pH 
Reversed-Phase Peptide Fractionation Kit (ThermoFisher Scientific) 
following the manufacturer’s instructions, except for the total 
proteome analysis of samples prepared from PHH#1 for which no 
fractionation was performed. The peptides were analyzed by online 
nanoliquid chromatography coupled to MS/MS (Ultimate 3000 
RSLCnano and Q-Exactive HF, Thermo Fisher Scientific) using a 
180 min gradient for fractions and a 480 min gradient if no 
fractionation was performed. For this purpose, the peptides were 
sampled on a precolumn (300 μm × 5 mm PepMap C18, Thermo 
Scientific) and separated in a 200 cm μPAC column (PharmaFluidics). 
The MS and MS/MS data were acquired by Xcalibur (version 2.9, 
Thermo Fisher Scientific). The mass spectrometry proteomics data 
have been deposited to the ProteomeXchange Consortium via the 
PRIDE (Perez-Riverol et al., 2022) partner repository with the dataset 
identifier PXD051216.

Peptides and proteins were identified and quantified using 
MaxQuant (version 1.6.0.17; Tyanova et  al., 2016) searching in 
Uniprot databases (Homo sapiens and Hepatitis B virus taxonomies, 
20,210,628 download) and in the database of frequently observed 
contaminants embedded in MaxQuant. Trypsin/P was chosen as the 
enzyme and two missed cleavages were allowed. Peptide modifications 
allowed during the search were: Carbamidomethyl (C, fixed), Acetyl 
(Protein N-term, variable), Oxidation (M, variable), and Phospho 
(STY, variable). Minimum peptide length and minimum number of 
razor + unique peptides were, respectively, set to seven amino acids 
and one. Maximum false discovery rates—calculated by employing a 
reverse database strategy—were set to 0.01 at peptide-spectrum 
match, protein and site levels.

Statistical analysis of quantitative data was performed using 
Prostar (Wieczorek et al., 2017). Peptides and proteins identified in 
the reverse and contaminant databases, and proteins only identified 
by site were discarded. Only class I  phosphosites (localization 
probability ≥ 0.75) and proteins quantified in all replicates of at least 
one condition were further processed. After log2 transformation, 
extracted corrected reporter abundance values were normalized by the 
Variance Stabilizing Normalization (vsn) method, before missing 
value imputation (DetQuantile algorithm). Statistical testing was 
conducted with limma for results obtained with PHH#1 and 
two-tailed limma with paired design for results obtained with PHH#4, 
whereby differentially expressed proteins were selected using 
log2(Fold Change) and p-value cut-offs allowing to reach a false 
discovery rate inferior to 5% according to the Benjamini-Hochberg 
estimator. Proteins and phosphosites found differentially abundant 
but with imputed values in the condition in which they were found to 
be more abundant were manually invalidated (p-value = 1).

2.3 Bioinformatic analyses

Gene ontology were performed using Metascape (Zhou et al., 
2019) and the Reactome Gene Sets,2 with a minimum overlap of 3, 
a minimum enrichment of 1.5, a p-value of 0.01, and all genes as a 

2 http://reactome.org/
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background. Statistically enriched terms were identified, 
accumulative hypergeometric p-values and enrichment factors 
were calculated and used for filtering. Remaining significant terms 
were then hierarchically clustered into a tree based on Kappa-
statistical similarities among their gene memberships. Then 0.3 
kappa score was applied as the threshold to cast the tree into term 
clusters. Physical protein–protein interactions (PPIs) were 
similarly analyzed by Mescape with a minimum network size of 3. 
Protein networkformed by selected factors were also analyzed by 
Cytoscape (v3.10.1) with automatic network weighting. Prediction 
of kinases involved in the phosphorylation of differentially 
abundant phosphosites was performed using KinasePhos 3.0 (Ma 
et al., 2023).

2.4 siRNA transfection

dHepaRG cells or PHHs seeded into a 24-well plate were 
transfected with 25 nM of siRNA using Lipofectamine RNAiMax (Life 
Technologies), following manufacturer’s instructions. SiRNA used 
were the following: siHNRNPU (Dharmacon SmartPool L-03501-00), 
siSRRM2 (Dharmacon SmartPool L-015368-00), si53BP1 
(Dharmacon SmartPool L-003548-00), siRIF1 (Dharamcon SmartPool 
L-027983-01) and siControl (Dharmacon D-001810-10).

2.5 Nucleic acid extractions and analysis

HBV RNAs and DNA were extracted from cells with the 
Nucleospin RNA (Macherey-Nagel) and MasterPureTM Complexe 
Purification Kit (BioSearch Technologies) without digestion with 
proteinase K (Allweiss et  al., 2023), respectively, according to the 
manufacturer’s instruction. RNA reverse transcription was performed 
using Maxima First Strand cDNA Synthesis kit (Thermofisher). 
Quantitative PCR for HBV was performed using HBV specific primers 
and normalized to PRNP housekeeping gene as previously described 
(Lucifora et al., 2014). Pre-genomic RNA was quantified using the 
TaqMan Fast Advanced Master Mix (Life Technologies) and 
normalized to GusB cDNA levels. HBV cccDNA was quantified from 
total DNA by TaqMan qPCR analyses and normalized to β-globin 
DNA level, as previously described (Werle-Lapostolle et al., 2004) or 
by droplet digital PCR using the “ddPCR Supermix for Probes (No 
dUTP)” (Bio-Rad) according to the manufacturer’s instruction. 
Droplets were generated using and the” QX200™ Droplet Generator” 
(Bio-Rad) and analyzed after PCR with the “QX600 Droplet Reader” 
(Bio-Rad).

