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The McMurdo Dry Valleys (MDVs) of Antarctica are a mosaic of extreme habitats 
which are dominated by microbial life. The MDVs include glacial melt holes, 
streams, lakes, and soils, which are interconnected through the transfer of energy 
and flux of inorganic and organic material via wind and hydrology. For the first 
time, we provide new data on the viral community structure and function in the 
MDVs through metagenomics of the planktonic and benthic mat communities 
of Lakes Bonney and Fryxell. Viral taxonomic diversity was compared across 
lakes and ecological function was investigated by characterizing auxiliary 
metabolic genes (AMGs) and predicting viral hosts. Our data suggest that viral 
communities differed between the lakes and among sites: these differences 
were connected to microbial host communities. AMGs were associated with 
the potential augmentation of multiple biogeochemical processes in host, 
most notably with phosphorus acquisition, organic nitrogen acquisition, sulfur 
oxidation, and photosynthesis. Viral genome abundances containing AMGs 
differed between the lakes and microbial mats, indicating site specialization. 
Using procrustes analysis, we also identified significant coupling between viral 
and bacterial communities (p  =  0.001). Finally, host predictions indicate viral host 
preference among the assembled viromes. Collectively, our data show that: (i) 
viruses are uniquely distributed through the McMurdo Dry Valley lakes, (ii) their 
AMGs can contribute to overcoming host nutrient limitation and, (iii) viral and 
bacterial MDV communities are tightly coupled.
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1 Introduction

Viruses play significant ecological roles in aquatic systems, specifically through host cell 
lysis, recycling of nutrients, and augmentation of metabolism during infection (López-Bueno 
et al., 2009; Aguirre de Cárcer et al., 2015; Coutinho et al., 2017; Warwick-Dugdale et al., 
2019). In marine systems, viruses infect and kill microbial hosts including bacteria, archaea, 
cyanobacteria, protists, and fungi, and are estimated to release 108–109 tons of carbon per day 
(Suttle, 2005; Coutinho et al., 2017; Yau and Seth-Pasricha, 2019). During infection, viruses 
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can also modulate host cell metabolism by expressing auxiliary 
metabolic genes (AMGs) (Breitbart et al., 2007; Sime-Ngando, 2014; 
Warwick-Dugdale et  al., 2019). Polar ecosystems are classically 
truncation food webs, meaning they are missing macrofauna grazing 
that is classically found in temperate ecosystems. Due to this 
truncation polar ecosystems are microbially dominated, and viruses 
in particular, likely play outsized ecological roles in comparison to 
more complex food webs (Säwström et al., 2008; Laybourn-Parry, 
2009; Yau and Seth-Pasricha, 2019).

The lakes of the MDVs of Antarctica are microbially dominated 
systems due to the low temperature, wide salinity gradients, and the 
surrounding arid environment (Fountain et al., 1999; Doran et al., 
2002). In the MDVs there are no plants or animals, allowing microbial 
interactions to be more directly assessed (Priscu et al., 1999). The lakes 
of the MDVs have unique bacterial and eukaryal communities 
throughout their water columns, owing to distinct geochemistry 
between and stratification within the lakes (Bowman et  al., 2016; 
Kwon et  al., 2017; Li and Morgan-Kiss, 2019). MDV microbial 
communities have been studied since the 1970s and in recent years 
high throughput sequencing of 16S rRNA and 18S rRNA genes has 
led to a deeper understanding of the microbial food web (Bowman 
et al., 2016; Kwon et al., 2017; Li and Morgan-Kiss, 2019). Eukaryotic 
phytoplankton dominate the base of the food web and produce 
organic carbon for a diverse population of heterotrophic bacteria 
(Kong et al., 2012). In addition to heterotrophic bacteria, there is also 
evidence of lithoautotroph bacteria in Lakes Bonney and Fryxell 
(Kong et  al., 2012; Dolhi et  al., 2015), as well as anoxygenic 
phototrophs in Lake Fryxell (Karr et  al., 2003; Jung et  al., 2004). 
Predatory protists are the apex predators, controlling bacterial and 
algal prey abundances (Priscu, 1995; Roberts and Laybourn-Parry, 
1999; Roberts et  al., 2004; Li and Morgan-Kiss, 2019), but other 
community members such as Chytrid fungi and viruses likely play a 
role too; although, these taxa are less described (Rojas-Jimenez 
et al., 2017).

