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Aflatoxins (AFs) are highly carcinogenic metabolites produced by Aspergillus 
species that can contaminate critical food staples, leading to significant health and 
economic risks. The cytochrome P450 monooxygenase AflG catalyzes an early 
step in AF biosynthesis, resulting in the conversion of averantin (AVN) to 5′-hydroxy-
averantin. However, the molecular mechanism underlying the AflG-AVN interaction 
remains unclear. Here, we sought to understand the structural features of AflG 
in complex with AVN to enable the identification of inhibitors targeting the AflG 
binding pocket. To achieve this goal, we employed a comprehensive approach 
combining computational and experimental methods. Structural modeling and 
microsecond-scale molecular dynamics (MD) simulations yielded new insights 
into AflG architecture and unveiled unique ligand binding conformations of the 
AflG-AVN complex. High-throughput virtual screening of more than 1.3 million 
compounds pinpointed specific subsets with favorable predicted docking scores. 
The resulting compounds were ranked based on binding free energy calculations 
and evaluated with MD simulations and in vitro experiments with Aspergillus 
flavus. Our results revealed two compounds significantly inhibited AF biosynthesis. 
Comprehensive structural analysis elucidated the binding sites of competitive 
inhibitors and demonstrated their regulation of AflG dynamics. This structure-
guided pipeline successfully enabled the identification of novel AflG inhibitors and 
provided novel molecular insights that will guide future efforts to develop effective 
therapeutics that prevent AF contamination.
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1 Introduction

Aflatoxins (AFs) are highly toxic, carcinogenic secondary metabolites primarily produced 
by the fungi Aspergillus flavus and Aspergillus parasiticus (Caceres et al., 2020). These fungi are 
ubiquitous in the environment, leading to widespread aflatoxin contamination in agricultural 
products (Liao et al., 2020). When temperature and humidity conditions are favorable, AFs 
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are produced in large volumes, contaminating supplies of staple foods 
such as maize, peanuts, and other nuts. This can occur at multiple 
points in production, including the growth, harvest, storage, and 
processing stages (Jallow et  al., 2021). Consumption of 
AF-contaminated foods by humans or other animals can result in 
various disorders and diseases, such as nutritional malabsorption, 
infertility, endocrine disruption, congenital fetal malformations, and 
immune deficiencies (Razzaghi-Abyaneh et al., 2014; Caceres et al., 
2020). Mitigating AF contamination in crops is crucial to alleviate the 
associated health risks and economic impacts.

AF biosynthesis is tightly regulated by various factors, including 
nutrient sources, oxidative stress responses, ambient temperature, pH, 
and light conditions. Favorable conditions induce cellular signaling 
pathways that up-regulate genes involved in AF production (Bhatnagar 
et al., 2003; Georgianna and Payne, 2009; Caceres et al., 2020; Wu et al., 
2022, 2023). The AF biosynthetic pathway contains 30 genes encoding 
both enzymes and regulatory factors. The enzymes in this pathway 
catalyze at least 27 reactions, including numerous oxidative 
rearrangements, making AF biosynthesis one of the most extensive and 
intricate biological processes known (Chang, 2003; Price et al., 2006; 
Caceres et al., 2020; Wang et al., 2022). Over a decade ago, researchers 
embarked on efforts to understand the functional mechanisms of 
enzymes in the AF biosynthetic pathway. For example, Crawford et al. 
solved the structure of the product template (PT) domain within PksA, 
a multidomain iterative polyketide synthase that initiates AF 
biosynthesis in A. parasiticus, and revealed the PT domain’s capacity to 
bind both linear and bicyclic polyketides (Crawford et  al., 2009). 
Subsequently, the thioesterase/Claisen cyclase domain in PksA was 
found to have an α/β-hydrolase fold in the catalytic closed form, with 
a distinct hydrophobic substrate-binding chamber (Korman et  al., 
2010). Despite such mechanistic insights, the functional mechanisms 
of most enzymes in the AF biosynthetic pathway have remained elusive.

Previous studies in other biochemical pathways of interest have 
demonstrated the capacities of targeted inhibitors to regulate metabolic 
processes. For instance, asparaginase and glutaminase inhibitors have 
been utilized to modify amino acid metabolism in hematologic 
malignancies, effectively reversing immune suppression (Tabe et al., 
2019). Inhibitors of monoamine oxidases (MAOs), which catalyze 
oxidative deamination of several neurotransmitters, modulate 
neurotransmitter metabolism and may act as therapeutics in those with 
Alzheimer’s disease by reducing harmful by-products and the 
associated oxidative stress (Manzoor and Hoda, 2020). Furthermore, 
several categories of compounds (namely amidepsines, roselipins, and 
xanthohumol) have been shown to inhibit the activity of diacylglycerol 
acyltransferase produced by the marine fungus Gliocladium roseum, 
regulating triacylglycerol biosynthesis (Sharma et  al., 2020). These 
studies collectively indicate that inhibitors targeting key enzymes in 
specific metabolic pathways can effectively modulate the production of 
these metabolites, suggesting that AF production could be curtailed via 
targeted inhibition of critical enzymes in the AF biosynthetic pathway.

