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Introduction: In recent years, nitrogen deposition has constantly continued

to rise globally. However, the impact of nitrogen deposition on the soil

physicochemical properties and microbial community structure in northern

Guangxi is still unclear.

Methods: Along these lines, in this work, to investigate the impact of

atmospheric nitrogen deposition on soil nutrient status and bacterial community

in subtropical regions, four different nitrogen treatments (CK: 0 gN m−2 a−1,

II: 50 gN m−2 a−1, III: 100 gN m−2 a−1, IV: 150 gNm−2 a−1) were established.

The focus was on analyzing the soil physical and chemical properties, as well as

bacterial community characteristics across varying nitrogen application levels.

Results and discussion: From the acquired results, it was demonstrated that

nitrogen application led to a significant decrease in soil pH. Compared with

CK, the pH of treatment IV decreased by 4.23%, which corresponded to an

increase in soil organic carbon and total nitrogen. Moreover, compared with

CK, the soil organic carbon of treatment IV increased by 9.28%, and the

total nitrogen of treatment IV increased by 19.69%. However, no significant

impact on the available nitrogen and phosphorus was detected. The bacterial

diversity index first increased and then decreased with the increase of the

nitrogen application level. The dominant phylum in the soil was Acidobacteria

(34.63–40.67%), Proteobacteria, and Chloroflexi. Interestingly, the abundance

of Acidobacteria notably increased with higher nitrogen application levels,

particularly evident in the IV treatment group where it surpassed the control

group. Considering that nitrogen addition first changes soil nutrients and then

lowers soil pH, the abundance of certain oligotrophic bacteria like Acidobacteria

can be caused, which showed a first decreasing and then increasing trend.

On the contrary, eutrophic bacteria, such as Actinobacteria and Proteobacteria,

displayed a decline. From the redundancy analysis, it was highlighted that

total nitrogen and pH were the primary driving forces affecting the bacterial

community composition.

KEYWORDS
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1 Introduction

Nitrogen is essential for plant growth as it is a key element
in various plant components including chlorophyll, proteins, and
enzymes. It plays a crucial role in regulating plant metabolism
and activities (Xu et al., 2019). A large amount of nitrogen is
needed to maintain plant growth. However, atmospheric nitrogen
deposition has significantly increased from industrialization, and
nitrogen deposition will alarmingly continue to increase in the
coming decades. The increase of nitrogen usually leads to enhanced
productivity of plant communities by increasing the available
nutrients. Nonetheless, excess nitrogen may lead to limitations
of other nutrient elements, such as phosphorus, thus reducing
the richness and diversity of plant species (Gao et al., 2022).
There are also concrete pieces of evidence indicating that excessive
nitrogen input has caused harm to the ecological environment,
such as degradation of freshwater resources (Baron et al., 2013),
soil acidification, and increased loss of soil organic nitrogen
(Brookshire et al., 2007), The crop growth has been harmed
(Cheng et al., 2020), the soil greenhouse gas release rate has been
affected (He et al., 2021), plant mortality has been increased,
and microbial community structure has been changed (Zak et al.,
2019; Moore et al., 2021). Thus, it is apparent that it threatens
the species diversity and balance of forest ecosystems. The meta-
analysis of 15N labeling experiments in the whole forest ecosystem
showed that most of the deposited nitrogen accumulated in the
soil ecosystem (Templer et al., 2012). The subtropical region in
China is considered one of the hot zones of N deposition in the
world (Du et al., 2019; Du, 2020). Notably, subtropical old-growth
forests are irreplaceable and have greater resilience to disturbance
than other forests (Watson et al., 2018). Forest ecosystems are the
main recipients of N deposition, and the impact of N deposition
on the structure and function of forest ecosystems in the context
of global change has been extensively investigated. Consequently,
the impact of N addition on the structure and function of the
subtropical evergreen broad-leaved forests has been explored (Tian
et al., 2022). More specifically, the effects of N deposition on
biodiversity (Lu et al., 2010; Tian et al., 2019), soil biochemistry
(Shi et al., 2016; Lu et al., 2021), and plant nutrient stoichiometry
and functional traits (Lu et al., 2018; Zhu et al., 2019; Tang et al.,
2021) has been examined. However, limited experiments have been
conducted on the influence of nitrogen deposition in subtropical
old-growth forests in Guangxi. Therefore, it is of vital importance to
deeply understand the response of soil ecosystems to global change
by understanding the impact of nitrogen deposition on the change
of soil nutrients and the diversity of soil bacteria.

