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Introduction: Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 
is a highly contagious viral disease. Cardiovascular diseases and heart failure 
elevate the risk of mechanical ventilation and fatal outcomes among COVID-19 
patients, while COVID-19 itself increases the likelihood of adverse cardiovascular 
outcomes.

Methods: We collected blood samples and clinical data from hospitalized 
cardiovascular patients with and without proven COVID-19 infection in the time 
period before the vaccine became available. Statistical correlation analysis and 
machine learning were used to evaluate and identify individual parameters that 
could predict the risk of needing mechanical ventilation and patient survival.

Results: Our results confirmed that COVID-19 is associated with a severe 
outcome and identified increased levels of ferritin, fibrinogen, and platelets, 
as well as decreased levels of albumin, as having a negative impact on patient 
survival. Additionally, patients on ACE/ARB had a lower chance of dying or 
needing mechanical ventilation. The machine learning models revealed that 
ferritin, PCO2, and CRP were the most efficient combination of parameters 
for predicting survival, while the combination of albumin, fibrinogen, platelets, 
ALP, AB titer, and D-dimer was the most efficient for predicting the likelihood of 
requiring mechanical ventilation.

Conclusion: We believe that creating an AI-based model that uses these patient 
parameters to predict the cardiovascular patient’s risk of mortality, severe 
complications, and the need for mechanical ventilation would help healthcare 
providers with rapid triage and redistribution of medical services, with the 
goal of improving overall survival. The use of the most effective combination 
of parameters in our models could advance risk assessment and treatment 
planning among the general population of cardiovascular patients.
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1 Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), is a highly 
contagious viral disease (Cascella et al., 2024). The initial documented 
cases were reported in Wuhan, Hubei Province, China, in late 
December 2019. SARS-CoV-2 quickly spread worldwide, prompting 
the World Health Organization (WHO) to declare it a global pandemic 
on March 11, 2020 (Cascella et al., 2024). Since then, COVID-19 has 
remained a significant cause of morbidity and mortality on a global 
scale (Raisi-Estabragh et al., 2023).

SARS-CoV-2 infection results from the attachment of the viral 
surface spike protein to the human angiotensin-converting enzyme 2 
(ACE2) receptor after activation of the spike protein by transmembrane 
protease serine 2 (Clerkin et al., 2020; Vosko et al., 2023). ACE2 is 
prominently expressed in the heart and plays a crucial role in 
counterbalancing the effects of angiotensin II, especially in conditions 
marked by excessive activation of the renin-angiotensin system, such 
as hypertension (HTN), congestive heart failure (CHF), and 
atherosclerosis (Clerkin et al., 2020). The interaction between the viral 
spike protein and ACE2, which initiates the virus’s entry into host 
cells, may contribute to the cardiovascular manifestations of COVID-
19, in addition to the impacts of respiratory infection and 
inflammation (Nishiga et al., 2020). Meanwhile, it is well established 
that preexisting cardiovascular diseases (CVDs) significantly elevate 
the risk of severe and potentially fatal outcomes in COVID-19 
(Clerkin et al., 2020; Vosko et al., 2023).

The clinical manifestation and progression of COVID-19 vary 
significantly, encompassing asymptomatic or mild symptoms (such as 
fever, dry cough, and fatigue) to severe conditions like severe 
pneumonia and acute respiratory distress syndrome (ARDS), which 
may lead to a potentially fatal outcome (Italia et al., 2021). SARS-
CoV-2 can also induce acute myocardial injury along with long-term 
damage to the cardiovascular system (Wang et al., 2020). Pre-existing 
CVD appears to be associated with more adverse outcomes and an 
elevated risk of death among COVID-19 patients (Nishiga et  al., 
2020). Additionally, COVID-19 itself can lead to myocardial injury, 
arrhythmia, acute coronary syndrome, and venous thromboembolism 
(Nishiga et al., 2020). Numerous studies have established a connection 
between exposure to COVID-19 and an increased likelihood of 
experiencing adverse cardiovascular outcomes, persisting even after 
recovery from the acute illness (Raisi-Estabragh et al., 2023).

Heart failure (HF) in the context of COVID-19 introduces a 
distinct set of challenges that can complicate the way it is presented 
and managed, as well as its overall prognosis (Bader et al., 2021). The 
management of HF has been adversely affected by the COVID-19 
pandemic, resulting in decreased hospitalizations due to the closure 
of medical facilities or restricted access to healthcare services. The 
measures implemented during the pandemic have led to a decrease in 
the overall number of hospitalizations, subsequently contributing to 
an elevated mortality rate in HF, likely exacerbated by the lack of 
available care (Italia et al., 2021). It is established that individuals 
admitted to the hospital for COVID-19 may experience both an acute 
worsening of pre-existing HF and the development of new-onset HF, 
attributable to myocardial injury and complications affecting the 
cardiovascular system (Italia et al., 2021). Having pre-existing HF is 
identified as a risk factor for a more severe clinical course of 
COVID-19 and serves as an independent predictor of in-hospital 

mortality (Italia et  al., 2021). Certain studies have indicated that 
among the population of COVID-19 patients who were hospitalized, 
the prevalence of HF ranged from 4 to 21% (Italia et  al., 2021). 
Additionally, the hospitalization of COVID-19 patients with 
pre-existing HF in the year 2020 was independently linked to an 
elevated risk of mortality (Italia et al., 2021).

