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Sour meat is a popular traditional fermented product and is a rich source of novel 
strains with probiotic potential. In this study, we aimed to assess the probiotic 
potential of lactic acid bacteria (LAB) strains isolated from fermented sour meat. 
Firstly, the microbial diversity of sour meat from four different areas in China 
was analyzed. The results showed that LAB were predominant in all samples. 
Subsequently, LAB were isolated from sour meat and a series of in vitro probiotic 
tests were carried out. A total of 130 bacterial strains with dissolved calcium 
were obtained and 10 strains showed a range of 89–97% survival in an acidic 
environment and high tolerance to bile salts. The ranges of hydrophobicity and 
auto-aggregation of 10 strains were 4.85–80.75% and 1.58–84.2%, respectively. 
Besides, all 10 strains exhibited high antimicrobial activity and antioxidant activity, of 
which, DZ24 possessed the strongest free radical scavenging (45.1%) and anti-lipid 
oxidizing ability (90.3%). Furthermore, DZ24 was identified as Lactiplantibacillus 
plantarum by 16S rRNA gene sequencing. Moreover, the fermentation indexes 
showed that DZ24 could rapidly reduce the pH to 4.14 and showed high salt and 
nitrite resistance and antioxidant ability. All the above experimental results indicate 
that Lactiplantibacillus plantarum DZ24 promise a suitable probiotic candidate 
for future applications in the fermented functional meats.
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1 Introduction

Fermented foods were parts of the human diet from early civilization and were consumed 
for thousands of years (Mukherjee et al., 2023). In 2021, Fermented foods were defined as 
“foods made through desired microbial growth and enzymatic conversions of food components 
(Mukherjee et al., 2023). They may act as delivery vehicles for probiotics or other “biological” 
substances, including prebiotics and postbiotics (Long, 2016). Lactic acid bacteria (LAB) are 
essential microorganisms in fermented foods (Munekata et al., 2021), which can quickly 
produce acid, inhibit spoilage microorganisms, and ensure food safety (Nie et al., 2023). In 
addition, these microorganisms are also known for their probiotic effects, such as promoting 
the absorption of nutrients (Somashekaraiah et  al., 2019), improving human immunity 
(Munekata et al., 2020), and maintaining the balance of intestinal flora (Xing et al., 2016). LAB 
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has also been demonstrated to reduce insulin resistance, relieve 
oxidative stress, protect β cells, and help alleviate diabetes (Wang and 
Li, 2022). Moreover, some specific LAB strains are capable of 
producing exopolysaccharides (EPS), which can affect the host by 
modulating the immune response (Xia et al., 2021). Genera such as 
Lactobacillus, Bifidobacterium, Streptococcus, Lactococcus, and 
Pediococcus are the most common types of probiotic LAB in food 
(Abid et al., 2019).

Numerous studies have confirmed the probiotic potential of LAB 
isolated from fermented foods, such as artisanal cheese (Albayrak and 
Duran, 2021), goat’s milk (Tian et  al., 2023), fermented mustard 
(Chang et al., 2015), rose sauce (Xia et al., 2021). With the increasing 
concern for food nutrition and health, fermented meat products with 
functional benefits are increasingly favored by consumers (Ayyash 
et al., 2019). Using probiotics as meat starters can confer fermented 
meat products its probiotic properties (Wang et al., 2021). However, 
the characteristics of fermented meat products, such as high salt 
concentration, low pH, and low water activity, are more likely to cause 
the inactivation of probiotics from other sources (Mukherjee et al., 
2023). Screening for the probiotic potential strains from meat 
products can solve this problem (Feng, 2020).

In fact, the separation and screening of LAB in fermented meat 
products have also been reported. For example, Lactiplantibacillus 
strains with probiotic potential were isolated from traditional 
fermented fish products (Gupta et  al., 2021). P. pentosaceus with 
antioxidant effect were isolated from Harbin red sausage (Chen et al., 
2015). However, the above studies are only the results of applied 
studies of specific probiotic strains in specific fermented meat 
products. Naturally fermented sour meat is a traditional meat product 
in the minority areas of southwest China. It is mainly made from fresh 
pork with seasonings such as rice, glutinous rice, cornstarch, chili 
peppers, salt and sugar. The natural bacteria present in the 
fermentation environment are utilized for anaerobic fermentation. It 
is rich in free amino acids and high nutritional value (Huang et al., 
2021). It was found that the fermentation environment (pH = 4–5, 
anaerobic fermentation) of sour meat was suitable for the growth of 
LAB (Zhang et al., 2020). However, the research on the probiotic 
potential of LAB in fermented sour meat products is limited. 
Therefore, this study aimed to screen the LAB with both fermentation 
and probiotic potential, and evaluate their probiotic properties in 
vitro. It provides some basis for the development of starter culture for 
functionally fermented meat products.