Building upon this concept, recent research has employed in silico 
docking methodologies to identify potential inhibitors of the AF 
biosynthetic enzyme PksA. In one such study, researchers conducted 
a virtual screening of 623 natural compounds from the South African 
natural compound database, identifying 10 molecules with predicted 
favorable binding energies (Labib et al., 2022). However, the multiple 
subunits of PksA, which catalyze various reactions, pose a challenge 
to effective PksA inhibition (Crawford et al., 2009). Thus, it may prove 

more fruitful to target other enzymes in the AF biosynthetic pathway. 
Earlier investigations have underscored the central roles of 
cytochrome P450s, a Heme-type superfamily of enzymes with a highly 
conserved basic fold, in AF biosynthesis (Uka et al., 2020). P450s have 
been rigorously investigated in prior studies as prospective targets for 
inhibitor design, laying the groundwork for future efforts (Sezutsu 
et al., 2013; Hussain et al., 2020; Stout et al., 2021). The P450 AflG is 
involved in an early step of AF biosynthesis, in which it catalyzes the 
conversion of averantin (AVN) to 5′-hydroxy-averantin (Yu et al., 
1997; Uka et al., 2020). Thus, AflG may be a viable target for inhibitor 
design to prevent AF biosynthesis.

In the present study, we investigated the AflG-AVN interaction 
and identified potential AflG inhibitors using structural modeling, 
molecular dynamics simulations, virtual screening, binding free 
energy calculations, and experimental validation. This approach was 
designed to yield novel insights into the structural architecture of the 
substrate and enzyme and to identify crucial residues that govern their 
interaction. High-throughput docking was then used to screen a vast 
library of millions of compounds, allowing the identification of 
molecules with favorable docking scores. Subsequent binding free 
energy calculations were conducted to narrow the selection to a 
handful of candidate compounds that could be tested in vitro. This 
study establishes an effective framework for further development and 
optimization of effective AflG inhibitors, promoting the establishment 
of effective agricultural therapeutics to mitigate AF contamination.

2 Materials and methods

2.1 Structural modeling and molecular 
docking

The A. flavus strain NRRL 3357, obtained from the United States 
Department of Agriculture Agricultural Research Service (USDA-ARS) 
culture collection (Peoria, IL, United States), was selected for this study 
due to its extensively characterized genome and widespread use as a 
model organism in investigations of secondary metabolite regulation 
and biosynthesis (Nierman et al., 2015; Skerker et al., 2021). The AflG 
amino acid sequence from A. flavus strain NRRL 3357 and the 
corresponding structural model (predicted with Alphafold2) were 
obtained from UniProt (ID: B8NHZ0) (The UniProt Consortium, 2023). 
The validity of the model was evaluated using predicted local-distance 
difference test (pLDDT) scores and visual inspection. The initial 35 
amino acids, predicted to interact with membranes, were excised from 
the AlphaFold2 structural model (Kufareva et al., 2014). The revised 
structure was then employed for subsequent construction steps. The 
structure of the closely related human enzyme P450 3A5 (PDB ID: 7sv2) 
was predicted with SWISS-MODEL and aligned to the AflG model 
using PyMOL (v2.5 Educational Edition, Schrödinger, LLC) (Waterhouse 
et al., 2018). The Heme cofactor from the aligned P450 3A5 structure 
was incorporated into the AflG model, forming the AflG-Heme complex.

CavityPlus was employed to detect potential binding pockets in 
the AflG-Heme complex, into which the native substrate AVN was 
docked (Wang et al., 2023). Polar hydrogens and Gasteiger charges 
were added to the receptor structure using the AutodockTools v.4.2 
package (Morris et al., 2009). The AVN structure was obtained from 
PubChem and processed using the Python script “mk_prepare_ligand.
py” from Meeko (Holcomb et  al., 2022). The grid spaces around 

https://doi.org/10.3389/fmicb.2024.1425790
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2024.1425790

Frontiers in Microbiology 03 frontiersin.org

potential AflG binding pockets were defined in AutodockTools. The 
number of points was set to 50 Å in x-, y-, and z-dimensions. The 
center coordinates were − 10.35 Å, 36.078 Å, and 40.881 Å on the x-, 
y-, and z-axes, respectively. The grid spacing was 0.375 Å. The 
AutoDock force field affinity maps were generated using AutoGrid4 in 
AutodockTools. Molecular docking was conducted using Autodock-
Vina and the AutoDock4 forcefield with default parameters (Eberhardt 
et al., 2021). A high-scoring docking pose, in which the AVN alkyl 
chain was positioned proximate to the Heme iron center, was selected 
as the AflG-Heme-AVN complex model.

