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Objective: The gut microbiota and its metabolites exert a significant influence 
on COPD, yet the underlying mechanisms remain elusive. We aim to holistically 
evaluate the role and mechanisms of the gut microbiota and its metabolites in 
COPD through network pharmacology and Mendelian randomization approaches.

Methods: Employing network pharmacology, we identified the gut microbiota 
and its metabolites’ impact on COPD-related targets, elucidating the complex 
network mechanisms involving the gut microbiota, its metabolites, targets, 
and signaling pathways in relation to COPD. Further, promising gut microbiota 
metabolites and microbiota were pinpointed, with their causal relationships 
inferred through Mendelian randomization.

Results: A complex biological network was constructed, comprising 39 gut 
microbiota, 20 signaling pathways, 19 targets, and 23 metabolites associated with 
COPD. Phenylacetylglutamine emerged as a potentially promising metabolite 
for COPD treatment, with Mendelian randomization analysis revealing a causal 
relationship with COPD.

Conclusion: This study illuminates the intricate associations between the gut 
microbiota, its metabolites, and COPD. Phenylacetylglutamine may represent 
a novel avenue for COPD treatment. These findings could aid in identifying 
individuals at high risk for COPD, offering insights into early prevention and 
treatment strategies.
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1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disorder primarily 
characterized by airway pathologies (bronchitis, bronchiolitis) and/or alveolar abnormalities 
(emphysema) leading to chronic respiratory symptoms (dyspnea, cough, sputum production) 
and progressive, persistent airflow limitation [Global Initiative for Chronic Obstructive Lung 
Disease (GOLD), 2024]. COPD has ascended to become the third leading cause of death 
globally (WHO, 2024), representing a significant public health challenge. Studies indicate that 
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COPD has a prolonged latency period (Divo et al., 2023), with both 
its prevalence and mortality rates on an upward trajectory annually 
(Adeloye et al., 2022). Research targeting middle-aged individuals 
reveals that the prevalence of COPD in those over 30 years of age 
approximates 11.7% (Adeloye et  al., 2015). Furthermore, studies 
focusing on the prevalence of COPD in China demonstrate that 
among individuals aged 40 and above, the prevalence rate soars to 
13.7%, with the total number of affected individuals nearing 100 
million (Wang et al., 2018).

The gut microbiome, often referred to as the body’s “second 
genome,” stands at the core of human health (Dogra et al., 2020) and 
may serve as a crucial intermediary between disease and the evolution 
of the human genome (Quan et al., 2023). A dynamic equilibrium exists 
between a healthy gut microbiome and the host, with the microbiome 
being associated with a multitude of diseases (Balint and Brito, 2024) 
and offering insights into disease at various functional levels (Muller 
et al., 2024). The composition and variations of the gut microbiome and 
its metabolites can influence the function of distant lungs (Dokoshi 
et al., 2024). There is a correlation between the gut microbiome and 
chronic pulmonary diseases through the gut-lung axis (Sun et  al., 
2024a), making it an indispensable participant in respiratory immunity 
and inflammation (Perdijk et al., 2024), though the mechanisms remain 
unclear. Dysbiosis of the gut microbiome can affect the development of 
COPD (Li N. et al., 2021), and there is an association between gut 
microbiome imbalance and COPD (Liu P. et al., 2024). Studies indicate 
that the gut microbiome is involved in the mechanisms of COPD and 
could potentially be a target for COPD-specific therapies (Budden et al., 
2024). There is a correlation between the gut microbiome and airway 
inflammation (Frayman et al., 2024), and the gut microbiome may play 
a role in defending against respiratory viruses in the lungs, possibly by 
influencing alveolar macrophages to phagocytize influenza viruses, thus 
better protecting the lungs (Wang et al., 2024b). Examination of the gut 
microbiome in COPD patients and healthy individuals revealed 146 
differences, with Lachnospiraceae potentially linked to reduced lung 
function (Bowerman et  al., 2020). Research has found that the gut 
bacterium Parabacteroides goldsteinii may improve COPD by affecting 
mitochondrial activity, amino acid metabolism, and reducing lung 
inflammation (Lai et  al., 2022b). Smoking leads to an increase in 
Streptococcus in the gut and reduces the diversity of the gut microbiome 
(Shanahan et al., 2018). Patients with severe COPD tend to have an 
abundance of Fusobacterium and Aerococcus, and the gut microbiome 
can influence COPD by shaping the immune system (Chiu et al., 2021). 
Gut microbiome metabolites, such as short-chain fatty acids, have anti-
inflammatory activities (Dang and Marsland, 2019), are fundamental 
mediators in the gut-lung axis, and participate in various lung diseases 
(Ashique et al., 2022), regulate immune homeostasis (Goncalves et al., 
2018), and can improve lung function and suppress inflammation 
(Wang J. et  al., 2023). Butyrate can inhibit airway inflammation in 
COPD patients (Jiang et  al., 2024), and arginine can modulate 
inflammation (Fritz, 2013), which is associated with lung function 
(Maarsingh et al., 2008; Halper-Stromberg et al., 2019). Gut microbiome 
metabolites can reduce lung inflammation induced by cigarette smoke 
(Nascimento et  al., 2023), and acetate and propionate can decrease 
alveolar damage and inflammation (Lee et al., 2023). Metabolites of the 
gut microbiome could act as a pivotal link between the microbiome and 
the gut-lung axis, harboring the potential to treat respiratory diseases by 
controlling lung inflammation from a dysbiosis perspective (Nascimento 
et  al., 2023). By modulating the gut-lung axis and macrophage 