2 Materials and methods

2.1 Sample collection

Four samples were collected from the major sourdough producing 
markets in China. XM refers to the sample from Libo, Guizhou, which 
was fermented for 3 months. DZ refers to the sample from Zunyi, 
Guizhou, which was fermented for 6 months. YZ refers to the sample 
from Lincang, Yunnan, which was fermented for 12 months. MJ refers 
to the sample from Lincang, Yunnan, which was fermented for 
24 months. They were made using unpasteurized pork and following 
the traditional process without the addition of commercial starter 
cultures. Samples were stored at −80°C immediately after collection 
for subsequent experiments.

2.2 Determination of microbial diversity in 
sour meat

Total genomic DNA was isolated from samples using the Tiangen 
Plant Genome Kit (Shandong Qingdao Weilai Biology Science and 
Technology Co., Ltd.) according to the manufacturer’s protocol. DNA 
quality and quantity were assessed using absorbance ratios of 
260–280 nm and 260–230 nm. The DNA was then stored at −80°C 
until further processing. The V3-V4 region of the bacterial 16S rRNA 
gene was amplified with primers 338F (5′-ACTCCTACGGG 
AGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAA 
T-3′). PCR amplification was performed using a total volume of 50 μL, 
which contained 5 μL of buffer, 1 μL of Taq Polymerase, 1 μL of dNTP, 
10 μM of each primer, and 1 μL of genomic DNA. Thermal cycling 
conditions were as follows: an initial denaturation at 95°C for 5 min, 
followed by 35 cycles at 95°C for 1 min, 50°C for 1 min, and 72°C for 
1 min, with a final extension at 72°C for 7 min. The PCR products 
from the first step of PCR were purified using VAHTS DNA Clean 
Beads. A second-round of PCR was then performed using a total 
volume of 40 μL that contained 20 μL of 2 × Phusion High-Fidelity 
Master Mix (New England BioLabs), 8 μL of ddH2O, 10 μM of each 
primer, and 10 μL of PCR products from the first step. Thermal 
cycling conditions were as follows: an initial denaturation at 98°C for 
30 s, followed by 10 cycles at 98°C for 10 s, 65°C for 30 s, and 72°C for 
30 s, with a final extension at 72°C for 5 min. Finally, all PCR products 
were quantified using a Nanodrop™ 2000 spectrophotometer 
(Thermo Scientific, Wilmington, DE, United  States) and pooled 
together. HTS analysis of bacterial rRNA was performed on the 
purified, pooled sample using the Illumina Hiseq 2,500 system (San 
Diego, CA, United  States) (2 × 250 paired ends) at Biomarker 
Technologies Corporation, Beijing, China (Wang et al., 2022).

2.3 Isolation of bacterial strains

Isolation of bacterial strains were based on the method described 
by Grujovic et al. (2022). A total of 5 g samples was weighed and 
mixed with 45 mL of 0.9% (g/L) sterile saline. After continuous 
dilution from 10−1 to 10−7, the bacterial solution was spread onto 
plates containing MRS agar (Solarbio, Beijing) with 0.3% CaCO3 and 
incubated at 37°C for 48 h. At the end of the culture period, 40 
individual colonies of different shapes were isolated from each sample 
and purified by streaking onto MRS agar. Pure isolated strains were 
stored in liquid culture using 20% (v/v) glycerol (MACKLIN, 
Shanghai) at −80°C for long-term preservation. Isolated strains 
pre-identified by catalase test, Gram’s staining and cell morphology.

2.4 Acid tolerance

The pH tolerance of the isolates were determined by counting 
viable bacteria and slightly modifying the method described by 
Yalcinkaya and Kilic (2019). The bacterial cells were cultured 
overnight (24 h) and centrifuged at 10,000 × g and 4°C for 15 min 
(5810R, Eppendor, Germany). The cells were washed twice with 
phosphate-buffered saline (PBS) (pH 7.2) and then re-suspended in 
MRS broth at pH 3.0 (adjusted with 1.0 M hydrochloric acid). After 
continuous dilution from 10−4 to 10−7, the bacterial solution were 
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taken at experimental and control groups and incubated on MRS agar 
medium at 37°C for 48 h to count the total number of viable colonies. 
Viable counts were detected on MRS agar plates, and the experiment 
was carried out in triplicate with the duplicate.

2.5 Bile salts tolerance

The bile tolerance of the isolates was determined using the method 
developed by Saboori et al. (2022). The bacterial cells were cultured 
for 24 h and then centrifuged at 10,000 × g and 4°C for 10 min. They 
were washed twice with PBS (pH 7.2), re-suspended in MRS broth 
containing 0.3% bile salts (bovine) (Solarbio, Beijing), and counted 
after 3 h. The culture without bile salt was considered the control 
culture. After continuous dilution from 10−4 to 10−7, the bacterial 
solution were taken at experimental and control groups and incubated 
on MRS agar medium at 37°C for 48 h to count the total number of 
viable colonies. The experiment was performed in triplicate with 
duplicate analysis.