With the aggravation of nitrogen deposition, the relationship
between soil nutrient cycling and nutrients has also been greatly
affected. Nevertheless, the connection between nitrogen deposition
and soil nutrients remains elusive. Some works in the literature
have found that atmospheric nitrogen deposition can reduce soil
pH, resulting in soil acidification (Wang et al., 2023b). The
change in the nitrogen content can also affect soil nitrogen
mineralization and nitrification, and the addition of nitrogen can
lead to an increase in the soil available nitrogen (Liu et al.,
2017). Other works have reported that nitrogen deposition did
not increase the soil available nitrogen content (Hu et al., 2010;
D’Orangeville et al., 2014). The impact of nitrogen addition on

organic carbon also varied with different ecological environments.
Most forest ecosystems showed an increasing trend (Yang et al.,
2023). It has been also demonstrated that nitrogen addition had no
significant impact on organic carbon (Hu et al., 2010). Although
the application of nitrogen significantly increased the content of
soil soluble organic carbon (Wang et al., 2008; Xu et al., 2023), it
was found that nitrogen fertilizer reduced the content of soluble
organic carbon in the northern region (Zhang et al., 2019). It
was also found that low nitrogen had a promoting impact on
soluble carbon. The addition of high nitrogen inhibited the content
of soluble carbon (Shi et al., 2019). Regarding the relationship
between nitrogen addition and phosphorus content, some works
in the literature have concluded that nitrogen addition reduces
the soil total phosphorus content but has no significant impact
on the available phosphorus (Tian et al., 2020). In another work,
it was reported that nitrogen does not significantly affect both
total phosphorus and available phosphorus (Li et al., 2013). The
relationship between the nitrogen addition and soil physical and
chemical properties is affected by different regions and different
climate conditions. Therefore, further research is required to shed
light on the underlying origins of this relationship.

Soil microorganisms participate in almost all material
transformation processes in the soil and connect the material
cycles of soil, biosphere, atmosphere, hydrosphere, and lithosphere.
They can release nutrients from minerals and organic matter, fix
nitrogen, and maintain the stability of soil aggregates (Adingo
et al., 2021). They serve as crucial mediators and regulators in the
cycling of soil metal and nonmetal elements, exerting profound
influence on the overall health and functionality of soil ecosystems
(He et al., 2024). In forest ecosystems, soil bacteria account for the
vast majority of soil microbial communities. Changes in bacterial
community structure and composition can quickly reflect changes
in soil conditions (Li et al., 2004). Soil bacterial activity and
community composition directly regulate the soil carbon cycle and
turnaround process (Zechmeister-Boltenstern et al., 2011). Many
works have examined the impact of nitrogen deposition on soil
bacterial communities. Previous meta-analyses have shown that
nitrogen deposition has a negative impact on soil microorganisms
in terrestrial ecosystems including forest ecosystems, reducing
microbial diversity (Zhang et al., 2018; Yang et al., 2020, 2022).
Other works have found that fertilization can increase the diversity
and richness of soil bacteria (Arunrat et al., 2023). It has been
also proven that nitrogen addition has a negligible impact on
soil microbial communities in forest ecosystems but can affect
sensitive bacterial groups (He et al., 2023). There are also a few
works that have found that soil microbial communities and
structures in grassland and desert ecosystems are not affected by
nitrogen content (Fierer et al., 2012; Sha et al., 2021). This result
points out that nitrogen addition affects soil microorganisms that
are influenced by ecosystem heterogeneity. Now, most nitrogen
addition experiments are conducted in temperate and boreal
forests (Tian et al., 2017). However, the relationship between the
underground bacterial communities and nitrogen addition in
natural forests in subtropical areas with frequent human activities,
large amounts of nitrogen deposition, and rich species has not
been systematically explored. However, in humid areas, acidic soils
in subtropical forests are more sensitive to nitrogen deposition
than in temperate forests (Lu et al., 2014). Mao’er Mountain is
located at the source of the Li River and on the Xianggui Corridor.
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Every summer, warm and humid air from the Beibu Gulf flows
northward, blocked by peaks represented by Mao’er Mountain
and gradually climbs, resulting in a decrease in temperature, and
forming terrain rain. Warm and humid air currents sometimes
meet with cold air moving southward along the Xianggui Corridor,
forming frontal rain. The special terrain that makes Mao’er
Mountain nearby rainfall is particularly abundant, making it one
of the rainfall centers in Guangxi. This effect could induce the
deposition of nitrogen in the atmosphere in this area, necessitating
the conduction of nitrogen addition experiments. The current
research in this area has focused on the differences in plant growth
characteristics and physical and chemical properties at different
altitudes or different tree species. However, the impact of nitrogen
addition on soil physical and chemical properties and bacterial
community structure remains elusive (Song et al., 2016; Tan et al.,
2019, 2023; Dong et al., 2020). A deep understanding of the changes
in soil nutrient status and bacterial community structure of natural
forests in this region under different nitrogen treatments will help
the sustainability of the regional ecosystem. A solid scientific basis
for forest management measures in response to future nitrogen
deposition will be also provided.