2.2 MD simulations for AflG and the 
AflG-Heme-AVN complex

Two simulation systems were established to analyze AflG dynamics 
and interactions with AVN: AflG alone and the AflG-Heme-AVN 
complex. The initial structures for AflG and AflG-Heme-AVN were 
obtained as described in section 2.1. Water, Na+, and Cl− were added to 
solvate and neutralize the systems at physiological salinity (150 mM). MD 
simulations were conducted in GROMACS 2020 using the all-atom 
CHARMM36m force field and the TIP3P water model (Abraham et al., 
2015; Huang et al., 2017). Topology and parameter files for AVN were 
generated with a CHARMM generalized force field (CGenFF) 
(Vanommeslaeghe et al., 2010). The parameter file for Heme, specifying 
an Fe(II) oxidation state advantageous for oxygen binding, was sourced 
from CHARMM-GUI (Jo et al., 2008). The steepest descent algorithm 
was used for energy minimization over 50,000 steps. The system 
equilibration lasted 100 ps with constraints on the hydrogen bonds in the 
isothermal-isobaric (NPT) ensemble (Deift and Zhou, 1993). The semi-
isotropic Parrinello-Rahman method was used to maintain the pressure 
at 1 bar with a time constant of 2 ps. The v-rescale method was used with 
a time constant of 0.1 ps to maintain a constant temperature of 298 K 
(Parrinello and Rahman, 1980). Trajectories were produced with 
constraints on the H-bonds and lasted 1 μs for both AflG and AflG-
Heme-AVN complex. H-bonds were constrained using the LINCS 
algorithm at 2 fs intervals (Hess et al., 1997). The threshold values for 
electrostatic and van der Waals interactions were both 1.2 nm. Long-
range electrostatic interactions were computed using the particle mesh 
Ewald (PME) method (Essmann et al., 1995). The root mean square 
deviation (RMSD), root mean square fluctuation (RMSF), and interaction 
fingerprint values of the MD trajectories were calculated with GROMACS 
modules and MD-IFP (Kokh et al., 2020). The Gromos algorithm was 
employed for cluster analysis, using a backbone RMSD threshold of 
0.3 nm for AflG and 0.2 nm for the AflG-Heme-AVN complex.

2.3 Large-scale virtual screening

AVN was removed from the central structure of the top cluster in 
the AflG-Heme-AVN ensemble, and the resulting structure was used 
as the receptor in virtual screening. The screening compound library 
comprised 1.3 million molecules from the ZINC20 database with 
Log(p) values ≤3.5 and 32,000 molecules from TopScience Co. Ltd. 
(Shanghai, China). The docking-ready pdbqt files for each compound 
were downloaded from the ZINC20 database. The two-dimensional 
structures of molecules obtained from TopScience were converted to 
three-dimensional structures using OpenBabel v.3.1.0 and then 

processed with the Python script “mk_prepare_ligand.py” (O'Boyle 
et al., 2011). The receptor structure was prepared, the grid space was 
set, and the affinity maps were generated as described in section 2.1 
with several exceptions: the point settings of the x-, y-, and z-dimensions 
were 52 Å, 32 Å, and 22 Å with centers at 4.057 Å, 2.767 Å, and 7.66 Å, 
respectively. The structure derived from the MD simulation exhibited 
a systematic deviation in position compared to the docked AflG-
Heme-AVN model, rendering the grid box center positions 
incomparable. Autodock-GPU was used to dock molecules from the 
compound library using the default parameters (Santos-Martins et al., 
2021). Molecules that exhibited a docking energy < −7 kcal/mol were 
classified as highly ranked compounds for further analysis.

2.4 Molecular mechanics/generalized born 
surface area calculations

Binding free energy was calculated for over 4,000 highly ranked 
compounds. For each compound, the docking pose with the lowest 
docking energy was selected. Hydrogen atoms were then added, and 
the structure was converted to mol format using OpenBabel v.3.1.0. 
MM-GBSA calculations for the highly ranked compounds were 
conducted in an automated workflow (Uni-GBSA) with default 
parameters (Yang et al., 2023). Compounds with a binding free energy 
< −53 kcal/mol were prioritized for further analysis as prioritized hit 
compounds against AflG.

2.5 MD simulations of AflG complex with 
hit compounds

Of the compounds classified as hits, eight were commercially 
available. MD simulations using Uni-GBSA and GROMACS 2020 
were performed using the top-ranked docking poses of these 
compounds. The protein was described with the amber99sb force 
field, while the compounds were described with gaff2. Both were done 
using default parameters in Uni-GBSA. The simulation parameters 
were similar to those used for the AflG-Heme-AVN system, except the 
temperature was maintained at 300 K, and the threshold values for 
electrostatic and van der Waals interactions were 1.0 nm. Simulations 
for all systems were run for 100 ns, and trajectories were analyzed as 
described above. Cluster analysis were conducted for all AflG-
compound complexes with the Gromos algorithm and a backbone 
RMSD threshold of 0.2 nm.

2.6 In vitro validation of AF biosynthesis 
inhibition

The A. flavus strain NRRL 3357 was used to validate AF biosynthesis 
inhibition using the previously established liquid incubation system in 
our lab (Yan et  al., 2015; Wu et  al., 2022). The eight commercially 
available candidate inhibitor compounds, identified by PubChem 
Compound Identifications (CIDs) 50782408, 53209539, 57336812, 
53151533, 20880420, 50748540, 91904139, and 54761306, were 
procured from TopScience Co. Ltd. (Shanghai, China) and had >95% 
purity. Stock solutions of each compound were prepared in dimethyl 
sulfoxide (DMSO), except compound 54761306, which was prepared 
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FIGURE 1

Structural modeling of AflG and the AflG-Heme-averantin (AVN) complex. (A) Schematic diagram of the AflG amino acid sequence with conserved 
cytochrome P450 motifs highlighted. (B) AflG structure as predicted with AlphaFold2. Secondary structures are shown: α-helices (blue), β-sheets (red), 
and loops (gray). (C) Structural model of the AflG-Heme-AVN complex. The model was generated by the superposition of AflG and human P450 3A5 
complexed with Heme, followed by simulated AVN docking.