A retrospective analysis revealed that HF was connected to an 
increased risk of both mechanical ventilation and mortality among 
patients hospitalized for COVID-19, irrespective of left ventricular 
ejection fraction (LVEF) (Alvarez-Garcia et  al., 2020). Consistent 
findings were observed in an Italian multicenter study, where HF 
emerged as an independent predictor of mortality and a risk factor for 
various in-hospital complications, including acute HF, acute renal 
failure, and multiorgan failure (Tomasoni et  al., 2020). Hence, a 
thorough comprehension of the hemodynamic and diagnostic 
implications is crucial for the proper triage and management of these 
patients (Bader et al., 2021).

To effectively triage and manage COVID-19 patients with 
preexisting CVD, thus reducing the risk of requiring mechanical 
ventilation and enhancing survival, we believe it is essential to evaluate 
potential markers indicating the severity of the COVID-19 infection. 
Irregular cardiac biomarkers are frequently observed in COVID-19 
and can arise from various mechanisms, including viral entry through 
ACE2 receptors, direct cardiac injury, increased thrombotic activity, 
stress cardiomyopathy, etc. (Bader et al., 2021). As an illustration, 
myocardial injury may occur due to the associated cytokine storm, 
evident through heightened levels of interleukin-6 (IL-6), ferritin, 
lactate dehydrogenase (LDH), and D-dimer, or from the direct impact 
of SARS-CoV-2 on the heart (Clerkin et al., 2020; Vosko et al., 2023).

Advanced age is a significant predictor of mortality in patients 
with COVID-19 (Gallo Marin et al., 2021). Additionally, data indicate 
that male sex is a factor independently associated with the severity of 
COVID-19 (Gallo Marin et  al., 2021). Pre-existing conditions, 
including CVD, chronic kidney disease, chronic lung diseases, 
diabetes mellitus, HTN, immunosuppression, obesity, and sickle cell 
disease, predispose patients to an unfavorable clinical course and an 
increased risk of intubation and death in the context of COVID-19 
(Gallo Marin et al., 2021). A body mass index (BMI) exceeding 30 is 
deemed a robust predictor of an adverse outcome in the context of 
COVID-19 (Gallo Marin et al., 2021).

Increased levels of glycosylated hemoglobin (HbA1c) have been 
correlated with inflammation, hypercoagulation, and elevated 
mortality. Findings consistently associated with poorer outcomes 
include heightened levels of D-dimer, C-reactive protein (CRP), and 
high-sensitivity cardiac troponin I (Gallo Marin et al., 2021). Increases 
in aspartate aminotransferase (AST) and alanine aminotransferase 
(ALT) are more likely to occur in patients with severe or critical cases 
of COVID-19 and are indicative of end-organ damage (Gallo Marin 
et al., 2021). Fibrinogen levels have been shown to be elevated in 
patients with severe COVID-19 disease (Guevara-Noriega et  al., 
2020). Furthermore, observing elevated levels of ferritin is a significant 
finding in COVID-19 and is associated with an increased risk of 
mortality (McMillan et al., 2021). Abnormalities in markers of cellular 
injury, notably elevated LDH, have been correlated with increased 
disease severity and serve as important predictors of respiratory 
failure in patients with COVID-19 (Gallo Marin et  al., 2021). 
Furthermore, a recent study indicates that COVID-19 may be linked 
to both systolic and diastolic left ventricular (LV) dysfunction, along 
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with the most common echocardiographic findings such as LV 
diastolic impairment, pulmonary hypertension, and right ventricular 
dysfunction (Italia et al., 2021).

In our paper, we proposed to evaluate individual parameters that 
could potentially predict outcomes such as death and increased risk 
of complications with a higher risk of needing mechanical ventilation 
in our cardiovascular patient population. Since our study was designed 
and conducted during the early COVID-19 pandemic, we included 
proportionally the same number of COVID-19 positive and 
COVID-19 negative patients, both without prior history of COVID-19 
infection or vaccination against COVID-19. Furthermore, we seek to 
describe how the combination of multiple parameters, including 
COVID-19 infection, could influence the outcomes.

Our objective is to describe potential markers that could correlate 
with higher survival chances in our cardiovascular patients with 
HF. Therefore, we tested the association between these markers and 
the severity of COVID-19 infection, including survival and the 
likelihood of need for mechanical ventilation. We believe our work 
will expand our understanding of the biological processes of 
COVID-19 infection in cardiovascular patients and allow easier and 
faster identification of patients with a higher risk of needing 
mechanical ventilation. Furthermore, we seek to expand our research 
and focus on cardiovascular patients in general and learn how to 
effectively and quickly predict the likelihood of the outcomes, identify 
associated risk factors, and help healthcare providers generate the 
most effective and time-efficient management and treatment strategy 
for their patients.

2 Materials and methods

2.1 Patients’ data

This is a prospective, observational, single-center study designed to 
collect baseline de-identified blood samples and clinical data on 
hospitalized cardiovascular patients to better evaluate the correlation 
between these parameters and patients’ outcomes. Hospitalized patients 
from January 2021 to May 2021 were included in the study (n = 60). They 
were classified into two categories based on their COVID-19 status: 30 
with proven COVID-19 infection during the acute phase of the disease 
and 30 patients with no history of COVID-19 infection as a comparable 
group. None of the patients reported a previous COVID-19 infection 
and have not received the vaccine yet. COVID-19 infections were 
confirmed using a polymerase chain reaction (PCR) COVID-19 test.

