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Introduction: Intercropping and soil properties both a�ect soil diazotrophic

communities. However, the specific e�ects that alfalfa-maize intercropping has

on diazotrophic networks and community diversity under di�erent soil properties

remain unclear.

Methods: In this study, we investigated the soil diazotrophic communities of two

crop systems, alfalfa monoculture (AA) and alfalfa-maize intercropping (A/M), in

two sites with similar climates but di�erent soil properties (poor vs. average).

Results and discussion: The diazotrophic network complexity and community

diversity were higher at the site with poor soil than at the site with average

soil (p < 0.05). Community structure also varied significantly between the

sites with poor and average soil (p < 0.05). This divergence was mainly due

to the di�erences in soil nitrogen, phosphorus, and organic carbon contents

between the two sites. At the site with poor soil, the A/M system had

lower diazotrophic diversity, lower network complexity and greater competition

between diazotrophs than the AA system (p < 0.05) because intercropping

intensified the soil phosphorus limitation under poor soil conditions. However, in

the average soil, it was the A/M system that had an altered diazotrophic structure,

with an increased abundance of 11 bacterial genera and a decreased abundance

of three bacterial genera (p < 0.05).

Conclusion: Our results indicated that the e�ects of alfalfa-maize intercropping

on diazotrophic communities were soil property-dependent.

KEYWORDS

intercropping, alfalfa, diazotrophic community, composition, structure, soil properties

characteristics

1 Introduction

Crop diversification, including via intercropping, has been recognized as an important

strategy for improving or maintaining crop productivity and diversity (Li et al., 2023; Xiao

et al., 2023). Alfalfa (Medicago sativa L.) and silage maize (Zea mays L.) are important

forages that have been widely planted in the North China Plain to sustain livestock needed

to meet the growing demand for meat and milk (Feng et al., 2022; Zhao et al., 2022; Zhou

et al., 2022). Studies have shown that intercropping alfalfa with maize can sustain sufficient

forage production while reducing nitrogen (N) inputs because of the biological N fixation
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(BNF) capacity of alfalfa (Sun et al., 2018; Xu et al., 2021; Nasar

et al., 2020; Berti et al., 2021; Xu et al., 2022). Diazotrophs, the

main microorganisms involved in BNF, are crucial for crop growth

(Rodríguez-Blanco et al., 2015; Han et al., 2019; Xiao et al., 2020a;

Fan et al., 2023). However, the effects of alfalfa-maize intercropping

on the diazotrophic community are still unclear.

Studies have reported that soil diazotrophs are sensitive to

cropping systems (Alleman et al., 2021; Hao et al., 2022). Although

many researchers have investigated the effects of legume and

non-legume intercropping on the diazotrophic community, the

results have varied greatly, with studies reporting an increase

(Chen J. et al., 2018), a decrease (Gao et al., 2021) or no

change (Solanki et al., 2020) in diversity or abundance. This

inconsistency in the response of the diazotrophic community to

intercropping may relate to the different soil properties present

in each study because diazotrophs have a close relationship

with soil physicochemical properties (e.g., soil N, soil organic

carbon and pH) (Wang Y. et al., 2017; Yu et al., 2020; Zhu

et al., 2022). For example, the soil N content is negatively

correlated with diazotrophic diversity in general (Zheng et al.,

2023). However, little is known about the response of the

diazotrophic community to alfalfa-maize intercropping under

different soil properties.

Here, we evaluated the impacts of two crop systems, alfalfa

monoculture and alfalfa-maize intercropping, in two sites with

similar climates but different soil properties (poor vs. average).

We hypothesized that (1) diazotrophic network complexity and

community diversity will be higher at the site with poor soil than

at the site with average soil; (2) the diazotrophic network and

community diversity will respond differently to intercropping at the

two sites (poor vs. average soil).