2.6 Western blot analyses

Proteins were resolved by SDS-PAGE and then transferred onto a 
nitrocellulose membrane. Membranes were incubated with the 
primary antibodies corresponding to the indicated proteins. Proteins 
were revealed by chemi-luminescence (Super Signal West Dura 
Substrate, Pierce) using a secondary peroxydase-conjugated antibody 
(Dako) at a dilution of 1:10,000. Primary antibodies used were anti-
53BP1 (Abcam 175933, 1:1,000), anti-HNRNPU (Santa-Cruz 
sc-32315, 1:2,000), and anti-β-tubulin (Abcam 6046, 1:10,000).

2.7 Immunofluorescence analyses

Analyses were performed as described previously using Alexa 
Fluor 555 secondary antibodies (Molecular Probes; Salvetti et  al., 
2016). Primary antibodies used were: anti-53BP1 (Abcam 175933, 
1:250); anti-PML (Santa-Cruz sc-966, 1:250); anti-HBc (Thermo 
MA1-7607, 1/500). Nuclei were stained with Hoescht 33258. Images 
were collected on a confocal NLO-LSM 880 microscope (Zeiss). 
Further image processing was performed using ICY (de Chaumont 
et al., 2012).

2.8 Statistical analysis

Statistical analyses were performed using the GraphPad Prism 9 
software and a two-tailed Mann–Whitney non-parametric test. A 
p-value ≤ 0.05 was considered as significant. * corresponds to p-value 
≤ 0.05; ** corresponds to p-value ≤ 0.01; *** corresponds to p-value 
≤ 0.001.

3 Results

3.1 Early impact of HBV infection on the 
host cell proteome and phosphoproteome

In order to examine the effect of HBV infection on the host cell 
phosphoproteome, we  deployed a large-scale phosphoproteomic 
strategy. For this, HBV-infected PHHs, derived from a single donor, were 
lysed at 2- and 7-dpi (Figures 1A,B show experimental outline and levels 
of infection) before MS-based quantitative analysis of total proteome and 
phosphoproteome after phosphopeptide enrichment. The analysis of the 
total proteome indicated that the proteome remains largely unaffected 
by HBV infection, with less than 30 proteins found over- or under-
expressed following infection at each time point, among the 3,467 
proteins identified and quantified (Figure 1C; Supplementary Table 1). 
Interestingly, among proteins whose amount was increased at 2- and/or 
7-dpi, figured, notably, fibronectin which was previously reported to 
be upregulated following HBV infection (Norton et al., 2004; Ren et al., 
2016). In addition, two HBV under-expressed proteins at 7-dpi, LSM7 
and TRIM21, were previously found to negatively interfere with HBV 
replication (Song et  al., 2021; Rahman et  al., 2022). The deep 
phosphoproteomic profiling of these samples allowed to identify and 
quantify 8,308 phosphopeptides containing class I  phosphosites 
(localization probability >75%) from 3,012 different proteins 
(Supplementary Table 2). Among them, 161 and 316 were differentially 
abundant in PHHs infected by HBV compared to mock-infected PHHs, 
at 2- and 7-dpi, respectively (Figure 1D; Supplementary Table 2). A part 
of these modulated phosphosites, 17 upregulated and 54 downregulated 
in HBV-infected PHHs compared to mock-infected cells, were found 
differentially abundant at both time points. The comparison of total 
proteome and phosphoproteome results showed that only one protein, 
fibrinogen alpha chain (FIBA) but also its phosphorylated sites, were 
more abundant in HBV-infected cells compared to control cells at 7-dpi; 
it was therefore excluded from further analyses since the measured 
upregulation of its phosphosites could be linked to the over-expression 
of the protein. Overall, these results indicated that, in contrast to the 
minimal changes affecting the level of host proteins, HBV infection 
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triggered more significant changes in the phosphoproteome, as early as 
2-dpi, likely linked to the interplay between the virus and the host cell 
following attachment, internalization, and onset of viral replication.

3.2 Analysis of host pathways modulated 
by HBV-induced up- or 
down-phosphorylation events

In order to identify biological pathways and processes targeted by 
these phosphorylation events, gene ontology enrichment analyses 
were first performed on up-phosphorylated proteins (Figure 2A). This 
analysis indicated that HBV infection was characterized by 

up-phosphorylation of proteins involved in DNA repair pathways, 
notably non-homologous end-joining (NHEJ) and MAP kinase 
signaling, as early as 2-dpi. DNA repair factors were also targeted at 
7-dpi, a time when other significant pathways appeared, notably those 
related to RNA splicing and cytoplasmic signaling by Rho GTPases. 
Analysis of physical protein–protein interactions (PPIs) based on 
human interactome datasets indicated that up-phosphorylated factors 
at both time points formed a network of proteins which contained 
densely-connected complexes related to double-stranded DNA breaks 
(DSBs), in particular NHEJ, and to MAPK-signaling (Figure 2B). A 
higher number of pathways were enriched when down-
phosphorylated proteins were similarly analyzed, highlighting 
biological processes related to cytoplasmic signal transduction, in 