After obtaining IRB approval (IRB number HSC-MS-20-1209) to 
conduct the study, we collected baseline data to serologically screen 
patients to detect antibodies against SARS-CoV-2 antigen to help us 
better characterize the serological status of patients and potential 
previous exposures. We  used virological and serological assays to 
further test the deidentified blood samples for the presence of SARS-
CoV-2. A neutralization assay and a commercially available ELISA 
were used to identify the presence of the anti-SARS-CoV-2 antibody. 
In addition to serologic analyses, we collected baseline clinical data 
(such as demographic characteristics, medical history, laboratory data, 
echocardiographic findings, etc.) from patients’ electronic medical 
records to compare the serologic findings with their clinical 
presentation and to better asses their response based on the 
COVID-19 status and as well as the outcome. We identified patients 

by their MRNs (medical record numbers) and kept a separate 
password-protected document with their personal information.

2.2 Statistical analyses

For statistical analyses, we used the Fit an Analysis of Variance 
Model and Student’s two-sample t-test (Kim, 2015; Mishra et al., 2019) 
within the “Stats” package from the R Statistical Software v4.3.0 (R Core 
Team, 2023; RStudio Team, 2023). We performed ANOVA and t-tests 
to assess the statistical significance of an association between patients’ 
parameters and patients’ survival as well as the likelihood of the need 
for mechanical ventilation. We conducted three separate analyses: (1) 
excluding pairs with missing data, (2) replacing missing data with 
average values, and (3) replacing missing data with reference values.

2.3 Machine learning

Furthermore, to establish the correlation between the combination 
of individual parameters and predictive outcomes, we used machine 
learning techniques. The problem of predicting patients’ survival or the 
need for mechanical ventilation is a binary classification problem. To 
generate machine learning (ML) predictors, we used an Ensemble model 
composed of several base classifiers using the following ML algorithms: 
Random forest (RF) (Breiman, 2001; Geurts et al., 2006; Parmar et al., 
2019), the generalized linear model (GLM) (Dobson and Barnett, 2018; 
Nykodym et al., 2024), Gradient Boosting Machine (GBM) (Friedman, 
2001; Natekin and Knoll, 2013; Malohlava and Candel, 2024), and Deep 
learning (DL) (LeCun et al., 2015; Goodfellow et al., 2016; Candel and 
LeDell, 2024). The ML ensemble models were generated using the H2O.
ai platform v3.42.0.1 (LeDell et al., 2023; H2O.ai, 2024).

The entire machine learning process for creating and evaluating 
AI-based models for predicting patients’ survival and the need for 
mechanical ventilation is presented as a workflow scheme in Figure 1.

As performance metrics, we  used the area under the receiver 
operating characteristic curve (AUC), the area under the precision-
recall plots (AUCPR), accuracy (ACC), precision, sensitivity (or 
recall), specificity, F score, and the Matthews correlation coefficient 
(MCC). The equations for calculating the performance metrics are 
provided in the Supplementary Document.

The evaluation of ML predictors was carried out on 5-fold cross-
validation, with 50 iterations of random splits, where performance 
metrics were calculated as the average over all iterations. For the 
calculation of the metrics, thresholds were selected based on the 
maximization of the F-score on predicted probabilities for each train 
set, i.e., each split in the cross-validation procedure. To correctly 
evaluate the ensemble model, the same splits were used for all 
submodels in the ensemble. The splitting procedure utilized stratified 
folding based on the response variable (LeDell et al., 2023).

The feature selection procedure was performed using forward 
feature selection, maximizing AUC, guided by the variable importance 
scores. In other words, features with higher importance were selected 
first. The variable importance of each feature for the ensemble was 
calculated as the average of the variable importances from the 
included ML submodels, depending on the machine learning 
algorithm: the relative influence of each variable for tree-based 
algorithms, coefficient magnitudes for GLM, or the weights 
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connecting the input features to the first two hidden layers for DL, as 
implemented in the H2O.ai platform (LeDell et al., 2023).

To identify the important parameters, i.e., the set of parameters 
that are most correlated to the outcome, we used the calculation of 
“variable importances” from the final Ensemble model. This allows us 
to measure their synergistic effect on the outcome. Through feature 
selection and variable importance techniques, the final Ensemble 
model comprises attributes that work together in the best way to 
predict the outcome, i.e., have the most influence on the outcome. Our 
goal was to identify important parameters that, in combination with 
COVID-19 infection, are most correlated to the outcomes. For 
machine learning, we used the imputation of missing values with (1) 
average values and (2) reference values.

3 Results

Our data analysis included 60 patients with an average age of 
56.87 ± 14.78. Thirty-six were males and 24 were females. Thirty 

patients were diagnosed with proven COVID-19 infection, and 30 
tested negative for COVID-19 infection. The patient data collected for 
analysis is provided in the Supplementary Data File.

3.1 ANOVA and t-test analyses

To perform the analysis, we compared the patient’s parameters 
with two outcomes: death and severe complications requiring 
mechanical ventilation. Both ANOVA and two-tailed t-test showed 
similar results (Tables 1, 2). By excluding pairs with missing data or 
by replacing missing data with average values, we obtained similar 
results (Tables 1, 2 and Supplementary Figures S1, S2).