2 Materials and methods

2.1 Study site and experimental design

This study was conducted in Changyi City (119◦4′ E, 37◦02′

N) and Yucheng City (118◦61′ E, 37◦31′ N) of Shandong

Province, which have similar climates but differ in their

soil properties (Supplementary Figure S1, Table 1). Yucheng has

better soil quality (average soil site) than Changyi (poor

soil site), including higher soil organic carbon and nutrient

contents (Table 1). The soil types of Changyi and Yucheng are

salinized fluvo-aquic soil (Liu et al., 2018) and luvo-aquic soil

(Jia et al., 2010), respectively, according to the Chinese Soil

Taxonomy System. Both Changyi and Yucheng have warm,

temperate continental monsoon climates, with annual average

temperatures of 12.9◦C and 13.1◦C, and average precipitations

of 589mm and 593mm, respectively (Tan et al., 2023; Jia et al.,

2010).

The field experiments involved establishing two crop systems,

alfalfa monoculture (AA) and alfalfa-maize intercropping

(A/M), simultaneously at the sites with poor and average

soil. Alfalfa cultivation was initiated in October 2021. In the

third year of alfalfa cultivation, the maize added in to the

intercropping system (June 2023) (Supplementary Figure S2).

Alfalfa seed was sown at a density of 22.5 kg/ha, and

maize was planted at a density of 67,500 plants/ha. The

two crop systems were arranged side-by-side, with each

crop system covering the same area (0.67 ha). The crop

systems were managed in the same way at both sites

(Supplementary Table S1).

2.2 Soil properties

Soil samples (0–10 cm) were collected using a 3.8 cm diameter

soil auger from five subplots of each crop system following the

diagonal method, i.e., 5 soil samples per crop system. The soil

samples from the sites with poor and average soil were collected

on September 16, and September 17, 2023, respectively, during the

maize’s growing season.

The soil physical and chemical properties were measured

according to the methods of Bao (2000). The soil organic carbon

(SOC) and total N (TN) weremeasured using dichromate oxidation

and the Kjeldahl method, respectively. Soil total phosphorus

(TP) and available phosphorus (AP) were determined using

molybdenum-antimony colorimetry and spectrophotometry after

sodium bicarbonate extraction, respectively. Soil available nitrogen

(AN) was measured by the alkaline diffusion method. Soil pH

was assessed using a 1:2.5 ratio of air-dried soil to deionized

water. Soil-soluble salt content was determined using the oven-

drying method.

2.3 Soil diazotrophic community analyses

DNA was extracted from each soil sample using the E.Z.N.A. R©

soil DNA Kit (Omega Bio-tek, Norcross, GA, USA), following

the manufacturer’s instructions. The concentration and purity

of soil DNA were assessed using a NanoDrop 2000 UV-vis

spectrophotometer (Thermo Scientific, Wilmington, USA). The

nifH gene was amplified using nifHF/nifHR primers (Rösch and

Mergel, 2002), and the PCR products were purified using an

AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union

City, CA, USA). The products were subjected to paired-end

sequencing on an Illumina Nextseq 2000 platform (Majorbio

Company, Shanghai, China). Raw sequencing reads were quality-

filtered and merged by fastp and FLASH, respectively (Chen

S. et al., 2018). The sequences were clustered into operational

taxonomic units (OTUs) at a 97% similarity level using UPARSE

(version 7.1) (Edgar, 2013). Taxonomy assignments for the nifH

gene were conducted by contrasting the RDP Classifier against

the FunGene database (fgr/nifH_202012) at a 70% confidence

threshold. All samples were rarefied to the minimum sequence

count before subsequent analyses. The diversity indices, including

richness (Chao 1 index), Shannon-Wiener’s diversity and Pielou’s

evenness of the nifHgenewere analyzed inmothur on theMajorbio

Company platform (www.majorbio.com).

We analyzed the diazotrophic community networks using

the “igraph” R package, and only the OTUs with an abundance

>0.5% were included in this analysis (De Vries et al., 2018). The

Spearman’s rank correlations (r> 0.6) and p-values (P< 0.05) were

constructed, and visualized using Gephi (Yu et al., 2023).
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TABLE 1 Soil properties of the crop systems at the sites with poor and average soil.