FIGURE 1

(A) Outline of the experimental procedure. PHHs purified from liver resections were infected with HBV (MOI  =  500 vge/cell) overnight. Cells were kept 
in culture for 2 and 7  days, before direct on plate lysis and processing for MS and phospho-MS analyses. The experiment was performed in triplicate 
using PHHs from a unique donor. Mock: mock-infected cells. (B) Quantification of HBe and HBs antigens levels in the supernatant of cells at 7-dpi. 
(C) MS-based quantitative comparison of total proteomes of PHHs infected or not with HBV. (D) MS-based quantitative comparison of 
phosphoproteomes of PHHs infected or not with HBV. Volcano plots display the differential abundance of proteins or phosphosites in cells infected or 
mock-infected with HBV for 2 (upper) and 7 (lower) days and analyzed by MS-based label-free quantitative proteomics. The volcano plots represent 
the −log10 (limma p-value) on y axis plotted against the log2(Fold Change HBV-infected vs. mock infected) on x axis for each quantified phosphosite. 
Red and green dots represent, respectively, up- and down-phosphorylated proteins (left panels) and phosphosites (right panels) found significantly 
enriched in HBV-infected vs. mock-infected samples at 2- and 7dpi [log2(Fold Change)  ≥  0.25 or  ≤  −0.25 and p-value ≤ 0.01, leading to a Benjamini-
Hochberg FDR  <  5%].
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particular Rho-GTPases, which formed an important network of 
interconnected host factors (Figures 3A,B). Interestingly, EGFR, a host 
cofactor during HBV internalization (Iwamoto et al., 2019; Fukano 
et al., 2021), was found to be down-phosphorylated on serine 1,166 
and formed a major connected node at both time points (Figure 3B). 
Comparison of our data with those previously reported by Lim et al. 
(2022), indicated that few up- and down-phosphorylated proteins 
were shared between the two studies (Supplementary Table 3). Many 
differences in the experimental set up may explain this low level of 
overlap, notably the use of primary (PHHs) vs. transformed human 
hepatocytes (HepG2). Comparative analyses performed with factors 
previously described as interacting with HBc, and HBx also retrieved 
few common proteins (Chabrolles et al., 2020; Van Damme et al., 
2021; Supplementary Table 3). This latter observation suggests that 
most phosphorylation/dephosphorylation events observed in our 
study may not be associated to the capacity of these host factors to 
interact with viral proteins.

Altogether, these in silico analyses suggest that HBV infection 
triggers up- and down-phosphorylation events that target proteins 
involved in common pathways related to cytoplasmic signal 
transduction via Rho-GTPases as well as unique pathways, in 
particular related to DNA repair and RNA metabolism in the case of 
up-phosphorylated factors.

3.3 HNRNPU and SRRM2, two RBPs 
up-phosphorylated upon HBV infection, 
behave as anti-viral factors restricting HBV 
RNA production

To investigate the functional relevance of the results of our 
phospho-proteomic analysis, we  first focused on 
up-phosphorylated RBPs since their activities are tightly regulated 
by phosphorylation, a post-translational modification which is 

FIGURE 2

(A) Gene ontology clusters formed by statistically enriched up-phosphorylated proteins at 2- and 7-dpi. (B) PPI networks formed by merged up-
phosphorylated proteins at 2- and 7-dpi. All protein–protein interactions among input genes were extracted from PPI data sources using Metascape 
and a network MCODE algorithm was applied to identify neighborhoods where proteins are densely connected. Each MCODE network is assigned a 
unique color. Green: R-HSA-5693571|Nonhomologous End-Joining (NHEJ)|-5.1;R-HSA-5693565|Recruitment and ATM-mediated phosphorylation of 
repair and signaling proteins at DNA double strand breaks|-4.9;R-HSA-5693606|DNA Double Strand Break Response|-4.9; Red: R-HSA-8939211|ESR-
mediated signaling|-4.3;R-HSA-5673001|RAF/MAP kinase cascade|-4.0;R-HSA-5684996|MAPK1/MAPK3 signaling|-4.0. Blue: unassigned. Gray: other 
interacting factors of the network.
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frequently tuned by viral infections (Pastor et al., 2021; Velazquez-
Cruz et al., 2021). In our analysis, several inter-connected RBPs 
were up-phosphorylated upon HBV infection. In particular, nine 
proteins (HNRNPH2, HNRNPU, SRRM2, PNN, NCL, BUD13, 
TP53RK, SET, and SENP13) constituted an enriched cluster of 
factors involved in mRNA splicing (Figure  4A). Of these, five 
RBPs, selected using the RBP2GO database (RBP2GO score above 
40; Caudron-Herger et  al., 2021), formed an interconnected 
network (Figure 4B).

Functional validation analyses were performed on two RBPs of 
this interconnected network: HNRNPU and SRRM2. HNRNPU, also 
called SAF-A (for Scaffold Attachment Factor A), is a DNA- and 
RNA-binding protein that was identified as a constituent of the nuclear 
matrix capable of binding to nuclear matrix/scaffold-attachment 
regions (S/MAR; Kiledjian and Dreyfuss, 1992; Romig et al., 1992; 
Jenke et al., 2002, 2004). More recent studies indicate that HNRNPU 
is a chromatin scaffolding protein which, by oligomerizing with 
chromatin-associated RNA (caRNA), controls chromatin architecture 
and cellular gene expression (Nozawa et al., 2017; Fan et al., 2018; Xu 