in liquid glucose mineral salt (GMS) medium (Yan et al., 2012). To 
analyze A. flavus physiology and AF production under control (CK) 
conditions and in the presence of each putative inhibitor, flasks were 
prepared with 18 mL of liquid GMS medium, 2 mL of spore suspension 
(0.8 × 107 spores/ml), and 100 μL of putative inhibitor stock solution, 
DMSO, or GMS medium, yielding an initial fungal density of 0.8 × 106 
spores/mL, and the final concentrations of eight putative inhibitors 
50782408, 53209539, 57336812, 53151533, 20880420, 50748540, 
91904139, and 54761306 were 80, 148, 96, 30, 147, 167, 167, and 48 μM, 
respectively. All GMS liquid cultures were grown at 28°C under 
continuous darkness with shaking at 180 rpm (Yan et al., 2012, 2015). 
The A. parasiticus NRRL 2999 strain, obtained from USDA-ARS, was 
further used to validate the inhibitory effect of compound 50782408 
using the same procedure as for the A. flavus NRRL 3357 strain. AF 
contents were measured using thin-layer chromatography (TLC) as 
previously described (Yan et al., 2012). The relative intensities on the 
TLC plates were quantified using GelAnalyzer 19.1 (www.gelanalyzer.
com) and subsequently normalized to a maximum sample intensity of 
1, allowing for the comparison of relative concentrations of AF.

3 Results

3.1 Atomic-level architecture of AflG and 
the cofactor-substrate complex

Comprehensive structural modeling was undertaken to elucidate 
the key architectural features of AflG and to provide details of its 

cofactor and substrate interactions. Bioinformatics analysis revealed 
that the full-length AflG amino acid sequence (450 residues) 
contained a highly conserved ExxR motif (E353SLR356) and an active-
site motif (F429SIGPRNCIG438), both of which are characteristic of 
cytochrome P450 (Figure 1A) (Yu et al., 1997; Yang et al., 2008; Syed 
and Mashele, 2014). These findings validated the initial classification 
of AflG as a member of the cytochrome P450 superfamily. AlphaFold2 
was next used to generate a high-confidence three-dimensional AflG 
structure. This demonstrated that the secondary structure was 
primarily composed of α-helices (~70%) (Figure 1B), consistent with 
other well-characterized P450 enzymes. High-confidence pLDDT 
scores (> 90) for a significant portion of the structure indicated the 
accuracy of the AflG structural model (Supplementary Figure S1).

In this study, our primary focus was directed toward elucidating 
the essential residues of AflG that govern its interactions with the 
substrate, as these aspects are pivotal for understanding the enzymatic 
function of AflG and facilitating inhibitor screening. Consequently, 
we omitted the N-terminal 35 amino acids, which were predicted to 
interact with membranes, from the structural model (Kufareva et al., 
2014). Subsequently, we aligned the obtained AflG structure with a 
closely related human enzyme, P450 3A5, to uncover the binding mode 
and position of the Heme cofactor (Waterhouse et  al., 2018). The 
superposition of the two structures revealed a close alignment of the 
Heme-binding α-helical regions (Figure 1C). We, therefore, transferred 
the Heme position from P450 3A5 to the AflG structure to generate an 
AflG-Heme complex model. Cavity analysis of the AflG-Heme model 
demonstrated the presence of a suitable internal binding pocket 
proximal to the Heme iron center (Supplementary Figure S2) (Gay 
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et al., 2010). The native AflG substrate AVN was then computationally 
docked into this pocket. A high-scoring pose that positioned the 
substrate near the Heme with ideal geometry for P450-mediated 
catalysis was selected as the final AflG-Heme-AVN complex model 
(Figure 1C) (Lee et al., 2003). Overall, this modeling exercise provided 
unprecedented atomic-level insights into AflG architecture and the 
cofactor-substrate complex, enabling further analyses.

3.2 MD simulations revealed AflG dynamics 
and distinct substrate conformational states

To gain insights into the conformational dynamics of AflG and its 
interaction with the substrate AVN, MD simulations at the 

microsecond timescale were performed on both AflG alone and the 
AflG-Heme-AVN ternary complex. Equilibration and stability analysis 
using RMSD measurements revealed that AflG and the AflG-
Heme-AVN complex reached equilibrium after approximately 200 ns 
(Figure 2A). The RMSD of the Heme cofactor remained consistently 
low throughout each simulation, indicating stable Heme binding and 
validating the accuracy of the Heme placement. There were periodic 
fluctuations in the AVN RMSD as the simulations progressed, 
suggesting that the substrate held various conformational states within 
the binding pocket. AflG had smaller, more stable RMSD values in the 
context of the AflG-Heme-AVN complex compared to AflG alone, 
suggesting that substrate and cofactor binding had a stabilizing effect 
on AflG. RMSF analysis was conducted to further probe residue 