Soil properties Poor soil site Average soil site

AA A/M AA A/M

SOC (g/kg) 6.30± 0.58b 6.61± 0.45b 13.30± 0.58a 13.67± 0.46a

TN (g/kg) 0.69± 0.07b 0.71± 0.06b 1.56± 0.06a 1.58± 0.06a

TP (g/kg) 0.46± 0.02b 0.46± 0.02b 0.96± 0.04a 1.06± 0.05a

AN (mg/kg) 68.24± 6.93b 70.35± 6.20b 143.19± 2.78a 158.82± 6.61a

AP (mg/kg) 7.51± 0.60b 9.96± 1.03b 23.56± 2.62a 26.29± 3.25a

pH 8.47± 0.05a 8.49± 0.08a 8.18± 0.03b 8.23± 0.02b

Salt (g/kg) 1.53± 0.17a 0.75± 0.17b 0.87± 0.18b 0.72± 0.18b

Values are mean± standard error (n= 5). Different lowercase letters indicate a significant difference between AA and A/M or between different sites at p < 0.05. AA, alfalfa monoculture; A/M,

alfalfa-maize intercropping.

FIGURE 1

Crop system e�ects on diazotrophic community diversity (A–C) and structure (D) at di�erent sites. Lowercase letters and asterisks represent

significant (P < 0.05) di�erences between di�erent sites and between crop systems, respectively. AA, alfalfa monoculture; A/M,

alfalfa-maize intercropping.

2.4 Statistical analysis

One-way analysis of variance (one-way ANOVA) was used

to assess the differences in soil properties and diazotrophic

community attributes (e.g., α-diversity and abundance) between

the different crop systems or between the different sites. The χ2 test

was used to evaluate the proportion of network links between crop

systems or between the different sites. Nonmetricmultidimensional

scaling (NMDS) ordination based on Bray-Curtis distance was used

to visualize the diazotrophic community structure (β-diversity),

and the difference was tested by permutational multivariate analysis

of variance (999 permutations) with the “Adonis” function in

the vegan package of R version 4.2.1 (R Core Team, 2018).

Random forest (RF) analysis, using the “rfPermute” R package,

was used to identify the primary soil characteristics predicting

diazotrophic community diversity (α-diversity and β-diversity)

across different sites (Jiao et al., 2018). A percent increase

in the mean squared error (MSE) of variables represents the
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importance of the predictor, with higher MSE% values indicating

greater importance (Jiao et al., 2018). For each site, the Pearson

correlation was employed to assess the relationships between

diazotrophic network attributes and community diversity, and

soil properties.

3 Results

3.1 Soil properties of crop systems at
di�erent sites

The SOC, TN, TP, AN and AP contents were higher at the site

with average soil than at the site with poor soil, but pH and salt were

lower at the site with average soil (p < 0.05; Table 1).

Compared to AA, the A/M system had little effect on soil

physicochemical properties. Only the salt content was lower in the

A/M system at the site with poor soil (p < 0.05; Table 1).

3.2 Diazotrophic community diversity and
composition

The site with poor soil had a higher diazotrophic community

richness than the site with average soil in the AA system only

(1705 vs. 1072) (p < 0.05; Figure 1A). Diazotrophic diversity was

higher at the site with poor soil than at the site with average

soil in both the AA system (5.03 vs. 3.65) and the A/M system

(4.64 vs. 3.20) (p < 0.05; Figure 1B). The site with poor soil

had a higher diazotrophic evenness than the site with average

soil in both the AA system (5.03 vs. 3.65) and the A/M system

(4.64 vs. 3.20) (p < 0.05; Figure 1C). The diazotrophic community

structure diverged significantly between the two sites (p < 0.05;

Figure 1D).