et al., 2022). SRRM2, a member of the SR-related protein family, is 
involved in pre-mRNA maturation as a catalytic component of the 
spliceosome together with SRRM1 (Blencowe et al., 2000). Recent 
investigations also indicated that SRRM2, is a major component of 
nuclear speckles (Ilik et al., 2020; Xu et al., 2022). Both proteins, in 
particular SRRM2, are phosphorylated on multiple sites.3 In this study, 
these proteins were found to be  up-phosphorylated at a discrete 
number of sites, mainly on serine residues (Supplementary Table 2). 
To investigate the role of HNRNPU and SRRM2 during the HBV life 
cycle, knock-down (KD) experiments were performed on 
HBV-infected PHHs and differentiated HepaRG (dHepaRG) cells, 
using siRNAs (Figure 5). In both cell types, we found that knock-down 
of HNRNPU or SRRM2 resulted in an increase of HBV RNAs, both 
total RNAs and pgRNA, without significantly affecting cccDNA levels, 
and in the absence of any visible cytotoxic effect (Figures 5C,E). These 

3 http://www.phosphosite.org/

FIGURE 3

(A) Gene ontology clusters of formed by statistically enriched down-phosphorylated proteins at 2- and 7-dpi. (B) PPI networks formed by down-
phosphorylated proteins at 2- and 7-dpi. All protein–protein interactions among input genes were extracted from PPI data sources using Metascape 
and a network MCODE algorithm was then applied to this network to identify neighborhoods where proteins are densely connected. Each MCODE 
network is assigned a unique color. MCODE annotation: Red: R-HSA-199991|Membrane Trafficking|-6.2;R-HSA-5653656|Vesicle-mediated transport|-
6.1;R-HSA-6807878|COPI-mediated anterograde transport|-4.1. Blue: R-HSA-1227990|Signaling by ERBB2 in Cancer|-9.3;R-HSA-1227986|Signaling by 
ERBB2|-8.4;R-HSA-177929|Signaling by EGFR|-8.4. green: no annotation. Gray: other interacting factors of the network.
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results indicate that, as previously reported for other cellular RBPs, 
these factors behave as anti-viral factors that exert their functions at a 
transcriptional and/or post-transcriptional level (Sun et al., 2017; Yao 
et al., 2018, 2019; Chabrolles et al., 2020; Yao Y. X. et al., 2023).

3.4 HBV infection triggers an antiviral DNA 
damage response characterized by 53BP1 
foci

DNA repair factors involved in NHEJ constituted another important 
cluster of proteins that were up-phosphorylated upon HBV infection 
(Figure  4A). Among these factors figured, notably, Ku70 (XRCC6), 
DDB2, Rad50, MDC1, and 53BP1 (Figure 4C). These proteins participate 
in a cascade of signaling events, including phosphorylation events, 
triggered by DNA damage, in particular by DSBs, that culminate with the 

recruitment of 53BP1 on chromatin, to form large foci that segregate 
damaged sites from the rest of the genome (Shibata and Jeggo, 2020; Rass 
et al., 2022). Even if 53BP1 foci formation can occur in the absence of 
phosphorylation following endogenous DSB produced during cell 
division, several reports have shown that stalled replication forks or 
exogenous genotoxic attacks induce the accumulation of phosphorylated 
53BP1 at DSBs (Anderson et al., 2001; Ward et al., 2003; Jowsey et al., 
2007; Harding and Bristow, 2012). The resulting 53BP1 foci are essential 
for the assembly of DNA repair complexes and the initiation of the DNA 
damage response pathway (Shibata and Jeggo, 2020).

To investigate whether HBV infection could trigger the formation of 
53BP1 foci, immunofluorescence (IF) analyses were performed on 
HBV-infected PHHs. We found that numerous 53BP1 foci were observed 
in HBV-infected cells, whereas only few foci were visible in mock-infected 
control cells (Figures 6A,B). Many of these foci, which appeared as early 
as 1-dpi, were located at the periphery of the nucleus. Importantly, these 

FIGURE 4

(A) Network of enriched ontology clusters formed by up-phosphorylated proteins upon HBV infection. A subset of representative terms from the full 
cluster was converted into a network layout. Each term is represented by a circle node, where its size is proportional to the number of input genes that 
fall under that term, and its color represent its cluster identity (i.e., nodes of the same color belong to the same cluster). Terms with a similarity 
score  >  0.3 are linked by an edge (the thickness of the edge represents the similarity score). The network is visualized with Cytoscape with “force-
directed” layout and with edge bundled for clarity. (B,C) Protein–protein interaction networks formed by up-phosphorylated, proteins at 2- and 7-dpi 
involved in RNA binding (left), selected using the RBP2GO database (RBP2GO score above 40; Caudron-Herger et al., 2021) and DNA repair (right), 
belonging to the NHEJ cluster. The physical interactions among up-phosphorylated proteins (red circles) were retrieved using by Cytoscape (v3.10.1) 
and the GeneMania application. Gray circles represent missing nodes used to build the interactome network.
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foci were observed using PHHs from different donors but were not 
observed, or only in few cells, when infection was performed in the 
presence of myrcludex, indicating that their formation may reflect a cell 
response to incoming HBV genomes (Figure  7). In addition, their 
presence was visible up to 7-dpi, when HBc staining was visible 
(Figure 7B). Altogether, these IF analyses strongly suggested that 53BP1 
foci reflect a sustained host cell DNA damage response caused by 
incoming HBV genomes. In line with this hypothesis, we observed that 
in infected PHHs, most 53BP1 foci colocalized with PML bodies which 
were previously associated to long-lasting 53BP1 foci (Figures  8A,B; 
Vancurova et al., 2019). In particular, 53BP1 appeared to form a scaffold 
around an inner PML core with some overlap at border (Figures 8C,D), 
strongly suggesting that these foci may constitute a hub of antiviral factors.