2.6 Antimicrobial activity determination

The antagonistic effect of the isolates on pathogenic bacteria was 
evaluated using the agar diffusion method (Rabaoui et  al., 2023). 
Isolates were tested against Escherichia coli ATCC 25922, 
Staphylococcus aureus ATCC 12600, Salmonella enterica serovar 
typhymurium CICC 21482, and Listeria monocytogenes ATCC 19114. 
The resurgent isolates were inoculated to MRS broth and incubated 
for 24 h at 37°C under aerobic conditions. Meanwhile, the targeted 
pathogens were precultured under the same conditions in Luria-
Bertani (LB) broth (Solarbio, Beijing). Fresh cultures of the four 
targeted pathogens (100 μL) were coated on an LB agar plate and 
dried. Oxford Cups placed on plates were filled with 100 μL of 
supernatant obtained from centrifugation of isolate cultures. The 
diameters of inhibition zones were measured and recorded after 
incubating at 37°C for 24 h under anaerobic conditions. The inhibitory 
effect was estimated by the width of the inhibition zone and ranked as 
high (>25 mm, +++), intermediate (13–25 mm, ++), low 
(1–12 mm,+), and no inhibition (0 mm, −).

2.7 Cell surface hydrophobicity assay

To assess the relative surface hydrophobicity of isolates, the 
affinity of the cells for hydrocarbons was evaluated using xylene, a 
nonpolar solvent (Altarugio et al., 2018). The overnight cultures were 
collected (4,000 g for 15 min) and the pelleted cells were washed 
twice with 5 mL PBS and then re-suspended in the same buffer. The 
cell concentration was adjusted to 108 cfu/mL. Then, 1 mL of xylene 
(Tianjin Fuyu reagent) was mixed with 3 mL of cell suspension 
swirled for 1 min, and left at 25°C for 1 h. The lower aqueous phase 
was absorbed, and its absorbance was measured at 600 nm in 
triplicate to calculate the cell surface hydrophobicity (%). The 
hydrophobicity was evaluated using the following equation:

 
( ) 1

0
Hydrophobic rate % 1 100%A

A
 

= − × 
   

(1)

where A0 and A1 are the absorbance at 600 nm before and after 
extraction with xylene, respectively.

2.8 Cell auto-aggregation assay

Auto-aggregation of isolates was determined using the method 
described by Topçu et  al. (2020). The culture in MRS broth was 
centrifuged (8,000 × g, 10 min) to obtain a bacterial suspension, washed 
twice, and resuspended in PBS. Cell concentrations were adjusted to 
approximately 108 cfu/mL and 3 mL of re-suspended cells were 
transferred to the test tube and kept at 37°C for 0 and 24 h. Then, 1 mL 
was taken from the upper part of the cell suspension, and the cell density 
was determined spectrophotometrically by measurements at 600 nm. 
The auto-aggregation was evaluated using the following equation:

 
( ) 1

0
Auto aggregation rate % 1 100%A

A
 

− = − × 
   

(2)

where A0 and A1 are the absorbance at 600 nm before and after 
24 h of incubation.

2.9 Antibiotic susceptibility assay

The isolates were evaluated for their antibiotic susceptibility 
against ampicillin (10 μg), gentamicin (10 μg), vancomycin (30 μg), 
tetracycline (30 μg), erythromycin (15 μg), and clindamycin (2 μg) 
antibiotic discs (Changde Beekman Biotechnology Co, Hunan, China) 
following the method suggested by Nguyen et al. (2023). The bacterial 
suspension (100 μL) was coated evenly on the surface of the MRS agar 
plate. Antibiotic discs were placed on the plates and incubated at 37°C 
for 48 h. Results were expressed by measuring the diameter of the zone 
of inhibition and interpreted as sensitive (S), resistant (R), and 
intermediate (I) as per the manufacturer’s protocol.

2.10 Hemolytic activity

A safety test for the isolated strain was performed using the 
method described by Wu et al. (2022). Isolates were inoculated on a 
blood agar plate and cultured at 37°C for 24 h. The hemolytic activity 
was described as α hemolysis (grass green color zones around the 
colonies), β hemolysis (a clear zone of hydrolysis around the colonies), 
and γ hemolysis (no zone around the colonies). Staphylococcus aureus 
ATCC 12600 (S. aureus ATCC 12600) was applied as the 
positive control.