polarization, it shapes the immune response in the lungs and is related 
to the pathogenesis of respiratory diseases (Chen et al., 2023). The gut 
microbiome, its metabolites, target actions, and diseases constitute a 
complex biological network, hence focusing on specific gut microbiome 
metabolites could aid in understanding the mechanisms of diseases.

In this study, the methodology of network pharmacology is 
employed to explore the relationships between the gut microbiome, 
its metabolites, targets, signaling pathways, and COPD from a holistic 
perspective. The aim is to identify the core gut microbiome, its 
metabolites, targets, and key signaling pathways that influence 
COPD. Furthermore, by utilizing the Mendelian randomization 
approach, the study delves into the causal relationships between the 
core gut microbiome, its metabolites, and targets with COPD, thereby 
dissecting the causality between these elements and COPD from an 
overarching standpoint.

2 Methods

2.1 Study design

Grounded in the principles of network pharmacology and 
Mendelian randomization, this study embarks on an investigation 
from the perspective of the gut-lung axis into the pivotal substances 
and potential mechanisms of gut microbiome metabolites in 
COPD. Employing the method of Mendelian randomization, it further 
probes into the causal relationships between relevant gut microbiome 
metabolites, upstream gut microbiota, and downstream related genes 
with COPD. By examining the impact of the gut microbiome on 
COPD from a comprehensive viewpoint, this research lays the 
theoretical groundwork for subsequent studies focused on treating 
lung conditions through interventions targeting the gut (Figure 1).

2.2 Target acquisition of gut microbiota 
metabolites and COPD

In the quest to identify the metabolic products of the gut 
microbiome and their targets in relation to COPD, we harnessed the 
gutMGene v1.0 database1 to search for metabolites and targets of the 
gut microbiome (Cheng et  al., 2022). Canonical SMILES of these 
metabolites were sought through PubChem2 and subsequently 
inputted into the Similarity Ensemble Approach (SEA3) (Keiser et al., 
2007) and Swiss Target Prediction (STP4) (Daina et al., 2019) platforms 
to predict all related targets of gut microbiome metabolites. An 
intersection of results from both platforms yielded the relevant targets 
of gut microbiome metabolites.

Utilizing databases such as GeneCards,5 OMIM,6 and 
DRUGBANK7 with “COPD” as the keyword, we filtered for disease 

1 http://bio-annotation.cn/gutmgene/

2 https://pubchem.ncbi.nlm.nih.gov/

3 https://sea.bkslab.org/

4 http://www.swisstargetprediction.ch/

5 https://www.genecards.org/

6 https://www.omim.org/

7 https://go.drugbank.com/
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targets related to COPD. The GeneCards database was sifted through 
based on the median value of the “relevance score.” After integrating 
the three aforementioned databases and eliminating duplicate targets, 
a COPD target database was constructed.

By intersecting the related targets of gut microbiome metabolites 
with COPD targets, we identified significant targets of gut microbiome 
metabolites acting on COPD. Further intersection of these significant 
targets with targets from the gutMGene database elucidated the key 
targets through which gut microbiome metabolites affect COPD.