To determine whether 53BP1 may regulate the establishment of 
HBV infection, KD of this protein was performed before infecting 
hepatocytes with HBV (Figures 9A,B). Analyses performed 7 days 
later, indicated that depletion of 53BP1 resulted in a modest but 
significant increase in the level of cccDNA, strongly suggesting that 
this factor counteracts cccDNA establishment (Figure  9C). As in 

previous experiments, no cytotoxicity was observed upon 53BP1 
KD. Recent studies have shown that upon binding to damaged DNA, 
53BP1 recruits a shieldin complex which prevents long range 
resections required for DNA repair by homologous recombination 
(Setiaputra and Durocher, 2019). Recruitment of shieldin is mediated 
by RIF1 which recognizes phosphorylated residues on 53BP1 
(Setiaputra et  al., 2022). Interestingly, KD of RIF1 before HBV 
infection similarly increased the level of cccDNA and of viral RNAs, 
as observed for 53BP1 (Supplementary Figure 1).

3.5 Extended phosphoproteomic analysis 
on PHHs derived from several donors and 
prediction of involved kinases

Our initial study of phosphosites modulated by HBV infection 
was performed on PHHs derived from a single donor. Therefore, an 
additional MS-based proteomic and phosphoproteomic analysis was 
performed on PHHs derived from 4 different donors. Strong 

FIGURE 5

Effect of SRRM2 and HNRNPU knock-down on HBV life cycle. (A) Experimental outline. PHHs (B,C) or dHepaRG (D,E) were infected with HBV (moi:500 
vge/cell) and 7 days later transfected with siRNA targeting HNRNPU, SRRM2 or control (CTL) siRNA. RNA and DNA were extracted from cells 7 days 
after transfection to check the knock-down of cellular mRNA targets (B,D) and to quantify viral (C,E) nucleic acids. Results are expressed as the mean 
normalized ratio +/− SD, of at least 3 independent experiments, each performed in triplicate. Results in PHHs were obtained from four experiments 
performed with PHHs from four different donors.
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donor-dependent variations in the efficiency of infection were 
observed among these four PHH batches (Supplementary Figure 2A). 
Not surprisingly, in these stringent conditions, of the 5,731 proteins 
detected, very few were found to be  differentially abundant in 
HBV-infected cells compared to mock-infected ones at 2- and 7-dpi 
(Supplementary Table  4; Supplementary Figure  2B). Concerning 
phosphosites, 9,179 were quantified, among which 54 and 60 were 
found significantly modulated at 2- and 7-dpi, respectively 
(Supplementary Table 5; Supplementary Figure 2C). Several of them 
are from important proteins found to be differentially phosphorylated 
upon HBV infection in the previous analysis using PHHs from one 
donor, notably 53BP1 and SRRM2 (Supplementary Table  6). 
Enrichment analyses using the phosphoproteomic dataset obtained 
using PHHs from four donors indicated that HBV infection was 
characterized by up-phosphorylation of proteins involved in cell 
division and signal transduction (Figure 10A). PPI analysis indicated 
that most up-phosphorylated factors formed a connected network of 

proteins (Figure  10B). All the peptides found significantly 
up-phosphorylated in this latter experiment were analyzed with the 
KinasePhos3.0 software (Ma et al., 2023), to infer the most probable 
kinases activated by HBV infection at both time points. Interestingly, 
among the top most probable kinases involved in these modifications 
at both time points, figured, beyond the casein kinase II (CK2) which 
is implicated in a plethora of pathways (Borgo et al., 2021), ATM, 
ATR, and DNA-PK, the three major kinases activated upon DNA 
damage and which control the phosphorylation of downstream 
effector proteins (Figure 11; Blackford and Jackson, 2017).

Altogether, this second study performed using PHHs from four 
different donors confirmed that HBV infection of PHHs induced the 
up-phosphorylation of a reduced but significant set of DNA repair 
proteins, in particular 53BP1. This finding correlated with the 
emergence of 53BP1 foci reflecting the induction of a DNA damage 
response. In addition, it also confirmed the up-phosphorylation of 
RBPs, such as SRRM2, a major constituent of nuclear speckles.

FIGURE 6

Visualization of 53BP1 foci in HBV-infected PHHs. (A) HBV-infected (HBV) or mock-infected (Mock) PHHs were fixed at indicated time points and 
analyzed by immunofluorescence using an anti-53BP1 antibody (green signal), at 1- and 3-dpi. The nucleus was stained with Hoescht (blue signal). 
Scale bar: 20  μm. (B) Box violin plot showing the number of 53BP1 foci per nucleus in HBV- or mock-infected PHHs, at both time points.
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4 Discussion

The conflicting interactions between a virus and the host cell 
during the early steps of the viral cycle are critical to determine the 
issue of the infectious process. In contrast to many other DNA and 
RNA viruses, infection by HBV was not reported to induce significant 
changes in host gene expression or innate responses, therefore leading 
to the assumption that HBV was able to enter the cell, and deposit its 
genome within the hepatocyte nucleus, without being detected (Mutz 
et al., 2018; Suslov et al., 2018). However, whether HBV infection may 
impact cell’s functions by acting at a post-translational level was still 
poorly documented. In particular, most viral infections can induce 
significant changes in the phosphorylation of host factors, reflecting 
altered kinase/phosphatase activities hijacked or induced upon viral 
entry, as shown for human immunodeficiency virus 1 (HIV-1) or 
severe acute respiratory syndrome coronavirus 2 (SARS-COV2), 
among others (Wojcechowskyj et al., 2013; Bouhaddou et al., 2020).