2.11 DPPH radical scavenging assay

The DPPH free radical scavenging ability of isolates was 
determined by Raman et al. (2022). The culture in the MRS broth was 
centrifuged (8,000 × g, 10 min) to obtain a bacterial suspension, 
washed twice, and re-suspended in PBS. Bacterial solutions were 
divided into two groups. One group was crushed with a cell crusher 
(250 W 10 S/10 s, 10 min), and then centrifuged (9,500 × g, 4°C, 
15 min) to prepare the supernatant of cell-free culture. DPPH 
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(Shanghai McLean) solution (2 mL) was mixed with both the bacterial 
solution and the acellular supernatant groups. The mixture was 
incubated in the dark for 30 min, and the optical density of the mixture 
was measured at 517 nm (A1). Two milliliters of deionized water was 
mixed with 2 mL of ethanol (95%) as blank group (A2); two milliliters 
of DPPH was mixed with 2 mL of ethanol (95%) as control group (A3). 
The DPPH radical scavenging rate was calculated as follows:

 
( ) 1 2

3 2
DPPH radical scavenging rate % 1 100%A A

A A
  − 

= − ×  −    
(3)

where A1, A2, and A3 represent the absorbance of the sample, 
control, and blank groups, respectively.

2.12 Superoxide anion radical scavenging 
activity assay

The activity of the strains were analyzed following the method 
described by Rwubuzizi (2023). A total of 0.1 mL of the microbial 
sample was mixed with 4.5 mL of Tris–HCl solution (0.05 mol/L, pH 
8.2). The mixture was incubated in a water bath at 25°C for 20 min. 
Next, 0.4 mL of o-benzyltriol (0.25 mol/L, pre-warmed to 25°C) was 
added to the mixture, and the reaction was incubated at 25°C for 
10 min. The reaction was stopped by adding 0.1 mL of 8 mol/L HCl. 
To calculate the superoxide anion radical scavenging activity, the 
absorbance was measured at 320 nm. SASA was calculated as follows:

 
( ) 0 1

0

A ASASA % 100%
A

 − 
= × 
   

(4)

where A1 is the absorbance of the sample, and A0 is the absorbance 
of the solution without the sample.

2.13 Lipid peroxidation inhibition activity 
assay

The activity of the strains were analyzed following the method 
described by Tian and Liu (2018). Twenty milliliters of linoleic acid 
emulsion included 0.1 mL of linoleic acid, 0.2 mL of Tween 20, and 
19.7 mL of deionized water. An aliquot (0.5 mL) of sample (cell 
suspension or intracellular cell-free extract) was mixed with 1 mL of 
sodium phosphate buffer (0.02 M, pH 7.4), 1 mL of linoleic acid 
emulsion and 1 mL of 1% FeSO4. After incubation at 37°C for 40 min, 
the mixture was mixed with 0.2 mL of 4% trichloroacetic acid (TCA) 
and 2 mL of 0.8% TBA. The reaction was carried out at 100°C for 
30 min and cooled. The suspension (1 mL) was mixed with 1 mL of 
butanol for 1 min, followed by centrifugation at 1800 g for 10 min, and 
the absorption value at 532 nm (AS) was measured. Phosphate buffer 
was used as a control (AB) instead of a sample. This activity can 
be expressed as follows:

 
( ) S

B

AInhibition rate of lipid peroxidation % 1 100%
A

 
= − × 
   

(5)

where As and AB represent the absorbance of the sample and 
control groups, respectively.

2.14 Bacterial species identification by 16S 
rDNA sequencing

Total genomic DNA was extracted and purified using a Tiangen 
Plant Genome Kit (Weilai Biology Science and Technology Co., Ltd., 
Shandong, China). Bacterial DNA was amplified by PCR using the 
forward primer 27 F (5′- AGAGTTTGATCCTGGCTCAG −3′) and 
reverse primer 1,492 R (5′- CTACGGCTACCTTGTTACGA -3′). PCR 
amplification was carried out in 0.2-mL tubes using PCR amplifier 
following these steps: pre-denaturation at 95°C for 5 min, denaturation 
at 95°C for 30 s, renaturation at 58°C for 30 s, elongation at 72°C for 
90 s, 35 cycles, with a final extension at 72°C for 7 min. PCR was 
carried out in 50 μL of reaction mixture, which contained 1 μL of 
genome LDNA (20 ng/μL), 3 μL of MgCl2 (25 mmol/L), 1 μL of 
deoxynucleotide triphosphate (10 mM), 1 μL of Taq DNA polymerase 
(5 u/μL), and 1.5 μL of each primer. PCR products were separated by 
electrophoresis on agarose 1.0% gels. After purification, the samples 
were sequenced using an ABI3730-XL Genetic Analyzer (Applied 
Biosystems) (Gupta et al., 2021). A BLAST search was performed to 
identify sequences deposited in GenBank.

2.15 Acid production ability test

The rapid acid production ability of the isolated strains was 
evaluated using the method described by Murahashi et al. (2020). The 
culture in the MRS broth was centrifuged (8,000 × g, 10 min) to obtain 
a bacterial suspension, washed twice, and re-suspended in PBS. The 
isolated strains were inoculated into fresh MRS liquid medium and 
incubated at 37°C for 0 h (control), 6 h, and 12 h, respectively. The pH 
was measured using a pH meter.