FIGURE 2

Characterization of interactions between AflG and averantin (AVN) by molecular dynamics simulations. (A) Root mean square deviation (RMSD) analysis 
of AflG and ligands over 1-μs simulations of AflG alone and of the AflG-Heme-AVN complex. (B) Root mean square fluctuation (RMSF) values showing 
AflG residue flexibility with and without AVN bound. (C) Representative structures from the top three conformational clusters of the AflG-Heme-AVN 
complex ensemble, along with two-dimensional interaction diagram illustrating the substrate’s interactions with the protein and Heme. (D) Geometric 
configuration of the Heme cofactor and substrates in the AflG complex compared to related cytochrome P450 structures. (E) Ratios of simulation 
times for specific residue interactions between AflG and AVN.
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FIGURE 3

Identification of potential hit compounds against AflG with structure-based virtual screening and MM-GBSA calculations. (A) Virtual screening 
workflow. (B) Distribution of docking scores for all screened compounds. The dashed line indicates the threshold (−7  kcal/mol). (C) Distribution of 
calculated binding free energies for highly ranked compounds from the docking simulation. The dashed line indicates the threshold (−53  kcal/mol) for 
further analysis. (D) Superposition of screened compounds with the most favorable binding free energies. (E) Molecular diagrams of the eight 
commercially available top-ranked compounds selected as potential hit compounds against AflG, corresponding labeled by PubChem CID numbers, 
are shown below each compound.

flexibility in AflG. This showed that several regions of AflG (namely 
the N-terminus, residues 260–280, and loops surrounding the active 
site) were highly flexible in the apo system. In comparison, these 
regions displayed significantly reduced flexibility in the AflG-
Heme-AVN complex (Figure 2B), confirming the stabilizing effects of 
the substrate and cofactor binding.

In-depth conformational analysis via clustering of the simulation 
ensembles revealed that the most populated structural clusters 
exhibited relatively low structural heterogeneity for AflG in both 
systems (Figure  2C; Supplementary Figure S3). However, more 
significant N-terminal fluctuations were evident in AflG alone 
(Figure 2B). As suggested by the RMSD profiles, the representative 
structures of the most populated clusters in the AflG-Heme-AVN 

complex clearly showed the AVN substrate shifting between 
dramatically different conformational states within the binding 
pocket, with the alkyl chain periodically transitioning between 
proximal and distal poses with respect to the Heme cofactor 
(Figure  2C). The two-dimensional interaction diagram of the 
representative structure from cluster C1 of the AflG-Heme-AVN 
complex illustrates the interaction of several AflG residues with 
AVN through hydrogen bond and hydrophobic interactions 
(Figure 2C). Representative AVN conformations were structurally 
aligned to crystal structures of other P450 substrate complexes to 
validate the distinct substrate-binding poses. The simulated AVN 
conformations were positioned highly similar to known crystal 
structures of bound ligands in other P450 systems (Figure  2D), 
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indicating the validity of the predicted substrate binding locations 
in this context.

An interaction fingerprint analysis was then conducted to identify 
critical intermolecular interactions between AflG and the AVN 
substrate over the course of the simulations (Kokh et al., 2020). This 
revealed eight specific interactions that recurred with a contact ratio 
exceeding 50% of the simulation time. These interactions included 
hydrogen bonds, hydrophobic contacts, and water bridges. Notably, the 
AflG residues His107, Met363, Asn366, and Ile479 interacted with 
AVN during >65% of the simulation time (Figure 2E), highlighting 
these residues as potentially crucial contact points for substrate binding.

3.3 Large-scale virtual screening yielded 
potential hit compounds against AflG

Leveraging the AflG-AVN structural model and the identified key 
binding residues, we next conducted a systematic, structure-based 
virtual screening to identify potential hit compounds against AflG 
(Figure 3A). Using two separate compound libraries, we screened over 
1.3 million molecules from the ZINC20 database and an additional 
32,000 molecules. This comprehensive screening yielded more than 
4,000 top-ranked compounds with favorable docking scores (< −7 kcal/
mol) (Figure 3B), indicating significant predicted binding affinity. Free 
energy calculations were next conducted for the top-ranked 
compounds using MM-GBSA. This revealed 15 compounds with 
remarkably low binding free energies (< −53 kcal/mol) (Figure 3C; 
Table 1), which were selected as hits for further analyses.

Structural analysis indicated that these 15 compounds 
consistently occupied a highly similar position within the AVN 
substrate binding pocket (Figure 3D). Eight of the compounds were 
commercially available and therefore prioritized for validation 
(Figure 3E).

3.4 MD simulations verified the binding 
stability of prioritized hit compounds

To characterize interactions between AflG and the prioritized hit 
compounds, 100-ns MD simulations were performed for each 
AflG-hit complex. AflG RMSD plots revealed minimal structural 
deviations (~0.2 nm) across all of the simulations (Figure 4), indicating 
that the binding of each compound did not dramatically alter the 
overall AflG conformation compared to AflG in the AVN-bound state. 
Ligand RMSD measurements showed similarly small deviations in 
compounds 53209539, 57336812, 53151533, and 54761306, suggesting 
that these compounds were stably bound (Figures  4B–D, H). 
Compounds 50782408, 20880420, 50748540, and 91904139 displayed 
larger RMSD fluctuations, indicating significant changes in their poses 
from the initial docked conformations (Figures 4A,E–G).