In this study we investigated whether HBV infection could alter 
the phosphorylation landscape of primary human hepatocytes which 
are growth-arrested and differentiated cells and, therefore, considered 
as the gold standard to study the HBV life cycle in vitro (Lucifora 
et  al., 2020). We  found that HBV infection can trigger both 
up-phosphorylation and down-phosphorylation of several cellular 
factors without significantly altering their expression level. As 
expected, many of these proteins were involved in pathways related to 
cell signaling. In particular, factors involved in signaling by MAPK 
were up-phosphorylated upon HBV infection. Even though signaling 
by these kinases are not essential for HBV infection, induction of this 
pathway may be linked to the requirement of EGFR for HBV entry 
(Iwamoto et al., 2019, 2020). Interestingly, upon infection, EGFR was 

down-phosphorylated on serine 1,166, whose activation by 
phosphorylation was previously reported to have negative impact on 
the EGFR activity (Assiddiq et  al., 2012). In addition to MAPK-
related pathways, factors involved in Rho GTPAses signaling were 
also detected among up- and down-phosphorylated proteins 
following infection, thus constituting an important signature. Rho 
GTPases control the actin cytoskeleton and, therefore, cell mobility, 
shape, and migration (Lawson and Ridley, 2018). Similarly, several 
effector proteins involved in the Rho GTPase signaling pathway and 
related to cytoskeletal organization, were found in the 
phosphoproteomic analysis of SARS-CoV2-infected cells (Bouhaddou 
et al., 2020). A previous study, conducted by transfecting a plasmid 
containing the HBV genome in dividing HepG2 cells, reported that 
viral replication could induce morphological changes, activate Rac1 
and, downstream, trigger the phosphorylation of ERK1 and AKT 
(Tan et al., 2008). Whether similar modifications can occur in more 
physiological infectious model is still unknown. In our analysis, 
neither AKT- nor ERK1-derived up-phosphorylated peptides were 
detected. Nevertheless, the finding that Rho GTPases signaling 
pathway was also highlighted in the more stringent analysis 
performed on PHHs from four different donors, strongly suggests that 
HBV infection may have an impact on the hepatocyte cytoskeleton 
and cell morphology.

Many studies documented the interaction between HBV and a 
plethora of RBPs that play a role at every step of viral RNAs production, 
from transcription to translation. In the present study, several RBPs were 
up-phosphorylated upon HBV infection. The HBc protein itself, which 
has a positively-charged, intrinsically disordered C-terminal domain 
similar to that found in many cellular RBPs, can interact with a network 
of RBPs, some of which possess anti-viral activities (Diab et al., 2018; 

FIGURE 7

Co-labeling of 53BP1 foci in the presence of myrcludex. (A) 53BP1 staining was performed on cells infected with HBV in the presence or not of 
myrcludex (Myr) at 2-dpi. Scale bar: 10  μm. (B) HBV-infected PHHs, in the presence or not of myrcludex, were stained at 7-dpi using an anti-53BP1 
(green signal) and an anti-HBc (red signal) antibody. Scale bar: 10  μm.

https://doi.org/10.3389/fmicb.2024.1415449
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Pastor et al. 10.3389/fmicb.2024.1415449

Frontiers in Microbiology 12 frontiersin.org

Chabrolles et al., 2020; Yao Y. X. et al., 2023; Zhang et al., 2023). Many if 
not all RBPs are tightly regulated by their phosphorylation level which 
controls their intra-cellular and intra-nuclear localization, their capacity 
to form condensates by liquid–liquid phase separation, their interaction 
with other protein partners, as well their affinity for RNA and DNA 
(Hofweber and Dormann, 2019; Velazquez-Cruz et al., 2021; He et al., 
2023). In our study, we focused on two RBPs: HNRNPU and SRRM2. 
HNRNPU, is a DNA- and RNA-binding protein, which was recently 
described as chromatin scaffold factor able to regulate cellular gene 
expression, in particular by interacting with chromatin-associated 
non-coding RNAs (Sakaguchi et al., 2016; Nozawa et al., 2017; Fan et al., 

2018). HNRNPU can also negatively regulate viral gene expression 
(Valente and Goff, 2006; Cao et al., 2019; Liu et al., 2021; Cao et al., 2022; 
Yang et  al., 2022). Both up- and down-phosphorylated residues of 
HNRNPU were found in our study (Supplementary Table  2). In 
particular, serine 271 is described as a major target residue (see text 
footnote 3), whose phosphorylation is overrepresented during mitosis 
(Sharp et  al., 2020). Interestingly, PLK1 which can phosphorylate 
HNRNPU and is activated upon infection (Douglas et al., 2015; Diab 
et al., 2017) was also up-phosphorylated in our first analysis performed 
with PHHs from a single-donor. As for HNRNPU, the absence of 
detectable up-phosphorylated peptides in the second analysis, performed 