2.16 Nitrite resistance test

According to the national standard, nitrite added to food must 
not exceed 150 mg/kg. The capability of the strain to grow under 
fermented meat processing conditions, such as 150 mg/kg sodium 
nitrite (MACKLIN, Shanghai), in MRS broth, was performed in vitro 
using the method described by Mafra (2020). After 24 h of 
incubation in MRS broth, the optical density (OD) recorded at 
λ = 600 nm (OD600 nm) was adjusted to 0.1. The mixture was then 
incubated at 37°C for 0 (control) and 24 h, and the change in 
absorbance value was measured. All experiments were performed 
in triplicate.

2.17 Amino acid decarboxylase activity test

The activity was analyzed following the method described by Sun 
et al. (2023). The isolated strains were inoculated into MRS liquid 
medium containing 10 g/L arginine, lysine, ornithine, and tyrosine 
(0.6 g/L bromocresol violet as an indicator). A liquid medium without 
amino acids was used as the control. After incubation at 37°C under 
anaerobic conditions for 3 d, the color change of amino acid 
decarboxylase medium was observed. Red or purple color indicated 
positive, and no color change (yellow) indicated negative (Sun 
et al., 2023).
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2.18 Salt resistance test

The level of salt tolerance of isolates was analyzed following the 
method described by Banik et al. (2023). The isolates were inoculated 
on MRS agar containing 20, 40, 60, and 80 g/L NaCl at 37°C for 48 h 
to count the total number of viable colonies. Viable counts were 
detected on MRS agar plates, and the experiment was carried out in 
triplicate with the duplicate.

2.19 Statistical analysis

All data were expressed as the mean ± standard deviation of 
three independent measurements. Data were analyzed by the 
one-way ANOVA after checking for normality by Leven’s test. 
Duncans multiple comparison tests was used to determine the 
significant difference (p < 0.05) between groups. For data analysis, 
SPSS software version 19.0 (SPSS Inc., an IBM Company, 
United States) was used.

3 Results and discussion

3.1 Diversity of bacterial communities

The sequencing data of bacteria was classified at the phylum, and 
genus, levels to investigate the community structure in depth 
(Figures 1A,B). The dominant phylum of sour meat were Firmicutes, 
Proteobacteria and Bacteroidota (Figure  1A). Firmicutes and 
proteobacteria have also been reported to be the dominant flora in 
sausages and hams (Wang et al., 2021). The distribution of the most 
abundant genera in the samples was shown in Figure 1B. Samples were 
dominated by LAB with the main genera being Latilactobacillus, 

Leuconostoc, Lactiplantibacillus, Fructilactobacillus and Lactococcus. 
Lactobacillus was reported to comprise the vast majority of the 
bacterial community of fermented llama meat sausages (Wang et al., 
2022). Moreover, the highest abundance of Lactobacillus was also 
found in Suan zuo rou (Wang et al., 2022). This result was consistent 
with the results of the present study.

3.2 Isolation and purification of LAB and 
resistance to low pH and bile salts

The 127 strains showed more obvious calcium solubilization 
circles on MRS agar medium, and the colony morphology was white 
colonies with smooth surface, all of which were Gram-positive 
bacteria. The colony morphology of some of the strains under oil 
microscope is shown in Supplementary Figure S1, most of them were 
bacilli and a few were cocci. The colony counts of different isolates in 
pH 3 and 0.3% bile salts are presented in Table 1. However, only 10 
isolates survived in MRS broth medium at pH 3 and 0.3% bovine bile 
salts. The resistance values of 10 isolates to low pH and bile salts 
remained around 7.2–8.2 (log10 CFU/mL) and 4–5.6 (log10 CFU/
mL), and the survival rates were 89–97% and 46–72%, respectively. 
DZ24 showed sufficient viability at pH 3 and bile salt (0.3%) after 3 h, 
compared with the other isolates. The resistance values of isolates 
DZ24 was maintained at 8.2 (log10 CFU/mL) and 6.3 (log10 CFU/
mL), and the survival rate was 95 and 72%, respectively. The ability to 
tolerate low pH levels and bile salts is a critical characteristic for 
probiotics to survive in the unfavorable conditions of the gut (Afshari 
et al., 2022). It was found that the resistance values of Lactiplantibacillus 
plantarum screened from fermented fish were 6.4–6.6 CFU/mL 
(Gupta et al., 2021). Besides, the colony number and survival rate of 
strains isolated from raw milk were 7.4–9.6 CFU/mL, 74–99%, 
respectively (Zhang et al., 2022). Studies reported that LAB strains 

FIGURE 1

Abundance of the main microbial phylum (A) and genera (B) found in the different types of Chinese artisanal sour meat. Others represent the relative 
abundance of all other genera outside the 10 genera (B).
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FIGURE 2

Inhibitory activity of strains against Escherichia coli ATCC 25922 (A), Listeria monocytogenes ATCC 19114 (B), Staphylococcus aureus ATCC 12600 (C), 
Salmonella typhimurium CICC 21482 (D).

isolated from nectar (Somashekaraiah et  al., 2019) with probiotic 
potential were found to have a survival rate above 50% at 0.3% bile. 
The results were basically consistent with our present study. Therefore, 
10 strains performed well in vitro tests and were selected for 
further studies.