3.1.1 ANOVA and t-test analyses between each 
parameter and the patient’s survival

Our data showed that a positive antibody titer against the SARS-
CoV-2 antigen, as well as current COVID-19 infection, correlates with 
an increased risk of mortality among our study sample. Males were 

FIGURE 1

Workflow of the machine learning process for the creation and evaluation of AI-based models for predicting both patients’ survival and the need for 
mechanical ventilation.
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more likely to die than females. As expected, those who were on 
extracorporeal membrane oxygenation (ECMO) or mechanical 
ventilation had an increased risk of mortality. Among the laboratory 
parameters, our study data showed a negative correlation between levels 
of fibrinogen and ferritin and survival. Patients with a lower platelet 
count and albumin levels were more likely to die. Those who were on 
ACE/ARB medication had higher survival rates. Compared to other 

similar studies, our data did not show a correlation between patients’ 
age, echocardiographic characteristics, or preexisting comorbidities and 
increased risk of mortality. By replacing missing data with average 
values, the results were very similar. Additionally, D-dimer, C-reactive 
protein (CRP), and partial pressure of carbon dioxide (PCO2) have 
been shown to positively correlate with patients’ survival.

3.1.2 ANOVA and t-test analyses between each 
parameter and the patient’s likelihood of needing 
mechanical ventilation

By excluding comparing pairs with missing data or by replacing 
missing data with average values, a positive correlation was found 
between the presence of antibodies against SARS-CoV-2 antigen and 
current COVID-19 infection with the need for mechanical ventilation 
due to severe complications. Increased age and use of ACE/ARBs were 
shown as protective factors for mechanical ventilation. Similarly, 
decreased platelet count and albumin levels were found to correlate with 
an increased risk for the need for mechanical ventilation when estimating 
the risk of survival. Furthermore, increased levels of D-dimer, 
Fibrinogen, CRP, Ferritin, ALP, ALT, and PCO2 were associated with an 
increased risk for the need for mechanical ventilation. Echocardiographic 
criteria such as Left ventricular ejection fraction (LVEF) and Left 
ventricular end-diastolic volume (LVEDD) were also found to be directly 
correlated with the outcome. Therefore, careful laboratory and 
echocardiographic evaluation could guide proper management and 
treatment of cardiovascular patients and help predict the risk for patients. 
Additionally, a history of HTN was identified as a good predictor of 
severe complications in cardiovascular patients needing mechanical 
ventilation. The results remained the same when replacing variables with 
average values, with the addition of LDH as a predictor of the outcome.

3.2 Machine learning in the identification of 
important parameters

The full list of 35 features used for generating machine learning 
models for predicting a patient’s survival and likelihood of ending up 
on mechanical ventilation, along with the average values and reference 
values for each feature used for imputation of missing data, is provided 
in Table 3. For some parameters, reference values are not provided in 
the table, as they had no missing values in the data.

3.2.1 Prediction of patient’s survival
For predicting the patient’s survival, all parameters except 

mechanical ventilation, ECMO, and PEEP were used to train the ML 
model. The rationale for this approach was to find parameters that 
would allow prediction for survival even before the patient might 
clinically demonstrate the need for mechanical ventilation, which 
would also enable better planning in the hospital setting. After 
applying the feature selection procedure, the best models SURiEx11 
and SUAiEx10 were created using reference and average imputation 
of missing data, respectively. These models utilized nine common 
parameters: Ferritin, PCO2, AB titer, Platelets, Albumin, AB titer 
binary, O2Sat, COVID-19 infection, and LDH. SURiEx11 also 
included CRP and FIO2, while SUAiEx10 included ACE/ARB.

Additionally, we searched for the model using just a few features 
with good prediction efficacy. We generated models SURiEx3 and 
SUAiEx2, for reference and average imputation, respectively, which 

TABLE 1 The ANOVA and t-test analyze the relationship between each 
parameter and patient survival.

Parameter ANOVA 
F-value

ANOVA 
p-value

t-test 
t-stat

t-test 
p-value 
two-tail

Mechanical ventilation * 54.0000 7.61E-10 6.8963 1.65E-07

Albumin * 23.6422 9.23E-06 −4.9494 2.06E-05

AB titter binary * 22.7886 1.27E-05 4.7165 4.71E-05

COVID-19 infection * 20.3000 3.26E-05 5.2425 3.75E-06

ECMO * 15.7354 2.03E-04 3.3398 2.82E-03

Ferritin * 16.2624 2.28E-04 3.2811 4.30E-03

ACE/ARB * 9.6667 2.91E-03 −4.7726 2.32E-05

AB titter * 9.4617 3.20E-03 2.2626 3.54E-02

Platelets * 8.2195 5.80E-03 −2.9858 5.07E-03

Sex * 6.2462 0.0153 2.7906 7.87E-03

Fibrinogen * 5.5965 0.0225 2.1887 0.0376

O2Sat 2.9949 0.0916 −1.6215 0.1184

LVEDD 2.1057 0.1526 −1.4622 0.1527

ALP 1.9291 0.1703 1.3501 0.1869

AST 1.5338 0.2205 0.8718 0.3945

D-dimer 1.4237 0.2389 1.1869 0.2432

ALT 1.3991 0.2417 0.8461 0.4082

PCO2 1.1837 0.2845 1.0896 0.2838

HTN 0.9553 0.3324 −0.9016 0.3752

CKD 0.9355 0.3375 0.9083 0.3714

BMI 0.7281 0.3970 −0.9554 0.3448

FIO2 0.7206 0.4034 0.8523 0.4018

BNP 0.5183 0.4757 −1.1485 0.2582

LVEF 0.4990 0.4829 0.7197 0.4766

DM 0.3954 0.5320 0.6154 0.5428

LDH 0.3829 0.5402 0.5777 0.5696

CRP 0.2664 0.6100 0.5184 0.6085

Troponin I 0.0875 0.7689 −0.3412 0.7347

Age 0.0642 0.8008 0.2429 0.8097

HbA1c 0.0361 0.8505 −0.2162 0.8305

PEEP 0.0146 0.9050 −0.1274 0.9006

RV dysfunction 0.0078 0.9299 0.0879 0.9305

COPD 0.0074 0.9315 −0.0868 0.9314

PO2 0.0016 0.9687 0.0396 0.9686

Pairs with missing data are excluded from the analysis. The table is sorted by ANOVA 
p-value in ascending order. Statistically significant parameters with both p values less than 
0.05 are marked with an asterisk.
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used just three parameters: Ferritin, CRP, and PCO2; or two 
parameters: Ferritin and PCO2, respectively.