The understanding of viral communities in MDV lake food web 
and biogeochemical cycling is limited. However, early papers provided 
some information about the MDV viral morphology, abundance, and 
productivity (Kepner et al., 1998; Lisle and Priscu, 2004). MDV viral 
abundances are comparable with temperate waters (106–107 virus like 
particles per ml), and in many cases viruses even outnumber bacterial 
cells (Lisle and Priscu, 2004; Säwström et al., 2008). In our lakes of 
study, viral to bacterial ratios (VBR) found in the east lobe of Lake 
Bonney are similar to open oceans while the VBR ratio in Lake Fryxell 
are similar to numbers seen in freshwaters (Maranger and Bird, 1995; 
Lisle and Priscu, 2004; Säwström et al., 2008). The viral abundances 
and productivity rates vary between the lakes and throughout the 
austral summer (Kepner et al., 1998; Lisle and Priscu, 2004). Infection 
rates have also been estimated using both virus-like particle 
abundance and mitomycin C induction, respectively, showing that up 
to 62.5 and 89.5% of total bacteria are infected at any given time (Lisle 
and Priscu, 2004). These previous studies indicate that viruses in 
MDV lakes comprise a significant portion of the planktonic 
community and are actively infecting bacteria; however, their 
functional roles are still poorly understood.

To further investigate the ecological role of viruses in MDV lakes 
we examined metagenomes generated from microbial communities 
residing in the water columns of Lakes Fryxell and Bonney as well as 
lift-off microbial mats from the edges of Lake Fryxell. The sequenced 

metagenomes allowed us to identify viral taxonomic distribution 
among the sites, AMG functional roles, and predict viral hosts. 
We  focus on three main questions, (1) Does the viral taxonomic 
community differ between lakes (i.e., Lake Fryxell vs. Lake Bonney) 
and sites (Lakes vs. Microbial Mats)? (2) If AMGs are present, what 
do they indicate about viral ecological roles in the modulation of host 
microbe metabolism? (3) What major microbial hosts are being 
affected by viruses?

2 Methods

2.1 Site description

The MDVs comprise the largest ice-free area in Antarctica, 
approximately 4,500 km2 in Southern Victoria Land (Levy, 2013). The 
mean annual temperature is between −15 and − 30°C, with less than 
50 mm of precipitation annually (Fountain et al., 1999; Doran et al., 
2002). While microbial signatures are found throughout the valleys, 
life concentrates around liquid water which exists year-round under 
the permanent ice covers of the lakes or appears in the austral summer 
when solar radiation is high enough to melt glaciers and snow 
(Kennedy, 1993; Fountain et al., 1999). Glacial meltwater flows into 
the lakes for up to 10 weeks a year (McKnight et  al., 1999). The 
permanent ice (3–6 m) that covers MDV lakes prevents wind driven 
mixing and contributes to water column physical and chemical 
stratification (Spigel and Priscu, 1998; Li et al., 2016; Kwon et al., 
2017). The two lakes in this study, Lakes Fryxell and Bonney, have no 
outflow, and have different geochemistry and associated biology 
(Spigel and Priscu, 1998; Takacs and Priscu, 1998; Roberts et al., 2004; 
Vick-Majors et al., 2014; Kwon et al., 2017; Li and Morgan-Kiss, 2019). 
With respect to nutrient status, Lake Bonney is more oligotrophic than 
Lake Fryxell; Lake Bonney is phosphorus deficient whereas Lake 
Fryxell is nitrogen limited (Priscu, 1995; Dore and Priscu, 2001; Teufel 
et al., 2017).

The lakes in the MDVs are home to diverse benthic microbial 
mats, which can detach from the sediments due to production of gas 
bubbles (Parker et al., 1982; Moorhead et al., 1999). Once detached 
these microbial mats float to the underside of the surface ice layer 
where they are carried through the ice by freezing from below and 
ablation at the surface (Parker et al., 1982). Autochthonous particulate 
organic matter and dissolved organic matter generated by microbial 
communities found within the benthic mats play an important role in 
the primary production of these freshwater ecosystems (Hawes 
et al., 2005).