3.3 Antimicrobial activity

The antagonistic effects of the isolates on pathogenic bacteria 
were shown in Figure 2. XM1 did not inhibit Listeria monocytogenes, 
whereas the isolates showed low-to-moderate antibacterial activity 
against all pathogens. Isolates was found that they formed an 
inhibition zone of 10–18 mm on E. coli, S. aureus ATCC, Salmonella 
enterica serovar typhymurium, and L. monocytogenes. Studies was 

reported that potential probiotic LAB isolated from fermented 
beverages (Akman et  al., 2021) form zones of inhibition 11–20 
against E. coli, S. aureus, S. typhimurium, and L. monocytogenes, 
which generally agrees with the results of the present study. As 
shown in Figure  2, DZ24 has the highest antimicrobial activity 
(18 mm) for L. monocytogenese. Albayrak and Duran (2021) 
isolated Enterococcus faecium MD30 from artisanal white cheese 
and found an inhibitory (12 mm) effect on L. monocytogenes. It has 
been known that LAB produce organic acids (such as lactic acid) 
and other compounds that can inhibit bacterial growth and 
metabolism (Wang et  al., 2021). These compounds reduce the 
intracellular pH of pathogenic bacteria and affect their normal 
physiological metabolism in the human body to protect 
gastrointestinal health to a certain extent and reduce gastrointestinal 
diseases (Wang et al., 2021).

TABLE 1 Survival rate of the 14 isolates from sour meat in low pH, bile salts.

Isolates Viable microorganism count (log cfu/mL)

Heng
0 h

3 h Low acid survival 
rate
(%)

Bile salt survival 
rate
(%)pH 3.0 0.3 %BS

DZ24 8.67 ± 0.14abc 8.26 ± 0.06a 6.31 ± 0.16a 95.3 72.8

YZ49 8.15 ± 0.12d 7.32 ± 0.10g 4.43 ± 0.26c 89.8 54.3

XM38 8.85 ± 0.11a 8.25 ± 0.10a 5.30 ± 0.35b 93.2 59.9

XM47 8.45 ± 0.21bcd 8.27 ± 0.11a – 97.8 –

DZ52 8.66 ± 0.12abc 8.15 ± 0.08ab 4.00 ± 0.01d 94.1 46.2

XM60 8.86 ± 0.11ab 8.23 ± 0.12ab 5.59 ± 0.31b 92.9 63.1

XM39 8.46 ± 0.14bcd 8.10 ± 0.02abc 5.52 ± 0.33b 95.7 67.9

XM1 8.89 ± 0.22a 8.07 ± 0.02bcd 5.52 ± 0.08b 89.4 64.5

XM42 8.65 ± 0.38abc 7.95 ± 0.07cd 5.54 ± 0.02b 90.5 62.1

XM18 8.65 ± 0.27abc 7.80 ± 0.02de – 90.2 –

YZ50 8.17 ± 0.26d 7.72 ± 0.18e 4.43 ± 0.27c 94.5 54.2

XM14 8.41 ± 0.25cd 7.75 ± 0.04e – 92.2 –

YZ10 8.35 ± 0.27de 7.53 ± 0.17f 4.37 ± 0.27c 90.2 52.3

MJ112 7.53 ± 0.21e 7.26 ± 0.12g – 96.4 –

Each value in the table is the mean ± standard deviation of three experiments each with duplicate. a–gValues in the same row with different superscript letters are significantly different (p < 0.05).
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3.4 Ability of hydrophobicity and 
auto-aggregation assays

The hydrophobicity and auto-aggregation ability of the 10 isolates 
are summarized in Figure 3. All 10 isolates of bacteria showed different 
levels of hydrophobicity and auto-aggregation, ranged from 4.85–80.75% 
and 1.58–84.2%, respectively. DZ24 exhibited the highest percentage of 
hydrophobicity (80.75%) and auto-aggregation (84.2%). Recently, the 
study reported the isolation of E. durans MD 57 with good probiotic 
potential from artisanal white cheese (Albayrak and Duran, 2021), which 
demonstrated a high hydrophobicity value (41.6%), and the result of this 
study was much higher than 41.6%. Moreover, previous literatures also 
established that Lactobacillus exhibited a wide range of auto-aggregation 
of 5–68% (Gupta et al., 2021). Notably, the auto-aggregation rate of DZ24 
was 16% higher than in this study. High hydrophobicity makes it easier 
for bacteria to penetrate the host tissue and exert an effect, indicating 
that bacteria have good adhesion to the intestinal mucosa and intestinal 
cells (Raman et al., 2022). The hydrophobicity and auto-aggregation of 
bacteria are related to their adhesion ability, which is essential for 
determining bacterial colonization in the intestine (Tang et al., 2022).