Under this direction, this work aims to test the impact of
different N addition rates on the soil chemical properties and
bacterial communities. Our analysis is based on three objectives:
(1) examine the impact of N addition on soil chemical properties;
(2) explore the impact of N addition on bacterial communities and
(3) study the potential mechanisms associated with changes in soil
properties and bacterial communities. It was hypothesized that: (1)
N addition increases soil nutrient content and reduces pH; (2) N
addition reduces bacterial diversity and alters bacterial community
composition and (3) pH is the main driving factor affecting the
structure of bacterial communities.

2 Research area and methods

2.1 Overview of the study area and
experimental design

The research area is located in Mao’er Mountain National
Nature Reserve in Guilin, Guangxi (110◦19′ ∼ 110◦31′E, 25◦44′ ∼
25◦58′N), the highest peak in South China, the main peak of the
Nanling Mountains (Tan et al., 2023). It is also the birthplace of
Lijiang River, Zijiang River and Xunjiang River (Tan et al., 2019).
The region is a humid mountain monsoon climate zone in the
middle subtropics, with high temperature and rain in summer, mild
and little rain in winter, annual precipitation above 3,000 mm, and
the main soil types are red and yellow soil series.

The plots were set in a subtropical evergreen broad-leaved
forest at an altitude of 1,100 m in Mao’er Mountain. Four nitrogen
application levels were set up in the plots, the nitrogen application
rate is set according to the commonly used nitrogen application
rates in subtropical regions with similar geographical locations
(Qiu et al., 2023), namely, 0 gN·m−2

·a−1, 50 gN·m−2
·a−1, 100 g

N·m−2
·a−1, 150 gN·m−2

·a−1, and five repeated quadrats were
set up for each treatment. The quadrat size was 5 m × 5 m.
The spacing between each quadrat was 5 m to avoid cross effects
between the various treatments. Nitrogen treatment was started

in July 2017, and nitrogen was applied once every 2 months.
Ammonium nitrate was dissolved in water and evenly sprayed into
the sample plot. An equal amount of clean water was applied to the
control treatment. The main tree species in the sample plot were
Lithocarpus hancei (Bentham) Rehd, Alniphyllum fortunei (Hemsl.)
Makino, Daphniphyllum macropodum, Eurya brevistyla Kobuski
and Rhododendron simsii Planch, etc. Main shrub were Symplocos
anomala, Ilex chinensis Sims, Rhododendron simsii Planch, Eurya
brevistyla Kobuski and Rhododendron cavaleriei Levl, etc. Major
herbs were Woodwardia japonica, Fordiophyton fordii, Hicriopteris
chinensis, Tripterospermum chinense and Smilax china L, etc.

2.2 Soil sample collection

In July 2019, slopes with roughly the same slope direction were
selected, and soil samples were collected using a soil auger at a
sampling depth of 0–20 cm. The soil was taken from 5 random
points in each quadrat and mixed evenly. A total of 4 (different
nitrogen application treatments) × 5 (repeated) = 20 soil samples
were collected. Part of the collected samples were put into ziplock
bags for physical and chemical property determination. Moreover,
part of them was passed through a 2 mm sieve and stored in liquid
nitrogen for cryogenic storage for subsequent DNA extraction.

2.3 Testing method

The pH value was measured by potentiometric method (soil-
to-water ratio is 1:2.5); the soil organic carbon (SOC) was
measured by potassium dichromate hydration heating-ferrous
sulfate titration method; the soil organic matter (SOM) equals
1.724 multiply SOC; the total nitrogen (TN) was measured by
H2SO4 digestion-Kjeldahl method. The soil ammonium nitrogen
was measured using 2 mol·L−1 KCl extraction-indophenol blue
colorimetric method; The nitrate nitrogen was measured using
dual-wavelength ultraviolet spectrophotometry, and soil available
phosphorus (AP) was detected using the molybdenum-antimony
colorimetric method. The soil total phosphorus (TP) was measured
using sulfuric acid-perchloric acid digestion and leaching and
molybdenum-antimony colorimetric methods (Bao Shidan, 2000).
The soil soluble carbon (DOC) was extracted with 0.5 mol L−1

K2SO4 (soil-water ratio 1: 4). After the extract was filtered by
0.45 µm membrane, the total organic carbon in the filtrate
was determined by TOC-L CPH total organic carbon analyser
(Shimadzu, Japan, the detection limit was 2 µ mol L−1)
(Haynes, 2000).