2.2 Sample collection and sequencing

Microbial communities were sampled in December 2014 from 
two perennially ice-covered lakes in Taylor Valley, Victoria Land, 
Antarctica. Triplicate lake water samples were collected from the 
chemoclines of Lake Fryxell (−77.61034, 163.14271, 9 m depth) and 
the east lobe of Lake Bonney (−77.71368, 162.44130, 15 m depth) 
(Tallada et al., 2022) and were collected in 5 separate 1 liter cubitainers 
that were pre-washed with 10% HCL (Tallada et al., 2022). Water 
samples were filtered onto 47 mm Pall Supor® 450 polyethersulfone 
membranes (0.45 μm pore size; Pall Corporation, NY, United States) 
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(Tallada et al., 2022). Six separate desiccated microbial lift-off mat 
samples were collected from the surface of Lake Fryxell within the 
GPS area of −77.60491, 163.16315; −77.60473, 163.16290; −77.60463, 
163.16405; −77.60495, 163.16495 (Tallada et al., 2022). All samples 
were collected with alcohol-sterilized forceps and stored at −20°C for 
4 weeks and then −80°C for long term storage (Tallada et al., 2022). 
This study focuses on the viruses present within microbial cells which 
represent the ecologically relevant viruses at the time of sampling. The 
selected depths have average bacteria cell width sizes of 0.5 microns, 
though many diverse free floating viruses can also be caught on 0.45 
micron filters.

Shotgun metagenomic library construction and sequencing was 
performed by the Department of Energy (DOE) Joint Genome 
Institute (Community Science Program award 1936) using standard 
protocols on the Illumina HiSeq 2,500 platform (Tallada et al., 2022). 
The raw sequencing reads were quality controlled using JGI standard 
protocols and further processed using Trimmomatic (Bolger et al., 
2014) to remove adapters and low-quality sequences (Tallada et al., 
2022). Sequence read files used in this study are available at NCBI 
under accession numbers SRP104818, SRP104821, SRP098041, 
SRP098044, SRP104822, SRP098050, SRP104819, SRP104820, and 
SRP104823. We excluded the samples MAT-04, MAT-05, MAT-06 
from this analysis due to low viral read counts. A table of accession 
numbers and samples used in this study can be found in 
Supplementary Table S2.

2.3 Viral assembly and annotation

Viral sequences were identified in the JGI quality controlled 
forward and reverse reads from each sample following a viromics 
pipeline modified from (Comeau et al., 2017). Briefly, to accurately 
assess viral communities, metagenomic reads were cross-assembled 
using the assembly module in the MetaWRAP pipeline, using 
MEGAHIT version 1.2.9 with a -klist of 21, 29, 39, 59, 79, 119, 141 
(Uritskiy et al., 2018). Cross-assembled contigs greater than 2,500 and 
5,000 bp were used to identify potential viral contigs and genomes 
using VirFinder v1.0.0 and VirSorter v.2 (Cyverse) respectively (Roux 
et al., 2015; Ren et al., 2017). Viral contigs from VirFinder with a 
q-value of less than 0.1 were retained to minimize the false discovery 
rate. We  kept viral and proviral contigs in categories 1–3 from 
VirSorter on cyverse which corresponds to the confidence of predicted 
viruses, i.e., (1) “most confident,” (2) “likely” (3) “possible” (Roux 
et  al., 2015). Redundancies found in identified viral contigs from 
VirFinder and VirSorter were de-replicated using cd-hit and a 
sequence similarity threshold of 1.0 (Fu et al., 2012). De-replicated 
reads were mapped using Bowtie 2 v2.3.5.1 (Langmead and Salzberg, 
2012) with the sensitive-local setting. Coverage depths of viral 
scaffolds were calculated using samtools v0.1.19 (Li et al., 2009) and 
the jgi_summarize_contig_depths function from MetaBAT 2 v2.12.1 
(Kang et al., 2019). Finally, viral contigs with less than 70% coverage 
were excluded from all results.