3.5 Antibiotic susceptibility assay

The safety of the selected isolates was tested based on antibiotic 
sensitivity, and the results are shown in Table 2. In this study, the 
results of the proportional calculations showed that the isolates were 

resistant to vancomycin (100%), tetracycline (90%), erythromycin 
(50%), ampicillin (10%), gentamicin (80%), and clindamycin (50%). 
DZ24 was resistant to vancomycin, gentamicin, clindamycin, and 
erythromycin but sensitive to tetracycline and ampicillin. Sensitivity 
of LAB to antibiotics is an important criterion for evaluating the 
safety of potential probiotics (Ozkan et al., 2021). Studies shown that 
LAB are sensitive to antibiotics (such as erythromycin and 
tetracycline) that inhibit the synthesis of proteins, but are resistant to 
aminoglycosides (such as gentamicin) and glycopeptides 
(vancomycin) (Wu et al., 2022). Moreover, Fan et al. (2022) isolated 
Levilactobacillus brevis from Chinese Bai jiu was resistant to 
vancomycin, but susceptible to clindamycin. However, according to 
previous studies, some strains are naturally resistant to common 
antibiotics, such as vancomycin (Zhang et al., 2020). These studies 
provide a reference for the experimental results.

3.6 Hemolytic reaction

As shown in Table 2 and Supplementary Figure S2, all the isolates 
had no clear zone on the blood agar plates, surrounding their colonies, 
and thus were γ-hemolytic or non-hemolytic. Some studies reported 
that the hemolytic activity of LAB with probiotic potential isolated 
from Duimaj (Soleimani et al., 2023) and homemade pickles (Wu 
et al., 2022) showed non-hemolytic activity. If hemolysis occurs, the 
strain may produce hemolysin, which damages body tissues and 
harms human health (He et al., 2021).

FIGURE 3

The hydrophobicity and auto-aggregation ability of the 10 isolates. Hydrophobicity and auto-aggregation rate. a–gValues in the same row with different 
superscript letters are significantly different (p < 0.05).
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FIGURE 4

DPPH radical scavenging rate of the 10 isolates. a–gValues in the same row with different superscript letters are significantly different (p < 0.05).

3.7 Antioxidant activity

In human metabolism, the body spontaneously produces reactive 
oxygen species, such as hydroxyl radicals and superoxide anion 
radicals, which can destroy the balance between cell antioxidant 
capacity and the production of reactive oxygen species (Liu et  al., 
2021). This leads to oxidative stress, which may lead to diabetes, stroke, 
and other diseases (Liu et al., 2021). Therefore, the antioxidant activity 

of the strain is a very important probiotic property. As shown in 
Figures  4–6, all isolates exhibited different degrees of antioxidant 
ability. On the one hand, the DPPH radical scavenging rates of all 
isolates in the intact cell and cell-free groups were 5–58% and 13–34%, 
respectively (Figure  4). Among them, DZ24 was found with high 
antioxidant activity and the DPPH scavenging rates was 45.1%. Ji et al. 
(2015) reported that the DPPH scavenging rates of 11 Lactobacillus 
strains closed to 50%. Furthermore, Lacticaseibacillus paracasei 

TABLE 2 Antibiotic susceptibility and hemolysis test of the 10 isolates in fermented sour meat.

Isolates VAN TET E AMP GM CC Haemolysisa

XM42 R R I S R R γ

DZ24 R S I S R R γ

XM1 R R I S R R γ

XM39 R R R S R R γ

YZ49 R R S R R S γ

XM60 R I S S R S γ

XM38 R I S S S R γ

YZ5 R I S S R S γ

DZ52 R I S S I S γ

YZ10 R R S S R S γ

S, Sensitive; I, Intermediate; R, Resistant; Vancomycin (VAN, 30 μg), Tetracycline (TET, 30 μg), Erythromycin (E, 15 μg), Ampicillin (AMP, 10 μg), Gentamicin (GM, 10 μg), Clindamycin (CC, 10 μg).
aγ-No hemolytic reaction.
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(NM-11) isolated from fermented dairy products was a probiotic with 
high antioxidant activity and DPPH radical scavenging more than 30% 
(Abduxukur et al., 2023). The DPPH scavenging rate of DZ24 was 15% 
higher than that of this strain. Furthermore, Liu et al. (2020) reported 
the selected strains of LAB had a good DPPH scavenging ability of 
42.6%. This was consistent with the results of this study. On the other 
hand, superoxide anion clearance of all isolates in the intact and cell-
free groups ranged from 3 to 34.7% and 13–36.9%, respectively. The 
activity of XM39 was the highest in the intact cell group, accounting 
for 34.7%. The cell-free strain DZ24 had the highest superoxide anion-
scavenging rate (36.9%) (Figure 5), which was higher than that of 
control Vitamin C (35.6%). Inhibition of lipid peroxidation is a well-
established biomarker for evaluating the total antioxidant activity of 
bioactive ingredients in bacteria (Abduxukur et al., 2023). As shown in 
Figure 6, the cell-free supernatants of the 10 isolates all had a certain 
anti-lipid peroxidation ability, among which DZ24 had the highest 
value (90.3%). Chen et al. (2015) isolated strains from Harbin dry 
sausage in the intracellular cell-free extract; one of P. pentosaceus had 
the highest inhibitory effect on linoleic acid peroxidation with a rate of 
57.1%. Besides, some studies have screened the LAB with excellent 
antioxidant activity from Tibetan mushrooms (Lee et al., 2020), and 
their superoxide anion scavenging rate and lipid peroxidation 
resistance reached 43.21 and 45.97%, respectively. Hence, these 
findings further support the better antioxidant activity observed in the 
DZ24 strain obtained in this study.