2.3 Construction and enrichment analysis 
of PPI networks

To illuminate the potential signaling pathways through which gut 
microbiome metabolites influence COPD, the initial step involves 
uploading the identified key targets to the String database.8 By setting 
specific parameters, a Protein–Protein Interaction (PPI) network is 

8 https://string-db.org/

established. Following this, the Cytoscape 3.9.1 software is utilized to 
create a network diagram of these key targets, with the Degree values 
serving as a pivotal criterion for the construction. Further analytical 
depth is achieved through the enrichment analysis of these key targets 
using Gene Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), and Disease Ontology (DO). This step not only 
facilitates the visualization of these analyses but also aids in uncovering 
the underlying signaling pathways by which gut microbiome 
metabolites may affect COPD. This comprehensive approach provides 
a clearer understanding of the complex interactions between gut 
microbiome metabolites and COPD, highlighting the intricate 
biological processes involved.

2.4 The network diagram of gut 
microbiota-metabolites-target-signaling 
pathway was constructed

Utilizing the Cytoscape 3.9.1 software, we construct a network 
diagram that intricately maps the relationships between gut 
microbiota, metabolites, targets, and signaling pathways. Through the 
application of network analysis plugins, we meticulously analyze the 

FIGURE 1
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interconnections among gut microbiota, metabolites, targets, and 
signaling pathways. This rigorous analysis enables us to pinpoint the 
most critical components within this network, including key gut 
microbiota, metabolites, targets, and signaling pathways, thereby 
enhancing our understanding of their roles and interactions in the 
biological system under study.

2.5 Evaluation of drug-likeness properties 
and toxicological evaluation by ADMETlab

Employing computational tools, we simulate the physicochemical 
properties of relevant metabolites using SwissADME9 to assess their 
drug-likeness (Daina et al., 2017), thereby determining their potential 
efficacy against COPD. Subsequently, these metabolites, characterized 
by their physicochemical properties, are further evaluated using 
ADMETlab 3.0.10 This evaluation encompasses a comprehensive 
toxicological assessment across eight dimensions: hERG blockers, 
Human hepatotoxicity (H-HT), Respiratory toxicity, Rat oral acute 
toxicity, Carcinogenicity, Drug-induced liver injury (DILI), Skin 
sensitization, and LD50 of acute toxicity. Through this meticulous 
process, we  aim to identify the most suitable gut microbiome 
metabolites for potential therapeutic applications.

2.6 Molecular docking validation of 
metabolites of gut microbiota

The gut microbiome metabolites, having undergone rigorous 
drug-likeness evaluation and toxicological assessment, will 
be subjected to molecular docking with key targets to validate their 
interactions. The outcomes of these validations will be meticulously 
visualized, offering a clear depiction of the potential efficacy and 
interaction dynamics between the metabolites and the targets.

2.7 Mendelian randomization analysis of 
gut microbiota metabolites, gut 
microbiota, and related genes and COPD

The selected gut microbiome metabolites, along with their 
upstream gut microbiota and downstream relevant genes, will 
be subjected to Mendelian randomization to ascertain their causal 
relationship with COPD. The genetic information pertaining to the 
gut microbiome metabolites, their upstream microbiota, and 
downstream genes in relation to COPD is sourced from the GWAS 
database.11 To evaluate the causality, we employ five methods: Inverse 
Variance Weighted (IVW), MR-Egger, Weighted Median, Simple 
Mode, and Weighted Mode methods, with IVW serving as the 
primary method (Pierce and Burgess, 2013; Davies et al., 2018). A 
p-value of less than 0.05 indicates a causal relationship (Sanderson, 
2021), while the other four methods serve as supplementary 
approaches (Burgess and Thompson, 2017). To assess the robustness 

9 http://www.swissadme.ch/

10 https://admetlab3.scbdd.com/

11 https://gwas.mrcieu.ac.uk/

of our results, leave-one-out sensitivity analysis is conducted, further 
complemented by tests for pleiotropy and heterogeneity, with a 
p-value greater than 0.05 indicating the absence of both pleiotropy and 
heterogeneity (Cai et  al., 2022; Shi et  al., 2022). To ensure the 
credibility of the results, we have validated the outcomes of the MR 
analysis using the Bayesian Weighted Mendelian Randomization 
(BWMR) method (Zhao et al., 2020; Grant and Burgess, 2024), to 
ascertain the accuracy of the causal relationship between the two 
variables. All analyses are performed using the R programming 
language (version 4.3.2).