The models’ prediction efficacy assessed using 5-fold cross-
validations with 50 iterations of random splits is provided in Table 4. 
For most of the four models, AUC is above 0.87, ACC is greater than 
0.80, and F measures are >0.85.

The variable importances of selected features for models 
SURiEx11, SUAiEx10, SURiEx3, and SUAiEx2 are presented in 
Supplementary Tables S3–S6.

3.2.2 Prediction of whether a patient will require 
mechanical ventilation

For the generation of ML models for the prediction of whether a 
patient will require mechanical ventilation, we used three approaches, 
depending on the set of features used for training the ML models:

 1 Extended set of features, which contains all parameters 
excluding survival outcome, ECMO, and PEEP. Survival 
outcome as the final event should not be used as a prediction 
feature, while mechanical ventilation is often used in 
combination with ECMO to manage the respiratory aspects of 
a condition (Combes et  al., 2018). Additionally, PEEP is 
directly related to patients on mechanical ventilation (Carpio 
and Mora, 2024). After applying the feature selection 
procedure, we  obtained the two best models in terms of 
prediction efficacy, depending on the imputation values of 
missing data, namely MVRiEx9 and MVAiEx7, for reference 
values imputation and average values imputation, respectively. 
Both models used seven following parameters: PCO2, CRP, 
Platelets, Albumin, ALP, Fibrinogen, and AB titer, while 
model MVRiEx9 used two more: FIO2 and Ferritin.

 2 Medium set of features, which contains all parameters 
excluding survival outcome, ECMO, PEEP, PCO2, PO2, O2Sat, 
and FIO2. The parameters related to oxidation were excluded 
here due to their biased measurements, i.e., the most missing 
values were for the patients not on mechanical ventilation. The 
best models, MVRiMed7 and MVAiMed10, for reference and 
average imputation, respectively, used the following seven 
parameters: CRP, Albumin, Fibrinogen, Platelets, ALP, AB titer, 
and AB titer binary, while MVAiMed10 model used three more: 
COVID-19 infection, ACE/ARB, and D dimer.

 3 A limited set of features, which contains all parameters 
excluding survival outcome, ECMO, PEEP, PCO2, PO2, O2Sat, 
FIO2, and CRP, since CRP was mostly measured only for 
patients on mechanical ventilation. The best models MVRiLim7 
and MVAiLim9, for reference and average imputation, 
respectively, used the following seven parameters: Albumin, 
Fibrinogen, Platelets, ALP, AB titer, D dimer, and AB titer 
binary, while MVAiLim9 used two more: COVID-19 infection 
and ACE/ARB. The models’ prediction efficacy, evaluated using 
5-fold cross-validations with 50 iterations of random splits, is 
given in Table 5. For all six models, AUC is above 0.95, ACC 
greater than 0.90, and F measure >0.85.

The variable importances of selected features for models 
MVRiEx9, MVAiEx7, MVRiMed7, MVAiMed10, MVRiLim7, and 
MVAiLim9 are provided in Supplementary Tables S7–S12.

The comparison between different machine learning algorithms with 
the Ensemble model and the comparison between different selected 
numbers of features in the feature selection procedure is presented in the 
Supplementary Table S15 and Supplementary Figures S3, S4.

After combining various parameters to develop the most robust 
prediction model for our study’s outcomes, our findings demonstrated 
that a combination of parameters such as AB titer, use of ACE/ARB, 

TABLE 2 The ANOVA and t-test analyses between each parameter and 
the likelihood of patients needing mechanical ventilation.