3.8 Molecular identification of LAB

Combining the results of the above experiments, 16S rRNA 
sequencing was performed on the best-performing DZ24, and the 
results were compared with the NCBI database. DZ24 was identified 
as Lactiplantibacillus plantarum, which provided important insights 
into the specific types of LAB that were isolated and their potential 
applications for further study and development (Table 3).

3.9 Results of fermentation characteristic 
test

The results presented in Table 4 indicated that Lactiplantibacillus 
plantarum DZ24 reduced the pH from 5.85 to 4.14 after 24 h of 
culture, demonstrating its rapid acid-production ability. Studies have 
shown that the acid-producing capacity of LAB is an important index 
to evaluate its fermentation characteristics. Similarly, Nie et al. (2023) 
also reported that the LAB (Lactiplantibacillus plantarum) reduced the 
pH from 5.75 to 4.50 after 24 h of culture. Moreover, Lactiplantibacillus 
plantarum DZ24 exhibited a tolerance level of 150 mg/kg nitrite under 
culture conditions. It was reported that the capacity to tolerate sodium 
nitrite concentrations was an important factor for probiotic viability 
in fermented meat products (Bis-Souza et al., 2020). A commercial 
starter culture was used in the fermentation of sausages showed that 

FIGURE 5

Superoxide anion radical scavenging rate of the 10 isolates. a–gValues in the same row with different superscript letters are significantly different 
(p < 0.05).
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FIGURE 6

Anti-lipid-peroxidation capacity of the 10 isolates. a–gValues in the same row with different superscript letters are significantly different (p < 0.05).

TABLE 3 Identification of 10 strains of LAB by 16S rRNA gene sequencing.

Strain 16sRNA molecular identification

Identity (%) Identity Access number*

DZ24 99.93%
Lactiplantibacillus

plantarum
NR104573

YZ49 99.72% Pediococcus pentosaceus NR042058.1

XM1 – – –

XM42 – – –

XM39 – – –

XM60 – – –

XM38 99.93%
Lactiplantibacillus

plantarum
NR115605.1

YZ5 99.13% Pediococcus stilesii NR042401.1

DZ52 99.58%
Lactiplantibacillus

plantarum
NR117813

YZ10 99.79%
Pediococcus

acidilactici
NR042057.1

*Number of sequences deposited at GenBank.

the starter culture could tolerate different concentrations of sodium 
chloride (1.5, 2.5, and 3%) and nitrite (100 and 150 ppm), conditions 
commonly used in the production of sausages (Mafra, 2020). 
Furthermore, the control medium was purple and the experimental 

medium was not purple, indicating that DZ24 does not contain amino 
acid deacylase. Besides, DZ24 could tolerate salt concentrations 
ranging from 20 to 80 g/L and retained a specific growth rate. Salinity 
adaptation studies of Lactiplantibacillus plantarum strains isolated 
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from fermented foods at 20, 40, 60, and 80 g/L NaCl concentrations 
showed that the strain was able to grow at NaCl concentrations up to 
80 g/L (Papadopoulou et al., 2023). The experimental results were in 
general agreement with the results of the present study.

4 Conclusion

Fermented sour meat was an excellent source for the isolation of 
LAB strains. There was significant microbial diversity in fermented sour 
meat from 4 different regions of China, in which Lactobacillus was the 
dominant genera. Among the 130 lactic acid bacteria isolates, only 10 
strains of bacteria exhibited acid and bile salt resistance. Furthermore, 
L. plantarum DZ24 showed the most suitable properties as probiotics 
in terms of antimicrobial activity, cell surface hydrophobicity, 
antibacterial sensitivity and antioxidant activity. In addition, DZ24 
meets the basic requirements for fermented meat products, including 
fast growth, fast acid production, and salt tolerance. This study revealed 
the probiotic potential of LAB strains from sour meat and provided 
potential probiotic candidates for fermented meat. However, in vivo 
experiments are needed to further assess its impact on public health.
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