3 Results

3.1 Gut microbiota metabolites act on key 
targets in COPD

The gutMGene database version 1.0 encompasses 333 types of gut 
microbiota, 208 gut microbiome metabolites, and 223 targets. Through 
the application of SEA, a total of 1701 targets for gut microbiome 
metabolites were predicted, while STP forecasted 959 targets. An 
intersection of these predictions yielded 728 relevant targets for gut 
microbiome metabolites (Figure 2A). By filtering and eliminating 
duplicates from databases such as Genecards, OMIM, and 
DRUGBANK, we  identified 362 targets related to COPD. An 
intersection of these with the previously mentioned 728 targets 
revealed 82 significant targets for gut microbiome metabolites that 
influence COPD (Figure 2B). Further intersection with the 223 targets 
listed in the gutMGene database pinpointed 19 critical targets through 
which gut microbiome metabolites affect COPD (Figure 2C).

3.2 PPI and enrichment analysis

The PPI network comprises 19 nodes and 85 edges, where the size 
of each node is determined by its degree value. IL6, EGFR, PPARG, 
PTGS2, JUN, and CXCL8 emerge as pivotal hubs within this PPI 
network (Figure  2D). To further assess the potential role of gut 
microbiome metabolites in the treatment of COPD, we conducted 
enrichment analysis on the 19 key targets of gut microbiome 
metabolites affecting COPD. The DO enrichment analysis primarily 
highlighted respiratory system diseases such as obstructive lung 
disease, chronic obstructive pulmonary disease, bronchial disease, and 
asthma, further affirming the gut microbiome’s role in modulating 
immunity and inflammation through the gut-lung axis in relation to 
chronic lung diseases (Figure 3A). This suggests that gut microbiome 
metabolites may serve as a communicative foundation between these 
systems (Wang X. et al., 2023).

GO enrichment analysis revealed significant involvement in 
processes such as phagocytic cup, nuclear outer membrane, 
membrane raft, and early endosome, participating in functions like 
iron ion binding, cytokine receptor binding, cytokine activity, and 
nuclear receptor activity. These processes are implicated in responses 
to lipopolysaccharide, regulation of smooth muscle cell 
proliferation, response to oxidative stress, regulation of 
inflammatory response, and response to hormone (Figure  3B). 
KEGG pathway enrichment analysis focused on Lipid and 
atherosclerosis, IL-17 signaling pathway, Toll-like receptor signaling 
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pathway, TNF signaling pathway, and PI3K-Akt signaling pathway, 
with the analysis also highlighting key targets within these enriched 
pathways (Figure 3C).

3.3 Construction of network map of gut 
microbiota-metabolites-target-signaling 
pathway and screening of key components

Utilizing Cytoscape 3.9.1 software, we  proceeded with the 
network analysis of gut microbiota-metabolite-target-signal 
pathways, encompassing 101 nodes (comprising 39 gut microbiota, 
20 signal pathways, 19 targets, and 23 metabolites) and 182 edges. The 
network analysis unveiled that the foremost signal pathways include 
Lipid and atherosclerosis, Coronavirus disease-COVID-19, and the 
IL-17 signaling pathway. Predominant metabolites identified were 
Butyrate and Acetate, while leading gut microbiota comprised 
Faecalibacterium prausnitzii and Lactobacillus rhamnosus. Central 
targets highlighted were CXCL8, IL6, TLR4, JUN, MAPK14, and 
EGFR. For instance, the IL-17 signaling pathway was linked to 10 

metabolites and 5 targets (IL6, JUN, CXCL8, PTGS2, and MAPK14), 
illustrating the intricate interplay between these components within 
the network (Figure 4).

3.4 Drug similarity and toxicity of 
associated metabolites in computer 
simulations

In our computational analysis of the ADME parameters for 23 
metabolites, we discovered that 20 of these metabolites exhibit drug-like 
properties. However, Baicalin, Lithocholic acid, and 
2,2′,4,4′,5-Pentabromodiphenyl ether were found to contravene Lipinski’s 
rule of five, leading us to conclude that 20 metabolites may possess 
potential in influencing COPD (Table 1). It is crucial to note that the 
physicochemical properties of metabolites do not represent safety 
indicators; toxicological evaluation plays a vital role in assessing safety. 
Therefore, we conducted a toxicological property assessment of the 
selected 20 metabolites using ADMETlab 3.0. Through this evaluation, 
Phenylacetylglutamine was identified as a promising metabolite 

FIGURE 2

depicts the intersection between SEA and STP (A); The overlap of gut microbiome metabolites with COPD (B); Key targets (C); PPI network (D).
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(Figure  5A), potentially offering significant developmental value 
(Table 2).