2.4 Viral diversity metrics

Viral taxonomic annotation was performed with vConTACT2 
(v.5) which creates gene sharing networks against the 

“ProkaryoticViralRefSeq201-Merged” database with DIAMOND and 
ClusterONE to give putative genus level assignments both within and 
outside the database (Nepusz et al., 2012; Buchfink et al., 2015; Bin 
Jang et  al., 2019). We  compared richness and diversity of viral 
communities by first minimizing the effects of sequencing depth and 
library size. To normalize samples, all reads were repeatedly rarefied 
(n = 1,000) according to the smallest library size (n = 8,900) using the 
“phyloseq_mult_raref ” function from the metagMisc package in 
R. Alpha diversity of communities was determined using the inverse 
Shannon index and richness as the total number of genus clusters. 
Differences in viral communities between lakes and lift-off mats were 
visualized using Principal Coordinates Analysis (PCoA, using Bray-
Curtis distance) and tested with permutational multivariate analyses 
of variance (PERMANOVA) in R.

2.5 Auxiliary metabolic genes

We extracted and categorized AMGs using DRAM-v (Shaffer 
et al., 2020). Based on the output of DRAM-v only high confidence 
AMGs in categories 1 and 2 were retained which are AMGs flanked 
on one or both sides by viral hallmark genes. To obtain differential 
abundances of AMGs we  paired AMG identifications with their 
corresponding viral contig abundances.

2.6 Host binning, quantification, and 
taxonomy

We binned our cross-assembly using MetaBat2 v 2.12.1 from the 
binning function in the MetaWrap pipeline (Uritskiy et al., 2018; Kang 
et al., 2019). Bacterial bins that were less than 50% complete and over 
10% contaminated according to CheckM were excluded from the 
analysis (Parks et al., 2015). We retained eukaryotic and archaeal bins 
with high taxonomic assignment from CAT/BAT (von Meijenfeldt 
et al., 2019). Bins were quantified using the quant_bins module in 
Metawrap. Taxonomic annotation was performed by CAT/BAT v5.0.3 
(von Meijenfeldt et al., 2019). Suggestive assignments and lineage 
scores from CAT/BAT below 0.9 were trimmed from the predicted 
host analysis (von Meijenfeldt et al., 2019).

2.7 Host predictions

Viral host predictions were made against the bacterial and 
eukaryal bins using the Phage-Host Interaction Search Tool (PHIST) 
which predicts viral hosts based on the number of exact shared k-mer 
matches between viral and host sequences (Zielezinski et al., 2022). 
Host predictions with significant p-values (<0.05) were retained. 
We  performed Procrustes rotation and permutation using the 
PROTEST function in vegan to search for significant coupling 
between the viral and bacterial communities.

3 Results and discussion

Viruses are major contributors and regulators of ecosystem health 
and function across the planet. Early studies in the MDV lakes have 
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shown that the abundance of viruses and their prokaryotic infection 
rates indicates that viruses have ecologically significant roles in these 
aquatic ecosystems (Kepner et  al., 1998; Lisle and Priscu, 2004; 
Säwström et al., 2008). We analyzed the metagenomes of microbial 
communities from Lakes Bonney and Fryxell to explore the viral 
diversity, function and potential community associations from a 
unique microbially dominated ecosystem where the impact of viral 
interactions is expected to be especially important.

3.1 MDV Lake planktonic and microbial mat 
viral diversity and composition

Our analysis pipeline recovered 66,376 unique putative viral 
contigs; we removed singleton contigs that were not mapped to the 
ProkaryoticViralRefSeq201-Merged database or clustered with each 
other through vConTACT2. Figure 1 displays the major viral genus 
clusters comprising >2% of each sample detected in the metagenomic 
data and reveals the variation among the sample types, sites and 
replicate samples. Viral cluster composition among the replicate 
samples was relatively uniform among the planktonic samples but was 
highly variable across the individual lift-off mat samples. Lift-off mat 
bacterial communities in MDV lakes are more diverse than plankton 
samples (Takacs-Vesbach et  al., 2010) and similar mats in nearby 
streams significantly differ at the local spatial scale (Van Horn et al., 
2016). Despite differences among replicate samples, Shannon diversity 
of the viral communities was greatest in the planktonic samples (Lake 
Fryxell 6.7, Lake Bonney 5.64, lift-off mat 5.61). Viral communities 
differed significantly among the lakes (Supplementary Figure S1, 