Binding free energy calculations for representative cluster 
structures showed improved affinity compared to the docked poses for 
all compounds (Supplementary Table S1), confirming that each 
compound was predicted to bind to AflG with a much stronger affinity 
than the native substrate (AVN). Interaction fingerprint analysis 
revealed key sustained contacts of most of the compounds with the 
AflG residues His107, Met363, and Ile479 (Figure  5; Table  2). 
Compounds 50782408 and 20880420 showed more persistent 

interactions within the binding pocket than AVN did, supporting the 
validity of the predicted competitive binding modes. However, 
compounds 50748540 and 91904139 showed fewer contact points 
compared to AVN. Overall, these MD simulations verified the stable 
binding of several high-priority hit compounds to AflG, adopting 
binding modes similar to that of the native substrate AVN, indicating 
their potential as AflG inhibitors.

3.5 Experimental validation of putative AflG 
inhibitors

The effects of putative AflG-inhibitory compounds on AF 
biosynthesis were explored experimentally using A. flavus strain NRRL 
3357. Mycelial phenotypes and AF levels in the growth medium were 
monitored over 6 days in CK cultures and those with selected 
compounds added. There were no significant differences in mycelial 
phenotypes between any of the treated cultures and the CK (Figure 6), 
demonstrating a lack of toxicity to the fungus. However, compounds 
50782408 and 54761306 notably inhibited AF production (Figures 6A,B). 
Specifically, compound 50782408 significantly inhibited AF production 
over the entire culture time (Figure 6A), whereas compound 54761306 
had a remarkable effect on the third day of growth (Figure 6B). Contrary 
to our expectations based on the predictions, the remaining six 
compounds (53151533, 57336812, 53209539, 20880420, 50748540, and 
91904139) had no measurable inhibitory impacts on mycelial growth or 
AF production (Figures 6C,D; Supplementary Figure S4).

Given the promising inhibitory effects of compound 50782408 
on AF biosynthesis observed in the above experiments, we further 

TABLE 1 Docking scores and binding free energies of averantin (AVN) and 
the potential hit compounds against AflG from virtual screening and 
MM-GBSA calculations.

Compound Docking score 
(kcal/mol)

Binding free 
energy (kcal/

mol)

AVN −5.88 −47.50

50782408 −7.12 −60.25

92857748 −7.2 −58.47

53209539 −7.36 −58.31

95894266 −7.12 −58.29

57336812 −8.79 −56.25

124366745 −7.04 −55.79

53151533 −8.06 −55.46

20880420 −9.16 −55.30

92408135 −7.85 −54.80

124366746 −7.17 −54.65

124893813 −7.07 −54.39

135404553 −7.1 −54.31

50748540 −8.39 −54.14

91904139 −8.28 −53.27

54761306 −7.09 −53.02

AVN is the native substrate. Other compounds are identified by their PubChem CID 
numbers.
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FIGURE 4

Molecular dynamics simulations of AflG bound to prioritized hit compounds. RMSD values of AflG (blue) and ligand (purple) in complex are shown over 
the course of the 100-ns simulation time for compounds (A) 50782408, (B) 53209539, (C) 57336812, (D) 53151533, (E) 20880420, (F) 50748540, 
(G) 91904139, and (H) 54761306.

conducted a concentration titration experiment to validate 
its efficacy. We  observed a decrease in AF production 
with increasing concentrations of compound 50782408 
(Supplementary Figures S5, S6). Additionally, we treated another 
aflatoxigenic strain, A. parasiticus NRRL 2999, with compound 
50782408. The results showed that, consistent with observations in 
A. flavus NRRL 3357, compound 50782408 exhibited a significant 
inhibitory effect on the strain A. parasiticus NRRL 2999, affirming 
its potent inhibitory action (Supplementary Figure S7). 
Collectively, the experimental validations of candidate AflG 

inhibitors pinpointed two compounds that inhibit AF biosynthesis, 
consistent with our computational predictions.

3.6 Structural and dynamic analyses 
revealed the distinct binding modes 
underlying functional inhibitory effects

Structural comparisons and dynamics analyses were undertaken 
to elucidate the molecular mechanisms underlying the distinct effects 
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of candidate compounds on AF biosynthesis. Structural alignment of 
the top cluster for each AflG-compound ensemble revealed that the 
active inhibitor 50782408 occupied the AflG binding pocket 
comparably to the native substrate AVN (Figure 7A). Meanwhile, the 
binding location of compound 54761306 was comparable to that of 
the AVN aromatic rings only, despite the inhibitory activity of 
compound 54761306 (Figure 7C). The inactive compound 53151533 
demonstrated a comparable proximal localization to the aromatic core 

of AVN but lacked functional efficacy (Figure 7E). Additionally, the 
inactive compound 57336812 displayed a similar proximity to AVN 
but had no impact on AF production (Figure 7G).

Dynamic analyses based on RMSF values indicated that 
interactions with most of the candidate inhibitor compounds 
enhanced AflG rigidity and stability, consistent with enzyme 
characteristics in an inhibitor-bound state. Specifically, interactions 
with compounds 50782408 and 91904139 increased the flexibility of 

FIGURE 5

Analysis of interactions between AflG and prioritized hit compounds. The ratios of specific residue interaction times were analyzed between AflG and 
compounds (A) 50782408, (B) 53209539, (C) 57336812, (D) 53151533, (E) 20880420, (F) 50748540, (G) 91904139, and (H) 54761306. The Y-axis 
represents the proportion of interaction time to the total simulation time. The X-axis represents different interaction types, including water bridge (WB), 
hydrophobic interaction (HY), hydrogen bond acceptor (HA), and hydrogen bond donor (HD), involving different residues.
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TABLE 2 Key AflG residues predicted to interact with ligands.