MoBio’s Power Soil TM DNA Isolation Kit (MoBio, USA) was
used for DNA extraction. The integrity of DNA was determined by
1% agarose gel electrophoresis, and the concentration and purity of
DNA were determined by Mini Drop. Ling En biological company
IlluminaPE250 high-throughput sequencing platform was used
for sequencing. The sequencing region was the 16S V3V4 region
of standard bacteria, the upstream primer was 338F, and the
upstream primer sequence was 5′-ACTCCTACGGGACGCAGCA-
3′, downstream primer was 5′-CGGACTACHVGGGTWTCTAAT-
3′. The DNA amplification conditions were pre-denatured at 98◦C
for 1 min, denatured at 98◦C for 10 min, annealed at 50◦C for 30
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cycles at 72◦C, and extended for 5 min at 72◦C. The sequencing
library was prepared by TruSeq Nano DNA LT Library Prep Kit of
Illumina company. The final fragments of the library were selected
and purified by 2% agarose gel electrophoresis. The Illumina Miseq
platform was used for sequencing. Microbiological data can be
obtained from the NCBI website (No: PRJNA1062461).

2.4 Data processing

The WPS table was used for data sorting and calculation;
Minitab19 was used for difference analysis, The significant
difference was explored by Tukey’s Honestly Significant Difference
(HSD) test; prism8.0 was used to draw correlation analysis
diagrams; Pearson rank was used for the correlation analysis;
Canoco5.0 was used to draw redundancy analysis diagrams; the
ggven packages in the R language were used to draw Venn
map; the vegan packages in the R language were used to
draw the NMDS map.

3 Results and analysis

3.1 Impact of different nitrogen
application levels on soil physical and
chemical properties

The soil physical and chemical properties among the different
nitrogen application treatments are listed in Table 1. The soil pH
content under the IV nitrogen application level was significantly
lower than that of other nitrogen application levels and control
(P < 0.05). Compared with CK, the pH of treatment IV decreased
by 4.23%. The nitrogen application level was II class, the pH value
was higher than that of the control, and decreased with the increase
of the nitrogen application rate. The content of soil organic carbon
and organic matter under the IV nitrogen application level was
significantly higher than that of the control (P < 0.05). Compared
with CK, the SOC of treatment IV increased by 9.28%. With the
increase in the nitrogen application rate, the content of the soil
organic carbon and organic matter increased. The soil soluble
organic carbon at the II level was significantly higher than that
at the IV level (P < 0.05). With the increase in the nitrogen
application rate, the soluble organic carbon showed a downward
trend. The total soil nitrogen under level IV nitrogen fertilization
level was significantly higher than other nitrogen fertilization
treatments (P < 0.05). In addition, the TN of treatment IV
increased by 19.69% and nitrogen showed an increasing trend with
the increase of the nitrogen fertilization amount. No significant
difference in soil ammonia nitrogen among the different nitrogen
application treatments was detected. However, it increased with
the increase of the nitrogen application rate. Although the soil
nitrate nitrogen had no significant difference among the different
nitrogen application rates, it first increased and then decreased
with the increase of the nitrogen application rate. There were
also significant differences in soil total phosphorus between the
different nitrogen fertilization treatments. The total phosphorus
content in the IV nitrogen fertilization treatment was significantly
lower than the control (P < 0.05). Significant differences in the

soil total phosphorus among the different nitrogen application
treatments were recorded. In particular, the total phosphorus
content under the grade IV nitrogen application was significantly
lower than that under control (P < 0.05). Furthermore, the
total phosphorus content under the grade III nitrogen application
level was significantly higher than that under grade IV nitrogen
application level (P < 0.05). Total phosphorus showed a trend
of first increasing and then decreasing with the increase of the
nitrogen application rate. No significant difference in soil available
phosphorus among the different nitrogen application treatments
was detected.