PERMANOVA, F = 9.1349, R2 = 0.75278, p = 0.003) and the site 
(Supplementary Figure S1, lakes vs. lift-off mats; PERMANOVA, 
F = 5.0261, R2 = 0.41793, p = 0.02). These findings that viral community 
structure is distinct between Lakes Bonney and Fryxell agrees with 
recent studies that showed a strong influence of lake physiochemistry 
on both bacterial and eukaryal communities (Kwon et al., 2017; Li and 
Morgan-Kiss, 2019). Viral abundances and productivity also vary 
between the lakes and depths as shown in other previous studies 
(Kepner et al., 1998; Lisle and Priscu, 2004). Thus given the range of 
geochemical variation found in MDV lakes, the viral diversity and its 
effect on host community function is likely much greater than revealed 
by this initial viromic analysis. Between the lake samples, the only 
major viral genus cluster shared among the samples was 706 which 
was assigned to the Siphoviridae family (order Caudovirales). The 
lift-off mats were comprised of a more diverse group of dominant viral 
clusters than the lake samples and had the most variation amongst 
replicates. The metadata for the mat samples in this project is limited. 
However, we  know from (Van Horn et  al., 2016) that there is 
tremendous spatial variation in the community composition of Dry 
Valley stream microbial mats and given that the exact location of 
where these samples were collected is unknown we can say little about 
the types of mats collected. Further research into viral communities 
in microbial mats of the MDVs is required to better understand their 
community composition and relationship with biotic and 
abiotic factors.

To assess viral community distribution amongst the samples 
we plotted the viral clusters generated from VconTACT2 into Venn 
diagrams (Figure 2). Viral partitioning among the samples was highly 
segregated between lakes and sites. In total, only 4% of viral clusters 

FIGURE 1

Diversity of major viral clusters in the east lobe of Lake Bonney, Lake Fryxell and the microbial liftoff mats. The counts are based on the abundance of 
contigs from viral clusters.
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were shared among the three sites. Lake Fryxell had the highest 
percentage (29%) of unique viral clusters, followed by the lift-off mats 
(27%) whereas Lake Bonney had the least (5%). Between the samples, 
the lake samples shared the most viral clusters (25%) (Figure 2). Lastly, 
Lake Fryxell shares the most viral clusters with the lift-off Mats at 14% 
while Lake Bonney shared 9% with the lift-off mats. Viral community 
composition is driven by both abiotic (UV radiation, nutrient 
concentrations, etc.) and biotic factors such as host metabolism and 
diversity (Suttle and Chen, 1992; Lisle and Priscu, 2004; Chow and 
Suttle, 2015). Our results suggest that shared attributes of the 
physicochemistry and biology of the water column relative to the mats 
likely account for the highest proportion of shared viral clusters 
among the planktonic samples. Despite similarities in 
physicochemistry and biology, overall host communities are distinct 
(Supplementary Figure S1) and site-specific differences in the viral 
clusters could be derived from this distinction in host communities. 
A higher rate of shared clusters among Lake Fryxell and the lift-off 
mats is potentially due to chemical and geographical similarities since 
they reside in the same basin.

3.2 McMurdo dry valleys auxiliary 
metabolic genes

We searched for putative AMGs using DRAM-v and after quality 
control 561 AMGs were identified and annotated. Of those found, 
68% had no classification in the distilled output generated by 
DRAM-v; 170 were matched to previously identified AMGs. DRAM-v 
assigned the AMGs into categories based on the potential function of 
the putative genes (e.g., energy, carbon utilization, etc.). There were 78 
related to carbon utilization, 6 related to energy, 64 miscellaneous, 26 
related to organic nitrogen, and 6 related to bacterial transporters 
(Figure 3). Here, we focused on the genes pstS, dcm, soxY, and prkB 
which are involved in overcoming nutrient and energy limitations 

(Thompson et  al., 2016; Warwick-Dugdale et  al., 2019; Heyerhoff 
et al., 2022). An additional gene cp12 was discovered in 16 contigs by 
Virsorter v1.0.0 and could play an important role in viral-mediated 
carbon cycling because of its role in the Calvin-Benson-Bassham 
Cycle (Calvin Cycle).