Parameter ANOVA 
F-value

ANOVA 
P-

value

t-test 
t-stat

t-test 
p-

value 
two-
tail

ECMO * 116.0000 1.85E-15 −7.5498 3.92E-07

Survival outcome * 54.0000 7.61E-10 6.2545 1.27E-06

Albumin * 43.5922 1.36E-08 6.7933 3.18E-08

AB titter binary * 33.6583 2.89E-07 −5.6764 1.88E-06

COVID-19 infection * 27.2941 2.48E-06 −5.9639 2.04E-07

Fibrinogen * 23.2229 1.75E-05 −4.4523 1.26E-04

AB titter * 20.9045 2.58E-05 −3.3908 2.82E-03

ALP * 16.8629 1.30E-04 −2.9316 8.52E-03

Ferritin * 17.0152 1.71E-04 −3.6380 1.68E-03

D-dimer * 12.3554 1.00E-03 −3.0826 5.32E-03

ACE/ARB * 11.6000 1.20E-03 4.8374 2.09E-05

Platelets * 10.0169 2.49E-03 3.3166 1.84E-03

CRP * 10.6683 2.96E-03 −3.4539 1.99E-03

PCO2 * 8.5223 6.28E-03 −2.9319 6.30E-03

Age * 5.3394 0.0244 2.3140 0.0261

FIO2 * 5.3661 0.0284 −2.3529 0.0278

LVEDD * 4.8536 0.0320 2.3058 0.0258

LVEF * 4.7322 0.0339 −2.3383 0.0236

ALT 4.5870 0.0364 −1.5514 0.1366

HTN 4.3866 0.0406 1.8509 0.0747

AST 3.8541 0.0544 −1.3987 0.1777

O2Sat 3.8029 0.0586 1.9501 0.0598

LDH 3.5744 0.0672 −1.8906 0.0745

PEEP 2.0316 0.1688 −1.9780 0.0878

DM 1.7193 0.1950 −1.2769 0.2099

CKD 1.5890 0.2125 1.3639 0.1791

COPD 1.2782 0.2629 1.3166 0.1934

Sex 1.2340 0.2712 −1.1372 0.2621

HbA1c 0.8912 0.3522 −0.8710 0.3943

BNP 0.6072 0.4404 1.2414 0.2222

RV dysfunction 0.4140 0.5226 −0.6414 0.5250

PO2 0.1838 0.6710 0.4225 0.6758

BMI 0.1112 0.7400 −0.3587 0.7214

Troponin I 0.1073 0.7449 0.3653 0.7169

Pairs with missing data are excluded from the analysis. The table is sorted by ANOVA 
P-value in ascending order. Statistically significant parameters with both p-values less than 
0.05 are marked with an asterisk.
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Albumin, ALP, COVID-19 infection status, CRP, D-dimer, ECMO, 
Ferritin, Fibrinogen, FIO2, O2Sat, PCO2, and Platelets, proves to 
be the most powerful in evaluating both survival and the likelihood of 
requiring mechanical ventilation. More specifically, we found that the 
most effective set of parameters for predicting survival in our study 
group included Ferritin, PCO2, and CRP. When it came to predicting 
the probability of needing mechanical ventilation, a combination of 
Albumin, Fibrinogen, Platelets, ALP, AB titer, and D-dimer proved to 
be the most powerful set of parameters. Table 5 shows the high efficacy 
of predicting a patient’s likelihood of requiring mechanical ventilation.

The comparison of results between the statistical analyses, 
including ANOVA and t-test, and the findings from machine learning-
based identification of important parameters showed very similar 
results (Supplementary Tables S13, S14). However, when examining 
the significant parameters for patient survival, the significant 
difference in Fibrinogen and Sex was identified by statistical analyses, 
while O2Sat, PCO2, CRP, and LDH were identified as important 
factors by machine learning. In the case of mechanical ventilation, 
statistical analyses identified Age, Ferritin, LVEDD, and LVEF as 
differentiating factors.

TABLE 3 List of patients’ parameters with average and reference values.

Patient’s parameter Description Average Reference-male Reference-female

AB titter Numerical 69.25 – –

AB titter binary Numerical (0 = AB_titter<=10, 1 = AB_titter>10) 0.38 – –

ACE/ARB Categorical (yes, no) 0.25 – –

Age Numerical 56.87 – –

Albumin Numerical 2.59 4.4 4.4

ALP Numerical 215.63 80 80

ALT Numerical 162.82 20 20

AST Numerical 221.28 20.5 20.5

BMI Numerical 31.81 – –

BNP Numerical 805.52 100 100

CKD Categorical 0.25 – –

COPD Categorical (yes, no) 0.12 – –

COVID-19 infection Categorical (yes, no) 0.50 – –

CRP Numerical 111.85 10 10

D-dimer Numerical 4.20 0.5 0.5

DM Categorical (yes, no) 0.38 – –

ECMO Categorical (yes, no) 0.25 – –

Ferritin Numerical 1017.39 180 159

Fibrinogen Numerical 575.93 300 300

FIO2 Numerical 59.83 21 21

HbA1c Numerical 6.93 5.7 5.7

HTN Categorical (yes, no) 0.80 – –

LDH Numerical 542.74 219 219

LVEDD Numerical 5.06 4.55 4.55

LVEF Numerical 45.67 60 60

Mechanical ventilation Categorical (yes, no) 0.33 – –

O2Sat Numerical 93.94 97.5 97.5

PCO2 Numerical 50.37 40 40

PEEP Numerical 9.87 6.5 6.5

Platelets Numerical 209.03 300 300

PO2 Numerical 93.94 87.5 87.5

RV dysfunction Categorical (yes, no) 0.49 0 0

Sex Categorical (M = male, F = female) 0.60 – –

Survival outcome Categorical (S = survived, D = deceased) 0.70 – –

Troponin I Numerical 1.36 0.02 0.02
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4 Discussion

In our study, we seek to discover potential markers of the severity 
of COVID-19 infection and factors that could improve survival in 
cardiovascular, specifically HF patients. Our goal is to carefully 
identify these factors and enable healthcare providers to implement a 
warning system in daily practice and identify patients likely to 
develop complications and need for mechanical ventilation. 
We believe that proper triaging and management of these patients can 
contribute to a better quality of care and more efficient utilization of 
ventilators, ICU beds, and general hospital capacity. Knowing that 
many medical facilities have limited capacities with staff, ventilators, 
ICU beds, or even a lack of ventilators, we believe models are needed 
that could better predict which patients are at higher risk for needing 
a higher level of care and which patients could be  medically 
prioritized or transferred to another facility to match their medical 
needs better.