3.2 Soil bacterial diversity and
community composition under different
nitrogen application levels

The total number of OUT was 2,683, and the common OUT
was 1,774 (Figure 1). Among them, the unique OUT numbers of
nitrogen application levels of CK, II, III, and IV were 50, 33, 52, and
44, respectively, accounting for 1.86, 1.23, 1.94, and 1.64% of the
total OUT, respectively. By performing a pairwise comparison, it
was found that the total number of OUT at CK and III levels was up
to 2,084. Under different nitrogen application levels, the number of
single OUT was CK2289, II2259, III2349, and IV2269, respectively.
With the increase in the nitrogen application rate, the number of
OUT first increased and then decreased. The number of OUT after
nitrogen application under II and IV levels was lower than that of
the control, and the number of OUT under III nitrogen treatment
was 2.62% higher than that of the control.

There was no significant difference between the Shannon
index and Simpson index among the different nitrogen treatments
(Figure 2). More specifically, the Shannon index and Simpson
index first increased and then decreased with the increase of the
nitrogen application. The Shannon index and Simpson index were
lower than the control at grade II and IV nitrogen application
levels; under III level of nitrogen application, the Shannon index
and Simpson index were higher than those of the control. The
Chao1 index at the III nitrogen application level was significantly
higher than that at the II nitrogen application level; with the
increase in the nitrogen application rate, the Chao1 index first
increased and then decreased; The Chao1 index at the II and IV
nitrogen application levels was lower than the control; under the
III nitrogen application level, the Chao1 index was higher than the
control.

Acidobacteria, Proteobacteria, Chloroflexi, Firmicutes, and
Verrucomicrobia were the main dominant bacteria (Figure 3). The
response of the different bacterial groups to nitrogen addition
was different. The abundance of Acidobacteria increased with
the increase of the nitrogen application, while the abundance of
Proteobacteria and Actinobacteria decreased with the increase of
the nitrogen application. The relative abundance of Chloroflexi
and Firmicutes first increased and then decreased; the relative
abundance of Verrucomicrobia first decreased and then increased.
Compared with the control without nitrogen application, the
abundance of Acidobacteria at the IV level was higher than that of
the control.
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TABLE 1 Soil physical and chemical properties under different nitrogen addition levels.

Nitrogen
addition
levels

pH SOC
(g/kg)

SOM
(g/kg)

DOC
(mg/kg)

TN
(g/kg)

NH4
+-N

(mg/kg)
NO3

−-N
(mg/kg)

TP
(g/kg)

AP
(mg/kg)

CK 4.26± 0.08A 38.57± 1.60B 66.50± 2.76B 23.09± 3.86AB 1.93± 0.13B 18.36± 1.36A 2.37± 0.32A 0.54± 0.03A 1.25± 0.28A

II 4.29± 0.04A 40.27± 1.84AB 69.43± 3.17AB 27.81± 5.35A 1.89± 0.21B 14.03± 2.89A 2.18± 0.37A 0.45± 0.05BC 1.18± 0.30A

III 4.21± 0.05A 41.36± 2.18AB 71.30± 3.77AB 21.41± 3.34AB 1.94± 0.20B 16.60± 3.43A 3.09± 0.30A 0.50± 0.02AB 1.40± 0.44A

IV 4.08± 0.08B 42.15± 1.78A 72.67± 3.08A 20.06± 2.57B 2.31± 0.22A 18.34± 3.69A 2.96± 0.93A 0.42± 0.03C 0.93± 0.19A

Different capital case letters in the same column indicate significant differences (P < 0.05). Data in table are mean± standard deviation.

FIGURE 1

Venn diagram showing the unique and shared OTUs at different
nitrogen treatments in bacterial communities.

3.3 Impact of nitrogen addition on soil
bacterial community structure

As can be seen from Figure 4, the high nitrogen addition has a
certain effect on the soil bacterial community structure. At the level
of IV nitrogen application, the soil bacterial community structure is
similar. However, different nitrogen treatments do not cause great
change to the community structure, and the community structure
does not appear obvious separation. Under the level of CK and
III nitrogen application, the soil bacterial community was mainly
distributed on the lower right side of NMDS. The soil bacterial
community structure without nitrogen fertilizer (CK) was similar
to that under III nitrogen application, indicating that there may
be the same species. Under the level of II nitrogen application, the
structure of the bacterial community was scattered.

3.4 Correlation analysis between the soil
bacterial α diversity and the
physicochemical properties under
different nitrogen application levels

The correlation analysis showed that soil pH was negatively
correlated with the total nitrogen and nitrate nitrogen. The soil

organic carbon was positively correlated with the soil organic
matter and nitrate nitrogen and the soil organic matter was
positively correlated with the nitrate nitrogen. Additionally, the
soluble organic carbon was negatively correlated with the total
nitrogen, and the soil nitrogen was positively correlated with the
nitrate nitrogen (Figure 5). No correlation between the ammonium
nitrogen and organic carbon and organic matter, as well as
between the soluble organic carbon and phosphorus was detected.
No correlation between the nitrate nitrogen and the available
phosphorus was also found. There was a significant positive
correlation between the Simpson index and the Shannon index, and
a significant negative correlation between the Shannon index and
the Chao1 index. There was also no significant difference between
the soil diversity and soil physical and chemical properties.