FIGURE 8

Co-labeling of 53BP1 and PML in HBV-infected PHHs. (A) HBV-infected PHHs were fixed at 2-dpi and analyzed by immunofluorescence using an anti-
53BP1 (red signal) and anti-PML (green signal) antibodies. The nucleus was stained with Hoescht (blue signal). Scale bar:10  μm. (B) Enlarged merged 
views. (C) 3D view of a hepatocytocyte nucleus showing the red (53BP1) signal surrounding the inner PML core (green signal). (D) Line profile images of 
the same foci showing that the 53BP1 and PML signals partially overlap at the periphery of the inner PML core.
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with PHHs from four different donors, may be the consequence of strong 
variations among infections levels and/or donor-dependent features, in 
particular phosphorylation/dephosphorylation kinetics. The second 
selected RBP was SRRM2. Initially described as a component of the 
spliceosome and a member of the SR family of proteins, SRRM2 was 
recently identified as a main scaffold of nuclear speckles (Ilik et al., 2020). 
In particular, SRRM2 can form liquid condensates in a kinase-controlled 
fashion (Rai et  al., 2018; Xu et  al., 2022). This RBP was also 
up-phosphorylated in HIV-1-infected cells, in which it regulated 

alternative splicing of viral RNAs, as well as following infection of human 
macrophages with influenza A virus (Wojcechowskyj et  al., 2013; 
Soderholm et al., 2016). Our validation studies indicate that the KD of 
either HNRNPU or SRRM2 is associated to a down regulation of HBV 
RNA levels without affecting cccDNA. However, as previously observed 
for SRSF10, an RBP which is part of the HBc interactome (Chabrolles 
et al., 2020), it is likely that the anti-viral effect of these proteins may vary 
according to their phosphorylation state. In particular, phosphorylation 
of speckles’ proteins, such as SC35 and SRRM2 by DYRK1A, DYRK3, and 

FIGURE 9

Effect of 53BP1 knock-down on HBV-infected dHepaRG. (A) Experimental outline. (B) Western blot validation of 53BP1 knock-down. (C) Quantification 
of cccDNA and total HBV RNA levels. Results are expressed as the mean normalized ratio +/− SD, of three experiments, each performed in triplicate.

FIGURE 10

(A) Ontology clusters formed by statistically enriched up-phosphorylated proteins at 2- and 7-dpi. (PHHs from four different donors). (B) Physical 
interactions formed by proteins up-phosphorylated upon HBV infection. All protein–protein interactions among input genes were extracted from PPI 
data sources using Metascape. Red node names indicate proteins that were also found in the first phosphoproteomic analysis performed with PHHs 
from a single donor.
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probably other kinases can dissolve liquid condensates formed by these 
speckles’ proteins, in particular during the onset of mitosis (Alvarez et al., 
2003; Rai et al., 2018; Xu et al., 2022). Interestingly, in this study, DYRK1A 
figured among the kinases predicted to be activated at 2-dpi. Future 
investigation should focus on the ability of selected RBPs to interact with 
HBV cccDNA and/or RNAs in order to better understand the molecular 
mechanism involved in this antiviral effect. In addition, as for SRSF10, it 
will be important to investigate how HBV modulates the phosphorylation 
of these RBPs and, in particular, identify the cellular kinases involved.

The most remarkable finding of this study was the detection of 
up-phosphorylated proteins involved in DNA damage response and 
repair, strongly suggesting that these proteins could sense HBV 
infection, as previously shown for other nuclear viruses (Weitzman 
and Fradet-Turcotte, 2018). Notably, among these proteins, DDB2 was 
previously involved in cccDNA formation (Marchetti et al., 2022). In 
addition, some major DNA repair proteins, notably Rad50 and 53BP1 
were found to be up-phosphorylated upon infection. In particular, 

Rad50, a cohesin-like component of the MRN complex, was 
up-phosphorylated at serine 635, a major ATM target (Kinoshita et al., 
2009; Gatei et al., 2011). In the case of 53BP1, a highly phosphorylated 
protein (see text footnote 3), two different serine residues, previously 
reported to be up-phosphorylated upon DNA damage induced by 
ionizing or UV radiations, were detected in our analyses (Matsuoka 
et al., 2007; Boeing et al., 2016). 53BP1 is a critical regulator of the 
cellular response to DSBs (Panier and Boulton, 2014). When recruited 
to DSBs and phosphorylated, in particular by the ATM kinase, 53BP1 
forms large foci which are a typical signature of an ongoing DDR 
(Anderson et al., 2001; Kilic et al., 2019; Shibata and Jeggo, 2020). In 
our study, detectable  53BP1 foci, most of them positioned at the 
nuclear periphery, were observed in HBV-infected PHHs, as early as 
1-dpi, strongly suggesting that their formation was induced upon 
virus disassembly and rcDNA delivery at the inner face of the nuclear 
lamina (Rabe et al., 2009). Indeed, rcDNA harbors many features 
which represent danger signals for the cell, such as ssDNA breaks, 

FIGURE 11

Cellular kinases predicted to be involved in up-phosphorylation events during HBV infection. Up-phosphorylated peptides found at 2- and 7-dpi were 
analyzed using KInasePhos3.0 software (Ma et al., 2023). The probability scores from 1 to 0.9, assigned to each kinase, were summed up to retrieve a 
list of the most probable kinases involved at each time point. Red arrows designate the three major kinases involved in DNA repair.
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ssDNA regions and a covalently attached polymerase (Schreiner and 
Nassal, 2017). Because most viral DNA genomes possess 
unconventional features, their release within the nucleus frequently 
results in a DDR (Weitzman and Fradet-Turcotte, 2018). In line with 
this hypothesis, we found that 53BP1 KD increased cccDNA levels, 
suggesting that this factor may prevent repair of rcDNA to produce a 
closed, double-stranded DNA episome. Interestingly, KD of RIF1, 
which recognizes phosphorylated 53BP1 and recruits the shieldin 
complex, also increased cccDNA levels (Setiaputra et al., 2022). This 
last observation together with the predicted activation of DDR kinases 
strongly suggests that foci observed following HBV infection do 
contain phosphorylated 53BP1.