Ligand Binding free 
energy (kcal/

mole)

Hydrogen-
bond

Hydrophobic 
interaction

Water bridge Aromatic 
interaction

Number of 
interactions

AVN −47.50 Tyr52 His107, Ile479, Met363 Asn366, Glu82, His107, 

Lys103

8

50782408 −60.25 Met106 His107, Ile479, Leu480, Pro109, 

Pro7

Asn218, His107, Tyr223 His107 10

53209539 −58.31 Ser365, Tyr52 His107, Ile479, Met363, Val211 Met106, Met363 His107 9

57336812 −56.25 His107, Ile214, Ile477, Ile479, 

Met363, Pro109

Lys103, Met363 His107 9

53151533 −55.46 Ser365 His107, Ile479, Leu61, Pro215, 

Tyr52

Ile479 His107 8

20880420 −55.30 Tyr52 Asn218, His107, Ile214, Ile477, 

Ile479, Leu61, Met363, Pro109, 

Val361

His107, Leu108 His107 13

50748540 −54.14 His107 Ile479, Met363, Pro109, Val361 6

91904139 −53.27 His107, Ile214, Ile479, Met363, 

Pro109

His107 6

54761306 −53.02 Leu108 Asn218, His107, Ile479, Met363, 

Tyr52

Asn218, Leu108 His107 9

AflG residues included here showed intermolecular contacts with the indicated compound for >50% of the molecular dynamics simulation time. Averantin (AVN) is the native substrate. Other 
compounds are identified by their PubChem CID numbers.

the AflG N-terminal region compared to the substrate AVN 
(Figure  7B; Supplementary Figure S8D). Other compounds (e.g., 
54761306, 53209539, and 20880420) had a milder impact on AflG 
N-terminal dynamics (Figure 7D; Supplementary Figure S8). Several 
compounds, including 54761306, 57336812, 20880420, 53151533, and 
50748540, also increased movement dynamics of the active site motif 
(residue 426–442), whereas only compounds 50782408 and 50748540 
reduced flexibility within the 375–381 loop near the active site 
(Figure 7B, F, H; Supplementary Figure S8C). Despite the adoption of 
unique binding poses by each compound, these analyses thus revealed 
that compounds 50782408 and 54761306 inhibited AF biosynthesis 
while subtly modulating AflG dynamics through localized stabilization 
or destabilization of specific regulatory regions. Despite affecting 
similar dynamic changes and engaging in numerous intermolecular 
contacts with AflG, the ineffectiveness of compound 20880420 as an 
AflG inhibitor highlights the complexity of correlating interactions 
and protein dynamics with downstream functional impacts 
(Supplementary Figure S8B; Table  2). Further biophysical and 
structural studies are essential to increase our understanding of the 
ways in which interactions with specific compounds modulate AflG 
structure and dynamics and inhibit AF biosynthesis.

4 Discussion

Crop contamination with AFs impacts both the food and feed 
supply chains, exposing humans and livestock to these harmful 
compounds (Caceres et al., 2020; Uka et al., 2020). Such exposure not 
only jeopardizes human health but also induces substantial economic 
losses across the world. It is thus imperative to devise strategies that 
curtail AF biosynthesis in agricultural products. Enzyme inhibitors, 
which can be applied to regulate metabolic activity, offer a potential 

method for achieving this goal (Tabe et al., 2019; Manzoor and Hoda, 
2020; Sharma et  al., 2020; Labib et  al., 2022). Identification of 
inhibitors that target critical enzymes in the AF biosynthetic pathway 
is a promising strategy for minimizing AF contamination.

In the present study, we harnessed an integrated computational-
experimental strategy, incorporating structural modeling, MD 
simulations, virtual screening, binding free energy calculations, and in 
vitro experimental validation to explore the structure, dynamics, and 
potential inhibition mechanisms of the critical AF biosynthetic enzyme 
AflG. Advanced structural prediction and modeling techniques 
enabled the construction of highly accurate AflG models, both of the 
enzyme alone and in complex with its native substrate (Kufareva et al., 
2014; Waterhouse et  al., 2018; The UniProt Consortium, 2023). 
Microsecond-scale MD simulations provided remarkable insights into 
the conformational landscape and dynamic motions involved in 
substrate binding (Abraham et al., 2015; Huang et al., 2017). The ligand 
AVN was observed to hold distinct poses within the binding pocket, 
periodically transitioning between conformations in which it was 
proximal and distal to the Heme cofactor. Furthermore, AflG displayed 
modulated dynamics upon substrate binding, with reduced structural 
fluctuations, particularly in the N-terminus and the loops surrounding 
the active site. These simulations demonstrated the power of molecular 
modeling to capture the inherent flexibility and transient motions 
governing this molecular system.

Building upon these initial results, we conducted a large-scale 
virtual screening of over 1.3 million compounds to identify potential 
hit compounds against AflG (Santos-Martins et al., 2021). Stringent 
binding free energy calculations yielded 15 high-confidence 
candidates, and subsequent MD simulations corroborated the robust 
binding attributes of specific compounds that shared key interaction 
residues with AVN (namely His107, Met363, and Ile479) (Yang et al., 
2023). In vitro experiments with A. flavus strain NRRL 3357 showed 
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that two of these compounds, 50782408 and 54761306, markedly 
inhibited AF biosynthesis throughout a 6-d growth period. These 
results highlight the potential of compounds 50782408 and 54761306 
as targeted modulators of the AF metabolic pathway.