3.5 Molecular DOCKING validation

We selected the most promising metabolite, Phenylacetylglutamine, 
for molecular docking validation with CXCL8, IL6, and EGFR. The 
lower the free binding energy, the higher the binding activity and the 
more stable the binding conformation, indicating a greater likelihood 
of interaction. The binding energy between Phenylacetylglutamine and 
CXCL8 (PDB: 6WZM) was −6.6 kcal/mol (Figure 5B), with IL6 (PDB: 
4O9H) it was −5.7 kcal/mol (Figure 5C), and with EGFR (PDB: 1XKK) 
it was −7.8 kcal/mol (Figure 5D). These results suggest a significant 
potential for interaction, highlighting the stability and efficacy of these 
molecular conformations.

3.6 Mendelian randomization study

We further conducted a Mendelian randomization analysis on gut 
microbiota metabolites, their upstream gut microbiota, and downstream 
related genes for causal inference. The genetic information for the gut 

microbiota metabolite Phenylacetylglutamine is identified as ebi-a-
GCST90026248, comprising 291 samples and 6,873,547 SNPs. The 
upstream gut microbiota Lachnospiraceae (Kurilshikov et al., 2021) is 
cataloged as ebi-a-GCST90016940, with 14,306 samples and 5,729,268 
SNPs. The downstream related gene CXCL8 is listed as prot-b-11, with 
3,394 samples and 5,270,646 SNPs; EGFR as prot-a-909, with 3,301 
samples and 10,534,735 SNPs; IL6 as prot-b-2, with 3,394 samples and 
5,270,646 SNPs; and the genetic information for COPD is ebi-a-
GCST90018807, including 468,475 samples and 24,180,654 SNPs. All 
data sets pertain to European populations.

Through the selection of instrumental variables, we conducted an 
association analysis, removed linkage disequilibrium and weak 
instrumental variables, and discovered a causal relationship between the 
gut microbiome metabolite Phenylacetylglutamine and an increased risk 
of COPD (OR [95% CI], 1.025 [1.002–1.049], p = 0.03). Unfortunately, 
the reverse MR analysis did not show a causal relationship (OR [95% 
CI], 0.953 [0.859–1.057], p = 0.36); there is no causal relationship 
between the gut microbiome Lachnospiraceae and COPD (OR [95% 
CI], 1.074 [0.907–1.274], p = 0.40); and no causal relationships were 
found with downstream related genes CXCL8, EGFR, and IL6  in 
relation to COPD. Concurrently, tests for pleiotropy and heterogeneity 
were conducted, both exceeding 0.05, and the leave-one-out method 
validated the robustness of the MR results (Table 3; Figure 6).

FIGURE 3

DO enrichment analysis bar chart (A); GO enrichment bubble map (B); Bubble map of KEGG enrichment pathways (C).

https://doi.org/10.3389/fmicb.2024.1416651
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Cao et al. 10.3389/fmicb.2024.1416651

Frontiers in Microbiology 07 frontiersin.org

4 Discussion

In our investigation, network pharmacology studies revealed a 
comprehensive network analysis comprising 39 gut microbiota, 23 gut 
microbiota metabolites, 19 targets, and 20 signaling pathways associated 
with COPD. Further exploration into the drug-likeness and toxicology 
of gut microbiota metabolites identified Phenylacetylglutamine as a 
promising metabolite, substantiated by molecular docking validation. 
Causal inference regarding the relationship between the gut microbiota 
metabolite Phenylacetylglutamine, the upstream gut microbiota 
Lachnospiraceae, and downstream related genes CXCL8, EGFR, and 
IL6 with COPD revealed a positive causal relationship between 
Phenylacetylglutamine and COPD. However, reverse MR analysis did 
not support this causal relationship, and no direct causal links were 
found between the upstream gut microbiota, related targets, and COPD.