Our data confirmed that COVID-19 is associated with severe 
complications and a higher risk of needing mechanical ventilation, as 
well as with increased mortality risk among cardiovascular patients. 
Various patients’ characteristics, laboratory, and echocardiographic 
findings are shown to be  associated with poor outcomes. Careful 
examination and evaluation of these parameters by healthcare 
providers could play a key role in the proper management of patients.

Since ferritin, fibrinogen, and platelets are coagulation markers, 
we hypothesize that these parameters played an important role in 
negatively affecting the survival of our study population by increasing 
the risk of a hypercoagulation state and thrombosis. Our study showed 
that decreased albumin levels play an important role in the assessment 
of the severity of COVID-19 and survival in cardiovascular patients, 

which correlates with findings from a previous study (Turcato 
et al., 2022).

There is a lot of controversial evidence about the use of ACE/
ARBs in COVID-19 patients and their impact on clinical outcomes. 
A substantial cohort study conducted in England reported that the use 
of ACE/ARBs is associated with a decreased risk of COVID-19 disease 
and does not alter the risk of requiring intensive care unit (ICU) care 
(Hippisley-Cox et al., 2020). Nevertheless, a randomized clinical trial 
revealed that in severely ill patients hospitalized for COVID-19, the 
initiation of ACEI/ARBs did not lead to improvement; instead, it 
worsened clinical outcomes (Lawler et  al., 2023). Our study data 
showed that our cardiovascular patients who were on ACE/ARB had 
a less likely chance of dying or having major complications that would 
require mechanical ventilation. Several previously proposed 
hypotheses hinge on the interaction between the viral spike protein 
and the ACE2 receptor, involving potential competition between the 
virus’s spike protein and drugs binding to ACE2 (Kumar et al., 2022). 
Furthermore, following the binding and potential activation, SARS-
CoV-2 can induce downregulation of ACE2, leading to elevated 
concentrations of angiotensin II, which in turn can contribute to 
severe lung injury (Yehualashet and Belachew, 2020).

Various studies present conflicting perspectives on the role of 
ACE-2 in COVID-19. Some suggest that the availability of ACE-2 is 
directly correlated with the severe inflammatory response in COVID-
19, while others propose that the free form of ACE2 may deactivate 
SARS-CoV-2 and prevent the virus from entering the lungs 
(Yehualashet and Belachew, 2020).

Another explanation of the survival benefit of ACE/ARBs could 
lie in better blood pressure control, knowing that hypertension is one 
of the factors that influence the severity of COVID-19. Our findings 
align with the clinical guidelines of the International Society of 
Hypertension, which state that there is no clear indication to 
discontinue the use of ACEI/ARBs in COVID-19 patients (European 
Society of Cardiology, 2020).

We identified that the most efficient combination of parameters 
for predicting survival within our study group consisted of Ferritin, 
PCO2, and CRP. When it came to predicting the likelihood of 
requiring mechanical ventilation, the combination of Albumin, 
Fibrinogen, Platelets, ALP, AB titer, and D-dimer emerged as the most 
potent set of parameters.

We believe that the incorporation of all these parameters in 
outcome risk calculations would significantly enhance predictive 
accuracy and effectiveness in assessing not only survival rates but also 
the probability of necessitating mechanical ventilation in our study 

TABLE 4 Efficacy of models for predicting patient survival.

SURiEx11 SUAiEx10 SURiEx3 SUAiEx2

AUC 0.8861 0.8839 0.8463 0.8737

AUCPR 0.9534 0.9537 0.8912 0.9374

ACC 0.8017 0.8083 0.8190 0.8050

F measure 0.8535 0.8637 0.8720 0.8584

Precision 0.8831 0.8622 0.8650 0.8431

Specificity 0.7444 0.6722 0.6767 0.6178

MCC 0.5505 0.5421 0.5644 0.5085

Sensitivity 0.8262 0.8667 0.8800 0.8752

TABLE 5 Efficacy of models in predicting whether a patient will require mechanical ventilation.

MVRiEx9 MVAiEx7 MVRiMed7 MVAiMed10 MVRiLim7 MVAiLim9

AUC 0.9713 0.9793 0.9559 0.9596 0.9669 0.9775

AUCPR 0.9575 0.9605 0.9369 0.9447 0.9494 0.9658

ACC 0.9280 0.9223 0.9117 0.9139 0.9080 0.9260

F measure 0.8870 0.8775 0.8563 0.8568 0.8606 0.8791

Precision 0.9263 0.9223 0.9333 0.9594 0.8696 0.9650

Specificity 0.9655 0.9645 0.9710 0.9826 0.9350 0.9845

MCC 0.8369 0.8235 0.8528 0.8067 0.7932 0.8340

Sensitivity 0.8530 0.8380 0.7930 0.7765 0.8540 0.8090
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group. In practical terms, this implies that healthcare professionals and 
researchers can rely on this predictive model to make more informed 
decisions regarding patient care, allowing for timely interventions, 
tailored treatment strategies, and improved patient outcomes.

We believe that the use of the combination of these parameters 
could represent a significant step forward, demonstrating the potential 
to revolutionize the way we approach risk assessment and treatment 
planning among a general cardiovascular patient population.

4.1 Limitations and future work

One of the limitations of our study was missing data for some 
patients, which we tried to minimize by excluding missing data, as 
well as replacing the missing data with normal and average values. 
Replacing the missing data with reference values could potentially lead 
to bias, but we justified that by the need to include some values when 
running the machine learning program and learning.