A gene for a phosphate transporter, pstS which encodes for a 
periplasmic high-affinity phosphate-binding protein was detected in 
putative viral contigs found in Lake Bonney and Lake Fryxell, but was 
not detected in the lift-off mats. This AMG assists in circumventing 
phosphorus limitations, which is the primary nutrient limitation in 
Lake Bonney (Spigel and Priscu, 1998). pstS is upregulated in 
phosphorus deficient environments: increased phosphorus uptake 
may be required for several processes in viral replication (Gao et al., 
2016). We did not detect additional genes involved in phosphorus 
acquisition such as phoH and phoU. Increased phosphorus uptake 
could also synthesize cysteine, which is the only amino acid that can 
form disulfide bonds that stabilize the viral protein structure (Ashcroft 
et  al., 2005). Viral-mediated phosphorus acquisition could be  a 
significant process in nutrient cycling, particularly in Lake Bonney 
where the primary limitation is phosphorus (Spigel and Priscu, 1998).

Genetic potential for viral-mediated nitrogen cycling was also 
detected among the MDV viral AMGs. In all three sample types, 
methionine degradation genes, specifically DNA (cytosine-5)-
methyltransferase (dcm) was found. While still being studied, dcm 
may have multiple uses such as aiding in phage capsid stability, helping 
to circumvent organic nitrogen limitations through methionine 
degradation, and preventing recognition from prokaryotic 
methyltransferases (Enav et al., 2014; Heyerhoff et al., 2022; Daniel 
et  al., 2023). The dcm gene may enhance the degradation of 
methionine to then redirect sulfur into the cysteine biosynthesis 
pathway (Wang et al., 2022). Increased cysteine may allow for stronger 
capsids and structural stability which could also be  useful as an 
overwinter survival strategy for lytic viruses persisting outside host 
cells especially, when host abundance such as primary producers, 
decreases during winter months (Takacs and Priscu, 1998). 
Additionally, nitrogen is a limiting factor of production and catabolism 
of amino acids such as methionine and dcm could be an additional 
nitrogen scavenging strategy. Bacteria restriction modification systems 
remove foreign DNA, but viral methyltrasferases can aid in avoiding 
host defense systems (Seong et al., 2022). AMGs are expressed during 
infection which appears to be relatively high in MDV lakes compared 
with other temperate environments, increasing the importance of 
AMGs in nutrient limited environments like MDV lakes (Spigel and 
Priscu, 1998; Lisle and Priscu, 2004; Yau and Seth-Pasricha, 2019). 
Our data indicates that MDV viruses modulate N-cycling processes 
in the MDV lakes and microbial mats.

The chemocline samples from Lake Fryxell were the only samples 
with viral genomes that contained the sulfur oxidation gene soxY 
which encodes part of the thiosulfate oxidizing enzyme complex a key 
step in the Sox pathway (Jurgensen et al., 2022; Li et al., 2023). MDV 
lakes contain high concentrations of inorganic and biogenic sulfur and 
can serve as important energy sources for prokaryotic carbon fixation 
and potentially overcoming the energy bottleneck of viral replication 
(Bowman et al., 2016). While incomplete sox pathways in bacteria can 
lead to bottlenecks in the sulfur cycle, it is not uncommon to find 
incomplete sox pathways in viruses because these genes are being used 
to scavenge energy for nucleotide synthesis (Li et  al., 2023). 
Additionally, viruses may regulate sulfur metabolism differently 

FIGURE 2

Venn diagram representing the three sample types for the rarefied 
viral clusters defined by vConTACT2. The number of clusters per 
sample is displayed in the circle while the number in percentage 
represents the proportion of all clusters.
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dependent on environmental and nutritional conditions (Li et al., 
2023). In previous bacterial studies, sulfur oxidizing bacteria have 
been detected in Lake Fryxell and West Lobe Lake Bonney but not in 
East Lobe Lake Bonney which could explain the absence of sulfur 
AMGs in ELB (Kong et  al., 2012; Dolhi et  al., 2015). Phage soxY 
induction may boost sulfur oxidation and lead to prolonged viral 
infection and replication, increasing burst size (Anantharaman 
et al., 2014).

Although only detected by VirSorter and not DRAM-v, there is 
evidence that CP12 serves as an AMG in MDV lake viruses. CP12 is 
implicated in regulation of photosynthetic processes, specifically, 
carbon partitioning during the day/night cycle (Tamoi et al., 2005). 
When expressed during light driven infection, CP12 diminishes 
phosphoribulokinase (prkB) expression (Thompson et al., 2016). The 
down regulation of the Calvin Cycle and concomitant up-regulation 
of the Pentose Phosphate Pathway oxidizes carbon stores to produce 
NADPH which can then be used in nucleotide synthesis. Some contigs 
that contained CP12 sequences were flanked by phage clusters and 
accompanied by viral genes within the contig, but not the viral 
hallmark genes required for annotation by DRAM-v. Manipulation of 
light driven cycles can increase phage burst size in cyanophage 
infections, both light and photosynthesis are required for maximal 
phage production (Amla et al., 1987; Thompson et al., 2016). Both lake 
metagenomes (but not the microbial mats) indicated the potential for 
Calvin Cycle inhibition and re-routing the Pentose Phosphate Pathway 
into nucleotide synthesis through the expression of CP12.