PPI networks and the gut microbiota-metabolite-target-signaling 
pathway network identified CXCL8, IL6, and EGFR as crucial targets 
closely associated with COPD. Dysbiosis of the gut microbiota is 
linked to systemic inflammation, with IL6 levels correlating with the 
abundance of various gut microbiota (Zhao et al., 2023). The anti-
inflammatory effects of the gut microbiota may be mediated by the 
endocannabinoid system (Vijay et  al., 2021), suggesting that 
modulation of the gut microbiota could reduce IL6 levels, thereby 
restoring immunity, reducing pulmonary inflammation (Deng et al., 
2024), and alleviating asthma (Liu et al., 2023) and COPD (Wang 
J. et al., 2023). IL6 is upregulated in the lower airways of patients with 

mild to moderate COPD (Sulaiman et al., 2023), and IL-6TS could 
play a pathogenic role in chronic respiratory diseases (Winslow et al., 
2021). CXCL8, a primary mediator of inflammatory responses, plays 
a role in systemic inflammation, and reducing CXCL8 levels could 
inhibit COPD inflammation (Castellucci et al., 2015). EGFR is capable 
of engaging in numerous cellular responses, serving as an integral 
component of the cytokine storm, and is implicated in the onset of 
severe acute respiratory distress syndrome. Decreasing EGFR levels 
may alleviate chronic bronchial inflammation (Wang C. C. et  al., 
2024), while cigarette smoke can activate EGFR (Muratani et  al., 
2023), thereby modulating the abnormal airway remodeling in COPD 
(Strickson et al., 2023). These targets may serve as potential therapeutic 
targets for treating COPD through gut microbiota and metabolites.

DO enrichment analysis of core targets indicated a significant 
association with respiratory diseases such as obstructive lung disease, 
chronic obstructive pulmonary disease, bronchial disease, and asthma, 
underscoring the regulatory potential of gut microbiota and metabolites 
on COPD through these targets. GO enrichment analysis revealed that 
gut microbiota metabolites and COPD-related targets are primarily 
associated with responses to xenobiotic stimuli, secondary metabolic 
processes, cellular responses to growth factor stimuli, responses to 
lipopolysaccharide, regulation of smooth muscle cell proliferation, 
responses to oxidative stress, and regulation of inflammatory responses, 
thereby modulating COPD. Oxidative stress exacerbates COPD (Dal 
Negro et al., 2017), which is related to chronic inflammation of the lung 
parenchyma and peripheral airways (Barnes, 2016), and can be mediated 

FIGURE 4

The network of the gut microbiome-metabolites-targets-signaling pathways.
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TABLE 1 The physicochemical properties of the metabolites from gut microbiota.