3.5 Redundancy analysis between the
soil physicochemical properties and
bacterial community under different
nitrogen application levels

The soil physical and chemical properties and bacterial diversity
index were used as explanatory factors, and the dominant flora
at the bacterial phylum level was used as response variables for
redundancy analysis (Figure 6). The degree of explanation of the
first axis was 35.28%, and that of the second axis was 7.31%.
The common explanation of the two axes is 39.96%. The soil
total nitrogen is considered the key factor driving soil bacterial
community structure, and its explanation degree was 26.4%,
P = 0.004. The second driving factor is pH, and its explanation
degree was 6.5%. The total nitrogen was positively correlated
with Acidobacteria, Elusimicrobia, Verrucomicrobia, and WPS-
2, and negatively correlated with Actinobacteria, Firmicutes, and
Proteobacteria.

4 Discussion

4.1 Impact of nitrogen addition on the
soil physical and chemical properties

In our work, nitrogen addition has a significant impact on
some soil nutrients. When the nitrogen application level was level
IV, the soil pH was significantly reduced, and was negatively
correlated with total nitrogen. The results of this work are also
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FIGURE 2

Bacterial diversity index. Different lowercase letters indicate significant differences under different nitrogen application treatments (P < 0.05).

FIGURE 3

Relative abundance of soil bacterial phylum levels under different nitrogen addition levels.

in good agreement with the majority of the reported outcomes in
the literature (Hu et al., 2010; Li et al., 2018; Tian et al., 2018;
Wang et al., 2023a). This is mainly because nitrogen addition
decreased the amount of exchangeable cations in soil, resulting in
soil acidification. Our correlation study also showed the existence
of a significant negative correlation between the pH and nitrate
nitrogen (Figure 5, P < 0.05). This effect indicates that nitrogen
addition led to the increase of both the nitrate nitrogen content and
nitrate ions in the soil, resulting in soil acidification.

It was also proven that nitrogen addition increased soil organic
carbon and organic matter content. When the nitrogen application
level was level IV, the organic matter and organic carbon content
were significantly higher than the control. This result is consistent
with the previously reported works in the literature suggesting
that nitrogen application in forest ecosystems can promote the
accumulation of soil organic matter (Yang et al., 2023). When

the nitrogen application rate was level IV, the soil nitrogen
content was also significantly higher than the control and other
nitrogen application levels. The reason for this phenomenon may
be the increase in root productivity and the acceleration of litter
decomposition after nitrogen enrichment. It is well-known that
organic matter components enter the soil (Zhang et al., 2023).
In addition, the increase in nitrogen content will improve the
nutritional status of litter and increase the activity of carbon
and nitrogen hydrolases in the soil. This, accumulation of soil
nitrogen and organic matter will be promoted (Yang et al., 2022;
Xu et al., 2023).

Our work found that soluble organic carbon was higher than
the control under the level II nitrogen fertilization level. As
the amount of nitrogen application increased, DOC showed a
downward trend. Under the level IV nitrogen fertilization level,
DOC was significantly lower than the level II nitrogen fertilization
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FIGURE 4

NMDS analysis of soil bacterial community.

level, indicating that low nitrogen increases DOC content. In
striking contrast, medium and high nitrogen suppresses DOC
concentration. This research result is consistent with the outcomes
of Yuan (Yuan et al., 2022) who studied the impact of nitrogen
addition on the soluble organic carbon content of Taiwanese pine
soil in subtropical areas. From the nitrogen addition in Northeast
China, it was found that low nitrogen promoted soluble organic
carbon while high nitrogen inhibited it. These results of the DOC
content are consistent with (Shi et al., 2019). The 7-year long-
term nitrogen addition test also showed that the DOC content was
significantly reduced (Lu et al., 2013). This effect may be because
nitrogen application can promote the degradation of refractory
organic matter. As a result, a large amount of DOC will be produced
after low nitrogen addition. In high-nitrogen soils, the increase in
microbial activity induced by nitrogen addition leads to faster DOC
absorption (Xu et al., 2023). N addition, soil acidification after high
nitrogen addition inhibits enzyme activity and thus reduces DOC
(Zak et al., 2011).