Although several of the candidate compounds demonstrated 
potent inhibition of AF biosynthesis, consistent with the computational 
predictions, several other candidates proved ineffective in vitro, 
emphasizing the challenges in extrapolating predicted binding affinities 

FIGURE 6

Effects of candidate AflG inhibitors on aflatoxin (AF) biosynthesis in Aspergillus flavus. (A–D) A. flavus control cultures (CK) and A. flavus cultures treated 
with the compounds, TLC of extracted AFs, and quantified relative intensity of AF production in A. flavus treated with compounds (A) 50782408, 
(B) 54761306, (C) 53151533, or (D) 57336812. Left, culture appearance after growth for 3-d. Center, visualization of extracted AF via thin-layer 
chromatography (TLC) from 3-d cultures, where ‘St’ represents aflatoxin standards. Right, relative content of AF quantified from TLC plates. The figures 
show the experimental results from two independent biological replicates. Error bars indicate the standard deviation (St) of the measurements. 
Significance was determined by the t-test. *p <  0.05, **p <  0.01, ***p <  0.001, ****p <  0.0001.
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FIGURE 7

Binding modes of putative AflG inhibitors and their effects on AflG flexibility. (A,C,E,G) AflG-ligand complex structures showing the binding orientations 
of compounds (A) 50782408, (C) 54761306, (E) 53151533, and (G) 57336812. Each candidate inhibitor compound structure is overlaid with the 
substrate averantin (AVN) in the AflG-Heme-AVN complex. (B,D,F,H) Root mean square fluctuation (RMSF) plots comparing fluctuations in AflG 
residues between the AflG-Heme-AVN complex and AflG complex with compounds (B) 50782408, (D) 54761306, (F) 53151533, and (H) 57336812.

to functional outcomes. For example, compound 53151533 was 
predicted to have a low binding free energy but exhibited no discernible 
influence on AF levels. Conformational analysis revealed that 
compounds 50782408 and 54761306, which functionally inhibited 

AflG, occupied binding regions close to that of the native substrate 
AVN or its aromatic rings. In contrast, the inactive compound 
53151533 was positioned near the binding regions associated with the 
AVN aromatic rings despite having a similar predicted affinity as those 
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of compounds 50782408 and 54761306. These findings further 
highlight the complexity of predicting AF production effects from 
AflG-inhibitor interaction paradigms and binding energy calculations. 
This discrepancy could stem from limitations of in silico modeling in 
accounting for complex in vivo conditions, differences between kinetic 
and thermodynamic aspects of inhibition, potential compensatory 
mechanisms in the fungal system, and bioavailability issues affecting 
the compounds’ ability to reach their target (Xu et al., 2021). To address 
these challenges, further efforts should prioritize the iterative 
refinement of structure–activity correlations, leveraging an integrated 
blend of computational and biophysical methodologies to enhance 
predictive accuracy continuously (Wu et  al., 2020). Future studies 
could also integrate artificial intelligence (AI) technologies, such as 
machine learning algorithms, to improve the efficiency and reliability 
of the screening process (Patel et al., 2020).

Overall, this study establishes a powerful framework, including 
multi-scale modeling, high-throughput screening, and experimental 
validation to identify inhibitors of key AF biosynthetic enzymes. 
We successfully identified several compounds that functionally inhibited 
AF biosynthesis in vivo, and subsequent iterative improvements could 
be used to screen compounds with more pronounced pesticide-like 
attributes. Furthermore, the high-resolution models of AflG, both alone 
and in the substrate-bound form, provide a wealth of information to 
guide structure-based design. Ultimately, mitigating AF contamination 
at all stages of agricultural production requires collaborative solutions 
across the fields of agriculture, toxicology, and public health. Unraveling 
the biological mechanisms underlying AF biosynthesis is a cornerstone 
of any approach seeking to minimize AF contamination.

5 Conclusion

We here integrated advanced computational modeling approaches 
with in vitro validation of AF production inhibitory activity to explore 
functional mechanisms and identify inhibitors of a key enzyme in AF 
biosynthesis. Predictive structural modeling yielded detailed structural 
insights into the hitherto unknown structure of AflG. Furthermore, MD 
simulations revealed unique binding conformations in AflG that had 
remained undiscovered in static structural representations of enzyme-
substrate interactions. A high-throughput virtual screening strategy was 
used to identify hit compounds against AflG, which were then validated 
in vitro. This structure-guided pipeline yielded promising candidate 
inhibitors, compounds 50782408 and 54761306. Importantly, our 
approach offered unprecedented insights into the atomistic characteristics 
of a critical AF biosynthetic enzyme both alone and in complex with 
substrates, enabling future optimization of efforts to identify compounds 
to combat AF contamination in agricultural products. The integrated 
strategy described here could also be  employed to unearth putative 
inhibitors of other mycotoxin biosynthetic pathways, contributing to 
decreased economic losses and disease burden arising from fungal 
specialized metabolite contamination in agricultural products.
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