NO. Metabolites Lipinski rule Lipinski’s 
violations ≤1

Bioavailability 
score  >  0.1

TPSA < 
140  Å2

MW ≤ 500 HBA ≤ 10 HBD ≤ 5 MlogP  ≤  5

1 Succinate 116.07 4 0 −0.54 0 0.56 80.26

2 Acetate 59.04 2 0 −0.49 0 0.85 40.13

3 Baicalein 270.24 5 3 0.52 0 0.55 90.9

4 Baicalin 446.36 11 6 −1.63 2 0.11 187.12

5 Butyrate 87.1 2 0 0.49 0 0.85 40.13

6 3-Indolepropionic acid 189.21 2 2 1.4 0 0.85 53.09

7 Trimethylamine oxide 75.11 1 0 −1.66 0 0.55 29.43

8 Propionate 73.07 2 0 0.03 0 0.85 40.13

9 Equol 242.27 3 2 2.2 0 0.55 49.69

10 Phenylacetylglutamine 264.28 4 3 0.4 0 0.56 109.49

11 Indole 117.15 0 1 1.57 0 0.55 15.79

12 Oxindole 133.15 1 1 1.13 0 0.55 29.1

13 Indole-3-acrylic acid 187.19 2 2 1.32 0 0.85 53.09

14 3-Methylindole 131.17 0 1 1.89 0 0.55 15.79

15 Kynurenic acid 189.17 3 2 0.41 0 0.85 70.16

16 Urolithin A 228.2 4 2 1.68 0 0.55 70.67

17 Equol 242.27 3 2 2.2 0 0.55 49.69

18 Indoxyl sulfate 213.21 4 2 0.22 0 0.56 87.77

19 p-Cresol sulfate 188.2 4 1 1 0 0.85 71.98

20 10-Oxo-11-octadecenoic acid 296.44 3 1 3.59 0 0.85 54.37

21 Lithocholic acid 376.57 3 2 4.73 1 0.85 57.53

22 2,2′,4,4′,5-Pentabromodiphenyl ether 564.69 1 0 6.55 2 0.17 9.23

23 10-Keto-12Z-octadecenoic acid 296.44 3 1 3.59 0 0.85 54.37
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by regulating airway smooth muscle damage and endoplasmic reticulum 
stress (Chen et al., 2022). Inflammation and oxidative stress play key 
roles in the pathogenesis and progression of COPD (Wiegman et al., 
2015). Thus, gut microbiota metabolites can alleviate COPD through 
multiple mechanisms, including oxidative stress, inflammatory 
responses, and smooth muscle modulation, revealing their functional 
role in treating COPD. KEGG enrichment analysis showed that gut 
microbiota and metabolites regulate COPD mechanisms through 
signaling pathways such as Lipid and atherosclerosis, IL-17 signaling 
pathway, NF-kappa B signaling pathway, PI3K-Akt signaling pathway, 
and JAK–STAT signaling pathway. Lipoprotein metabolism may 
be related to COPD (Santana et al., 2021), and lipid metabolism has a 
correlation with the pathogenesis of COPD (Kotlyarov and Kotlyarova, 
2021), potentially offering a novel therapeutic approach (Sonett et al., 
2018). The JAK–STAT signaling pathway plays a crucial role in activating 
cytokines in inflammatory responses in COPD (Yew-Booth et al., 2015), 
and the IL − 17 signaling pathway can coordinate lung immune defense 
in COPD (McAleer and Kolls, 2014). These pathways play significant 
roles in the development of COPD, warranting focused attention on the 
gut microbiota-metabolite-target-signaling pathway network.

In our investigation of 23 gut microbiome metabolites for their 
pharmacological similarity and toxicological profiles, we  identified 
Phenylacetylglutamine as the most promising metabolite. Research 
suggests that Phenylacetylglutamine could serve as a prognostic marker 
for heart failure risk (Tang et  al., 2024), is associated with various 
cardiovascular disease risks (Song et al., 2024), and correlates with 
multiple diseases (Krishnamoorthy et  al., 2024). Studies on the 
relationship between COPD and Phenylacetylglutamine are sparse, yet 
some research indicates that Phenylacetylglutamine may act as a 
potential biomarker for lung cancer (Aredo et al., 2021), inhibiting the 

growth of lung tumors (Wang et  al., 2012), and high levels of 
Phenylacetylglutamine may be  linked to lung damage and Acute 
Respiratory Distress Syndrome (Xu et  al., 2020). Our Mendelian 
randomization analysis of Phenylacetylglutamine and COPD revealed a 
positive causal relationship, suggesting that Phenylacetylglutamine could 
be  a potential biomarker for treating COPD. Lachnospiraceae is 
somewhat associated with a healthy lifestyle (Zhang et  al., 2015), 
participates in the progression of various diseases (Gomes et al., 2018; 
Zuo et al., 2019), is related to the release of inflammatory cytokines 
(Schirmer et al., 2016), and correlates with the disease characteristics of 
COPD (Budden et al., 2024). In mice with COPD induced by CS, there 
is an increased relative abundance of Lachnospiraceae (Lai et al., 2022b). 
We  discovered that the upstream gut microbiota Lachnospiraceae, 
involved in various carbohydrate metabolisms, could provide energy 
for the body. Lachnospiraceae can modulate immunity to protect against 
influenza’s pulmonary assault (McCumber et al., 2024), is associated 
with lung inflammation in COPD (Budden et al., 2024), participates in 
cytokine regulation altering COPD’s lung inflammation (Wu et al., 
2023), and is related to various respiratory diseases such as lung cancer 
(Zhang et al., 2024), pulmonary fibrosis (Sun et al., 2024b), cough (Liu 
Y. et  al., 2024), and asthma (Wang et  al., 2024a). It can suppress 
inflammation and apoptosis, mitigating the progression of emphysema 
(Jang et al., 2020), potentially serving as a novel paradigm for treating 
COPD. However, it is regrettable that Mendelian randomization 
showed no causal relationship between Lachnospiraceae and COPD.