Our work concluded that different nitrogen application levels
had no significant impact on soil available nitrogen. In particular,
the content of ammonium nitrogen after nitrogen addition was
lower than that of the control group. This result is inconsistent
with the previously reported outcomes indicating that nitrogen
addition significantly increased the soil available nitrogen (Zeng
et al., 2016; Wang et al., 2018c). It can be speculated that this effect
may be due to the rapid uptake and utilization of available nitrogen
by plants after nitrogen enrichment, especially for ammonium
nitrogen. Relevant works have also shown that plants will absorb
easily available nitrogen in the soil after nitrogen addition, resulting
in a significant increase in nitrogen content in leaves (Tian et al.,
2018).

It was also found that when the nitrogen application level
was level IV, the soil total phosphorus was significantly lower
than the control. In parallel, the available phosphorus did not
show significant differences with changes in nitrogen application
amount. Previous long-term nitrogen addition experiments also
confirmed this result. The nitrogen addition intensified the
phosphorus limitation that occurs in a variety of terrestrial
ecosystems including tropical forests, possibly because nitrogen
enrichment stimulates plant uptake of phosphorus (Wang et al.,
2023c). Another reason may be that the activity of phosphorus-
solubilizing bacteria in the soil decreases after nitrogen is added
(Wang et al., 2023a). When the pH decreases, the activity of alkaline
phosphatase will also be inhibited, resulting in a decrease in the
phosphorus content. When the nitrogen application rate was 150
gN·m−2

·a−1, some soil chemical properties underwent significant
changes. This effect points out that the current nitrogen application
rate in the Central Asian hot region has reached the threshold
for changing physical and chemical properties. When the local
nitrogen content exceeds the threshold, the nitrogen input should
be controlled to reduce the harm to the forest.

4.2 Impact of nitrogen addition on soil
bacterial diversity and composition

Our work found that with the application of nitrogen fertilizer
levels, the total OUT number showed a trend of first increasing
and then decreasing, indicating that an appropriate amount
of nitrogen input could improve the kind of soil bacterial.
However, excessive nitrogen input can inhibit the kind of soil
bacteria. The reason for this effect could be ascribed to the low
nitrogen input that can accelerate the decomposition of litter and
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FIGURE 5

Correlation analysis between soil physicochemical properties and bacterial diversity. Significant correlation are indicated by “*”, “**” or “***”
according to Pearson correlation test (*P < 0.05, **P < 0.01, and ***P < 0.001).

promote the process of nutrient cycling by providing nutrition
for the growth and development of microorganisms. Hence, the
growth of microorganisms is promoted (Zhang et al., 2023).
Excessive nitrogen content will lead to soil acidification, which
is not conducive to the growth and survival of microorganisms
(Yang et al., 2020). After adding nitrogen, the growing soil
environment of microorganisms will become more harsh. Taking
into account that most bacteria have poor tolerance to soil pH, a
decrease in the number and diversity of bacteria will be induced
(Wang et al., 2018d).

Simpson index and Shannon index can reflect the level of
biodiversity in a region. The existence of a larger value points out
a higher community diversity. The Chao1 index is also used to
indicate the number of OUT in a sample. A larger value of the
Chao1 index indicates a greater number of species trees in the
sample. This work showed that there is no significant difference
in the bacterial diversity index under different nitrogen application
levels. As the amount of nitrogen application increased, a trend of
first increasing and then decreasing was recorded. It is also worth
paying attention to the diversity of the soil bacteria under level II
and level IV nitrogen application levels. The diversity of the soil
bacteria under the level III nitrogen fertilization level was higher
than that of the control. The type of nitrogen fertilizer application

also has a certain impact on bacterial diversity. Previous meta-
analysis works have also found that the application of ammonium
nitrate did not significantly change the bacterial diversity of
forest soil (Wang et al., 2023b). Considering that ammonium
nitrate is easier for plants to absorb and utilize, it will not cause
nitrogen fertilizer to be retained in the soil thus inducing soil
acidification. In addition, the nitrogen application time in this work
was short, so it failed to have a significant impact on bacterial
diversity. In our work, a high nitrogen input had a tendency
to reduce bacterial diversity. In general, long-term nitrogen
addition will reduce bacterial diversity. After nitrogen addition,
microorganisms will be subject to aggravated environmental stress.
Most bacteria have a negative impact on soil pH. The adaptive
range is poor, which will lead to a reduction in bacterial diversity
(Wang et al., 2018b).