The potential of viral CP12 expression in MDV lake phototrophs 
could have significant impacts on the carbon cycle in this 24-h daylight 

ecosystem. Infection by viruses with CP12 could induce 
downregulation of carbon fixation and increased catabolism of stored 
carbon, typical of a dark cycle reaction. Additionally, the gene for 
phosphoribulokinase, PRK, which is traditionally downregulated by 
the presence of CP12 was detected in four contigs by DRAM-v. 
Previous studies have shown that PRK has no activity when it exists in 
the PRK/CP12/GAPDH complex that suppresses the Calvin Cycle 
(Wedel et al., 1997; Puxty et al., 2016). However, when PRK exists in 
its dimeric form it is not completely inhibited, even in a dark cycle 
(Tamoi et al., 2005). Viruses in the MDV lakes may use CP12 and PRK 
to maximize energy generation by exhausting carbon stores while still 
converting Ru5P to RuBP to restore the primary substrate for RubisCO 
in the Calvin Cycle. This potential viral-mediated rewiring of carbon 
metabolism in the MDV phytoplankton could have significant 
implications for carbon cycling. Given the high VBR in these lakes, the 
combination of CP12 and PRK could result in activating dark-driven 
metabolic processes, despite the 24-light conditions experienced in the 
austral summer.

3.3 Viral host predictions

Viral infection of microbial hosts plays a crucial role in ecosystem 
dynamics (Suttle, 2005; Knowles et al., 2016; Warwick-Dugdale et al., 
2019). We predicted 12,200 multiple (2–17) hosts to 1,367 different 
retrieved bins for our viral contigs using PHIST. Of those host 
predictions 773 were predictions of contigs to multiple hosts. Potential 
hosts included representatives for all three domains of life: Archaea 

FIGURE 3

Differences in relative abundances of viral contigs with identified auxiliary metabolic genes across samples. Viral auxiliary metabolic gene categories are 
defined through DRAM-v.
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(54), Bacteria (8334), and Eukaryotes (3812). Other studies in nutrient 
limited environments have also seen a similar diversity of predicted 
hosts (Cissell and McCoy, 2023; Coutinho et al., 2023). We paired the 
predicted hosts with their bin abundances to determine host 
community differences among the samples. Archaeal host predictions 
were comprised of Crenarchaeota (56%), Euryarchaeota (40%), and 
two unclassified hosts (4%). Bacterial host predictions in Lake Bonney 
were assigned to Actinobacteria (13%), Bacteroidetes (11%), 
Proteobacteria (9%), whereas Lake Fryxell was dominated by 
Bacteroidetes (42%), Actinobacteria (22%), and Proteobacteria (10%). 
Finally, the lift-off mats were dominated by Cyanobacteria (20%), 
Planctomycetes (25%), and Proteobacteria (9%) (Figure 4).

Archaeal hosts were more frequent in the planktonic samples than 
the microbial mats but overall were only a small proportion of total 
predicted hosts. Crenarchaeota and Euryarchaeota are both phyla that 
have been previously detected in MDV lakes and contribute to lake 
biogeochemical cycles (Bowman et al., 2000; Brambilla et al., 2001; Karr 
et al., 2006). The presence of cyanobacterial hosts in the mats and their 
absence in the lake samples agrees well with observations that the MDV 
lakes are generally devoid of planktonic cyanobacteria (Kong et al., 2012; 
Li and Morgan-Kiss, 2019). Previous studies have shown that bacterial 
communities in the lakes are dominated by the phylum Bacteroidetes 
and Actinobacteria (Kwon et al., 2017). The broad range of hosts in our 
samples shows the potential impact that viruses have on prokaryotic 
community functionality and highlights the different strategies of viruses 
in infecting prokaryotes. Host communities with high diversity may elicit 
a narrow viral infection range due to the increased probability of 
infecting phylogenetically related members while broad viral host ranges 
may increase likelihood of exchanging genetic material across 
populations (Weitz et al., 2013; Hwang et al., 2023; Peter et al., 2024). The 
majority of our viral predictions have a narrow host range across a broad 
host diversity, indicative of resource limitations (Weitz et  al., 2013). 
However, the presence of phages infecting multiple hosts does provide 
evidence that genetic material is moving around microbial communities 
in MDV lakes via viral infection.