In the future, we  will validate the gut microbiome metabolite 
Phenylacetylglutamine in both COPD patients and healthy groups, 
referencing related literature (Nemet et al., 2020). Further, through in 
vivo and in vitro experiments, we  aim to elucidate the potential 
mechanisms of Phenylacetylglutamine in COPD patients. By 

FIGURE 5

Structural formula of Phenylacetylglutamine (A); Molecular docking of Phenylacetylglutamine with CXCL8 (B); Molecular docking of 
Phenylacetylglutamine with IL6 (C); Molecular docking of Phenylacetylglutamine with EGFR (D).
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TABLE 2 Toxicological properties of the metabolites from the gut microbiota.

NO. Metabolites hERG 
blockers

H-HT Respiratory 
toxicity

Rat oral 
acute 

toxicity

Carcinogenicity DILI Skin sensitization LD50

1 Succinate −−− +++ −−− −−− −− −−− + 3.117

2 Acetate −−− +++ −−− −−− −− −−− + 2.597

3 Baicalein −−− −−− − −− − +++ +++ 5.607

4 Butyrate −−− ++ −−− −− − −−− − 3.301

5 3-Indolepropionic acid −−− −− − ++ −− −− − 4.475

6 Trimethylamine oxide −−− + −−− −−− −−− −−− −−− 1.887

7 Propionate −−− ++ −−− −−− −− −−− + 3.158

8 Equol −−− −−− −−− −− ++ −−− +++ 5.238

9 Phenylacetylglutamine −−− −−− −−− −−− −−− − −− 3.038

10 Indole −−− −− +++ ++ − − + 5.328

11 Oxindole −−− − −− −− + +++ ++ 3.318

12 Indole-3-acrylic acid −−− + +++ +++ −− ++ +++ 4.725

13 3-Methylindole −−− − ++ ++ −− − + 5.66

14 Kynurenic acid −−− −− +++ − −−− +++ −− 4.285

15 Urolithin A −−− −− −− −− + +++ +++ 5.129

16 Equol −−− −−− −−− −− ++ −−− +++ 5.238

17 Indoxyl sulfate −−− ++ +++ +++ − −−− ++ 4.42

18 p-Cresol sulfate −−− +++ − −−− + −−− + 3.567

19 10-Oxo-11-octadecenoic acid −−− + +++ −−− − −−− +++ 4.242

20 10-Keto-12Z-octadecenoic acid −−− −−− − −−− −− −−− + 3.806

For the classification endpoints, the prediction probability values are transformed into six symbols: 0–0.1(−−−), 0.1–0.3(−−), 0.3–0.5(−), 0.5–0.7(+), 0.7–0.9(++), and 0.9–1.0(+++).
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integrating extracellular vesicles (Lai et al., 2022a) and exosomes (Li 
et al., 2018), the mRNA within these structures may predict potential 
biomarkers for various diseases (Li et al., 2019; Li Y. et al., 2021). This 
approach will also be used to predict potential biomarkers for COPD, 
further suggesting that Phenylacetylglutamine could represent a novel 
therapeutic avenue for COPD treatment.

5 Conclusion

This study, employing network pharmacology and Mendelian 
randomization, delves into the metabolites of the gut microbiome in 
the treatment of COPD, elucidating the intricate connections between 
the gut microbiome, its metabolites, and COPD. It identifies 
Phenylacetylglutamine, Lachnospiraceae, core targets, and signaling 
pathways as novel avenues for COPD treatment. Further exploration 
of their causal relationships with COPD revealed that, aside from a 
causal relationship between Phenylacetylglutamine and COPD, no 
other causal relationships were found. These discoveries aid in the 

screening of individuals at high risk for COPD, offering insights into 
early prevention and treatment strategies for the disease.
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FIGURE 6
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TABLE 3 MR analysis.

Exposure Method Snp Beta Se p-val BWMR Pleiotropy Heterogeneity

Phenylacetylglutamine IVW 50 0.030 0.031 0.030 0.025 0.058 0.745

Lachnospiraceae IVW 8 0.072 0.087 0.404 0.431 0.448 0.734

CXCL8 IVW 22 −0.0005 0.0006 0.401 0.415 0.337 0.643

EGFR IVW 9 −0.007 0.033 0.828 0.917 0.176 0.537

IL6 IVW 14 −0.008 0.012 0.490 0.492 0.977 0.876

COPD IVW 50 −0.048 0.059 0.358 0.373 0.448 0.734
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