The bacterial α diversity did not significantly differ between the
different nitrogen fertilization levels. Nonetheless, the composition
of dominant soil bacteria changed between the different nitrogen
fertilization treatments in our work. These results are consistent
with the reported outcomes of He (He et al., 2023), reporting
that no significant changes in microbial community diversity,
composition, or structure were observed after 6 years of N addition.
The duration of the N application may be one possible reason
for this effect (Zheng et al., 2022). The nitrogen application time
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FIGURE 6

Analysis of soil physicochemical properties and bacterial community redundancy.

was also too short in our work. A previously reported work in
the literature determined that the negative effects of N deposition
on the microbial community were enhanced with the duration
of experimental N input (Wang et al., 2018a). Acidobacteria,
Proteobacteria, and Chloroflexi were the main dominant phyla.
Previously, it was found that these bacteria were common
dominant bacteria when nitrogen fertilizer was applied to acid soil
in subtropical areas (Nie et al., 2018; Wang et al., 2018d, 2021;
Xi et al., 2022). Numerous works have demonstrated that adding
nitrogen fertilizer could increase the abundance of bacteria with
a nutrient rich lifestyle and decrease the abundance of bacteria
with a nutrient poor lifestyle (Nie et al., 2018; Wang et al.,
2018d, 2021). However, our work found that with the increase
in nitrogen content, the abundance of some oligotrophic bacteria
(Acidobacteria) yielded an upward trend, while the abundance
of eutrophic bacteria (Actinobacteria and Proteobacteria) showed
a downward trend. This result is consistent with the results of
Xi (Xi et al., 2022), where nitrogen addition experiments were
conducted. The authors found some bacterial phyla are more
sensitive to the influence of soil physical and chemical properties
than their own trophic types in subtropical areas. Nitrogen addition
experiments in temperate regions also found that Acidobacteria and
Chloroflexi increased after nitrogen addition, while Actinobacteria
decreased with nitrogen addition (Weng et al., 2023). Acidobacteria
is a kind of acidophilic bacteria (Weng et al., 2023), which is
usually negatively correlated with pH (Figure 6). The addition of
nitrogen, especially high nitrogen, significantly reduced soil pH,
resulting in an increase in the abundance of Acidobacteria. The best
growth range of soil bacteria needs to be within a certain range
of pH. After nitrogen application, the content of pH decreased,
and the living conditions of soil bacteria were more severe, which

could interpret the decrease in the abundance of Proteobacteria
(Wang et al., 2018c, 2023a).

4.3 Relationship between the soil
physical and chemical properties and
bacterial community

Soil bacterial community structure is closely related to the
soil physical and chemical properties (Wang et al., 2018c; Yang
et al., 2020, 2022). According to the literature, the soil total
nitrogen content, pH and electrical conductivity are important
factors leading to changes in soil bacterial communities (Ma
et al., 2023). Our work has proven that soil environmental factors
can significantly affect bacterial communities. Soil total nitrogen
and pH are key factors that drive bacterial communities. Total
nitrogen has a significant positive correlation with Acidobacteria,
Elusimicrobia, and Verrucomicrobia, and pH has a significant
positive correlation with Chloroflexi, Firmicutes, and Bacteroidetes.
The total nitrogen content of soil had multiple effects on microbial
growth, composition, and function. The soil pH could affect
the microbial structure by changing the enzyme activity and
controlling the suitable range for microbial growth (Wang et al.,
2018b; Ma et al., 2023).

5 Conclusion

Nitrogen addition had a significant impact on some chemical
properties. Under the level IV (150 gN·m−2

·a−1) of nitrogen
application level, the soil organic carbon and total nitrogen were
significantly higher than the control, while soil pH, DOC, and total
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phosphorus were significantly lower than the control. The bacterial
community was mainly composed of Acidobacteria, Proteobacteria,
and Chloroflexi. With the increase of the nitrogen application level,
the abundance of Acidobacteria increased and the abundance of
Proteobacteria decreased. pH is significantly negatively correlated
with the soil total nitrogen and nitrate nitrogen. Moreover, the
soil organic carbon and organic matter are significantly positively
correlated with nitrate nitrogen, and no significant correlation
between the soil chemical properties and bacterial diversity was
detected. The soil total nitrogen and pH were found to be the
key driving factors for bacterial communities. Nitrogen addition
affected the soil bacterial communities by regulating soil nitrogen
and pH. The short-term nitrogen addition under the forest was
studied in this work, while canopy nitrogen addition can better
reflect the actual nitrogen deposition situation. Long term nitrogen
application needs to be tracked and monitored, and a canopy
nitrogen addition experimental platform should be established in
the central and subtropical regions.
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