Eukaryotic host predictions in Lake Bonney were much higher 
relative to the other samples in the study. The eukaryotic sequences 
in Lake Bonney were dominated by Chlorophyta (12%) and 
Haptista (22%) (Figure 4) which dominate Lake Bonney and are 
rarely found in Lake Fryxell (Li and Morgan-Kiss, 2019). The 
highest abundance among the eukaryotic host predictions belongs 
to the phylum Haptista. This host is most likely the nanoflagellate 
Isochrysis sp. MDV, which dominates the chemocline of both lobes 
of Lake Bonney. Isochrysis has a number of important functions in 
the Lake Bonney food web. It is a constitutive mixotroph, utilizing 
light for energy and supplementing energy and nutrients by 
phagotrophy (Li and Morgan-Kiss, 2019). During the polar winter 
when it is dark for 4 months, Haptophytes dominate the algal 
communities of Lake Bonney, likely because they can switch to 
heterotrophic metabolism (Patriarche et al., 2021). Furthermore, 
near the end of polar winter, Haptophyte communities have been 
observed to rapidly collapse, which has been attributed to predator 
activity or viral lysis (Patriarche et  al., 2021). Our discovery of 
abundant viruses associated with a dominant algal host suggests 
that algal viruses likely play an active role in controlling the 
phytoplankton populations and recycling carbon and nutrients in 
Lake Bonney. Conversely, we did not detect any evidence of viral 
hosts for the dominant Cryptophyte communities of Lake Fryxell, 
potentially because the Lake Fryxell cryptophytes are predated 
upon by ciliates rather than viruses (Roberts and Laybourn-
Parry, 1999).

We used Procrustes rotation and permutation analysis, to search 
for significant coupling between the microbial and viral communities. 
Our analyses show that viral and bacterial community members are 
tightly linked in the MDVs (Procrustes rotation correlation 0.997, 
p = 0.001) and changes between these communities are coupled 
(Figure 5). If paired with life-cycle dynamics from previous studies 
and the host predictions described here, the coupling of the 
communities may largely be driven by the most abundant members 
of the bacterial and eukaryotic communities (Thingstad, 2000; Bekliz 

A B

FIGURE 4

Relative abundance of viruses in conjunction with their putative hosts. (A) Predicted viral hosts displayed at the phylum level. Phyla representing less 
than 1% of the sample are grouped together at the top of the bar plot. (B) Predicted viral hosts at the kingdom level.
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et  al., 2022). Changes in the one community likely contribute to 
changes in the other community in the lakes in the MDVs.

4 Conclusion

To the best of our knowledge, this is the first study in the lakes of 
the MDVs to use high-throughput metagenomics to examine viral 
communities and their relationships with their hosts. Previous studies 
have focused on viral community dynamics using particle counts, 
microscopy, and calculated rates of lysogeny (Kepner et al., 1998; Lisle 
and Priscu, 2004). While integral to our current understanding of 
viruses, previous studies did not reveal the diversity or potential 
influence of viruses as seen through the virome lens. Our study shows 
that viruses in the MDVs are diverse and uniquely distributed 
throughout the MDVs. We  also showed that viruses infect the 
dominant phyla commonly found in the lakes of the MDVs and while 
infecting their hosts they can hijack host cell metabolism to circumvent 
the nutrient limitations of their current environments. AMGs likely 
account for the discrepancy between the viral infection estimates in 
Lisle and Priscu (2004). Viruses play a dual role in nutrient cycling in 
the MDVs though lysis and host cell metabolism augmentation. Due 
to climate change these current viral roles will likely alter as MDV lakes 
are predicted to be seasonally ice free within this century (Obryk et al., 
2019). This study provides the foundation for future viromics work 
which is key to understanding climate impacts on MDV lakes.
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