Another limitation is our small sample size of 60 cardiovascular 
patients. Thus, further studies that would include a larger sample size 
are encouraged. Moreover, it’s important to note that our study focused 
on a specific group of severely ill, hospitalized patients, and findings 
may vary from those in the broader cardiovascular patient population.

There are many justifications for conducting studies with small 
sample sizes in medical research (Leon et al., 2011; Indrayan and 
Mishra, 2021). Sample size may not be the main issue, but the real goal 
is to design and conduct a high-quality study, and analyze and 
interpret the results (Lenth, 2001; Bacchetti, 2013), as Matthews 
argued that the excessive emphasis on trial size can 
be counterproductive (Matthews, 1995). Studies with a small number 
of subjects can be quick to conduct, obtaining ethical and institutional 
approval is easier, it is often better to test a new research hypothesis, 
avoiding too many resources, it can be  carried out in one center. 
However, the results need to be  interpreted carefully and should 
be  used to design larger confirmatory studies (Hackshaw, 2008; 
Indrayan and Mishra, 2021). There is the existence of many useful 
studies on small samples (Hansen and Fulton, 2000; Hatchell et al., 
2021; Machado et al., 2021); some big discoveries started with case 
series (Gottlieb et al., 1981; CDC-Centers for Disease Control and 
Prevention, 1996). The small samples may be enough to show the 
existence of an effect but not for quantifying the effect (Anderson and 
Vingrys, 2001), while no single study based on a small or a large 
sample can be considered conclusive (Indrayan and Mishra, 2021).

In machine learning, the small train sample sizes pose significant 
challenges, including the risk of overfitting and reduced statistical 
power. To address these issues, we  used an Ensemble model that 
combines multiple submodels to produce a single predictive outcome. 
We  employed bagging, boosting, stacking, and regularization 
techniques to mitigate overfitting and improve generalizability 
(Dietterich, 2000; Friedman et al., 2010). Additionally, as a robust 
framework for the evaluation of ML predictors, we applied 5-fold 
stratified cross-validation (with 50 iterations of random splits) to 
reduce the variance of the performance estimates. This approach offers 
a more accurate assessment of model capabilities (Berrar, 2019). As 
one of the algorithms included in our Ensemble model, Deep Learning 
has been shown to be an effective algorithm in analyzing biomedical 
and health data (Miotto et  al., 2018; Nasiri and Alavi, 2022). 
Incorporating ANOVA and t-tests statistical analyses with the ML 

feature selection process has been shown to be effective in identifying 
significant features (Zhou and Wang, 2007; Ding et al., 2014; Elssied 
et al., 2014; Abdulmohsin et al., 2021; Nasiri and Alavi, 2022). This 
enhancement improves the predictive power of ML models. By 
focusing on statistically significant features, the models are less prone 
to overfitting, more interpretable, and robust (Li et al., 2017).

For future work, we propose to evaluate markers for the severity 
of COVID-19 and for the prediction of survival, as well as the 
likelihood of needing mechanical ventilation in a population with 
preexisting CVD using AI models. This evaluation will enable us to 
create an AI-based model that could be used to better evaluate patients 
with preexisting CVD, assess their risk of mechanical ventilation, and 
manage their condition according to the associated risk. Given the 
limited number of hospital beds and mechanical ventilators, the AI 
model should accurately predict which patients have a higher risk for 
complications requiring more resources from medical facilities, such 
as ventilators and ICU beds. The ultimate goal is to enable more 
efficient and rapid medical decisions to improve the future 
management of Coronavirus in cardiovascular patients, which would 
hopefully also improve survival.

We also propose to expand our research goal and focus on 
cardiovascular patients in general, regardless of their COVID-19 
status. Creating an app that incorporates individual patient parameters 
would allow for the calculation of a cardiovascular patient’s risk of 
mortality, as well as the risk of severe complications with a higher 
likelihood of needing mechanical ventilation. This would be  an 
important tool for healthcare providers to assess patients’ general 
health status, determine risks of developing outcomes, and provide 
appropriate management and treatment.

5 Conclusion

The results of our study confirmed that COVID-19 is associated 
with a severe outcome. We  identified that increased Ferritin, 
Fibrinogen, Platelets, and decreased Albumin have a negative impact 
on patients’ survival, while patients on ACE/ARB had a lower chance 
of dying or needing mechanical ventilation. The AI-based prediction 
models revealed that Ferritin, PCO2, and CRP were the most efficient 
combination of parameters for predicting patients’ survival, while the 
parameters Albumin, Fibrinogen, Platelets, ALP, AB titer, and 
D-dimer were the most efficient combination for predicting patients’ 
likelihood of requiring mechanical ventilation.

We believe our study findings would be useful for risk stratification 
and to guide clinical decisions in cardiovascular patients with 
COVID-19. A thorough assessment of the patient’s demographic data, 
medical history, as well as laboratory and echocardiographic findings 
is essential. Additionally, the AI-based prediction model could more 
accurately and rapidly identify patients at the highest risk of 
complications in general, facilitating the triage and redistribution of 
medical services to those in the greatest need. Our long-term goal is 
to improve the overall survival of cardiovascular patients by predicting 
their likelihood of severe complications or death and managing these 
patients accordingly. Furthermore, we believe that the use of the most 
potent combination of parameters in our prediction model could 
significantly advance our approach to risk assessment and treatment 
planning not only in our study group but also among the general 
population of cardiovascular patients.
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