Accumulation of 53BP1 to DSBs and recruitment of the shieldin 
complex prevents long range resection of broken DNA ends required for 
DNA repair by homologous recombination (Setiaputra and Durocher, 
2019; Callen et al., 2020). Our results therefore suggest that a certain level 
of resection of rcDNA may be required to generate cccDNA. In particular, 
exonucleases like Exo1 or DNA2-BLM, which are prevented to access 
DNA by the shieldin complex, may be involved (Setiaputra and Durocher, 
2019). Alternatively, it is possible that the shieldin complex simply 
prevents the access of other repair factors, such as endonucleases, to 
rcDNA (Wei and Ploss, 2021). Several alternative pathways for rcDNA 
repair may, however, coexist, explaining why a certain level of cccDNA is 
produced under physiological conditions. In our analyses, 53BP1 foci 
were observed until 7-dpi, indicating a persistent DDR. Even if cccDNA 
formation is achieved in approximately 3 days in infected PHHs (Locatelli 
et al., 2022), a residual level of rcDNA may still be present and responsible 
for the presence of such foci. Alternatively, nuclear recycling of newly 
synthetized rcDNA in the nucleus may be responsible for the induction 
of this long-lasting DDR. A previous report indicated that PML bodies 
are recruited by 53BP1 to persistent DNA damage lesions (Vancurova 
et al., 2019). In our analyses, most of HBV-induced 53BP1 foci colocalized 
with PML signal. Interestingly, some studies indicated that, in the absence 
of HBx, PML bodies are important for HBV transcriptional silencing by 
recruiting inhibitory factors and viral genomes (Niu et al., 2017; Li et al., 
2022; Yao Q. et al., 2023). It would be interesting to perform immuno-
FISH analyses able to discriminate rc and cccDNA to determine whether 

PML/53BP1 signals also associate with viral DNA or whether they 
represent an alternative anti-viral nuclear structure.

Few information is available on the interplay between HBV and the 
DDR, in particular with its three major kinases, ATM, ATR and DNA-PK 
(Blackford and Jackson, 2017). Initial reports indicated that HBV 
infection may activate ATR and some of its downstream targets, therefore 
suggesting a possible recognition of rcDNA as a damaged molecule (Zhao 
et al., 2008a,b). Later on, both ATM and ATR were described as enhancing 
HBV replication (Kostyusheva et al., 2019), and the ATR/Check1 pathway 
shown to upregulate cccDNA formation (Luo et al., 2020a). More recently, 
DNA-PK was described to increase HBV transcription (Fan et al., 2022). 
In our analyses, these three kinases were predicted to be activated upon 
HBV infection, as soon as 2- and up to 7-dpi. As already explored in some 
studies, this finding opens the perspective to investigate the effect of 
inhibitors of these kinases on the HBV life cycle and, in particular during 
the early phase, on cccDNA formation and transcription. Interestingly, 
Lubyova et al. (2021) reported that HBc may be phosphorylated by ATM 
following a genotoxic stress. It will be interesting to determine how kinase 
inhibitors targeting ATM or other DDR kinases modify the capacity of 
capsid-derived HBc to associate with cccDNA and how this affects 
downstream events. Finally, it is worth noting that, besides DDR kinases, 
CDK2, which plays a major role in HBc phosphorylation and is recruited 
and packaged within HBV capsids, was also on the top-ranked kinases 
activated upon infection (Ludgate et al., 2012; Luo et al., 2020b).

In conclusion, our deep MS-based phosphoproteomic analyses 
strongly suggest that HBV infection triggers an intrinsic anti-viral 
response composed by DNA repair factors and RBPs that contribute 
to reduce HBV establishment and productive replication (Figure 12). 
Future analyses conducted with other HBV genotypes, in particular 
genotype B and C that have a high genetic diversity and are responsible 
for infections in Asia and other parts of the world (Liu et al., 2018; 
Elizalde et al., 2021), will be important to further identify cellular 
pathways and proteins that either positively or negatively regulate 
HBV infection. Understanding how HBV may evade or counteract 
some of these responses will be critical to pinpoint factors able prevent 
cccDNA establishment and expression, as well to investigate further 
antiviral strategies based on the use of kinase inhibitors.

FIGURE 12

Hypothetical model describing the intervention of up-phosphorylated cellular DNA repair and RBPs during the HBV nuclear steps. Several host factors 
participate in cccDNA formation and viral gene expression (Diogo Dias et al., 2021; Wei and Ploss, 2021). Our study suggests that upon binding to the 
nuclear pore, and release of rcDNA at the inner side of the nuclear membrane, rcDNA is recognized as an abnormal molecule and induces a DDR 
characterized by ATM, ATR, activation and formation of 53BP1/PML foci. In addition, several RBPs, such as HNRNPU, SRRM2, and SRSF10 (Chabrolles 
et al., 2020), regulated by phosphorylation, further counteract HBV gene expression.
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