The A/M system had significantly lower diazotrophic richness

and diversity than the AA system, but only at the site with poor

soil (p < 0.05; Figures 1A, B). In contrast, the A/M system had a

significantly altered diazotrophic community structure, but only at

the site with average soil (p < 0.05; Figure 1D).

Proteobacteria was the dominant phylum across all

sites. The A/M system increased the relative abundance

of Proteobacteria at the site with poor soil, but it lowered

the relative abundance of Cyanobacteria at the site with

average soil (p < 0.05; Figure 2). A/M increased the

relative abundance of Skermanella at the site with poor

soil (p < 0.05; Figure 3). At the site with average soil,

A/M increased the relative abundance of 11 bacterial

genera, unclassified_p_Proteobacteria, unclassified_c_

Deltaproteobacteria, unclassified_o_Burkholderiales,

unclassified_o_Desulfuromonadales, Geobacter, unclassified

_f_Geobacteraceae, Anaeromyxobacter, unclassified

_f_Burkholderiaceae, unclassified_o_Rhodocyclales,

Desulfocurvibacter, and Rubrivivax, and reduced the

relative abundance of three bacterial genera, Skermanella,

unclassified_f__Rhodospirillaceae and Azospirillum (p < 0.05;

Figure 3).

FIGURE 2

Relative abundance of phyla in the diazotrophic community in two

di�erent crop systems at two di�erent sites. AA, alfalfa monoculture;

A/M, alfalfa-maize intercropping.

3.3 Diazotrophic community network

The diazotrophic networks at the site with poor soil had more

nodes and links and a higher average degree than those at the site

with average soil (Figure 4, Supplementary Table S2). Additionally,

the site with poor soil had a higher proportion of negative links

than the site with average soil under the A/M system (χ2 = 6.50,

p < 0.05).

Compared to AA, A/M reduced the numbers of network

nodes and links and the average degree (p < 0.05), but the

proportion of negative links increased at the site with poor

soil (χ2 = 6.50, p = 0.07). A/M had no significant effect on

the diazotrophic network at the site with average soil (Figure 4,

Supplementary Table S2).

3.4 Relationships between the
diazotrophic community and soil properties

Across study sites, RF analysis showed that AP, pH, and

TP were the three most important soil factors for driving

diazotrophic richness (Supplementary Figure S3). All soil

properties measured affected diazotrophic diversity, except for

soil salt (Supplementary Figure S3). Most of the soil properties

measured affected diazotrophic evenness, but soil salt and pH

did not (Supplementary Figure S3). All soil properties measured

affected diazotrophic structure (NMDS1), except for soil salt

(Supplementary Figure S3). Most of the soil properties measured

affected the diazotrophic network, but AP and pH did not

(Supplementary Figure S4).

At the site with poor soil, TP related significantly to

diazotrophic diversity and the number of network nodes, and AP

related significantly to NMDS1 and the average path length of

the networks (p < 0.05; Figures 5, 6). At the site with poor soil,

salt correlated significantly with the network degree (p < 0.05;

Figure 6).
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FIGURE 3

Relative abundance of bacterial genera that responded significantly (p < 0.05) to the crop systems at the sites with poor and average soil. AA, alfalfa

monoculture; A/M, alfalfa-maize intercropping. (A) Poor soil site. (B) Average soil site.

4 Discussion

4.1 Responses of diazotrophic diversity to
two di�erent crop systems across two
di�erent sites

We found that diazotrophic diversity was higher at the site with

poor soil than at the site with average soil, mainly because the

lower soil N content at the poor site (Supplementary Figure S3),

as diazotrophic diversity was negatively correlated with soil N

(Zheng et al., 2023). This was consistent with previous studies

where long-term N fertilization negatively affected diazotrophic

diversity (Wang C. et al., 2017), thereby indicating that high soil

N inhibits BNF rate. Studies have further shown that other soil

properties, such as soil P, SOC and pH, correlated positively with

diazotrophic diversity and also played a key role in driving it (Chen

et al., 2021; Han et al., 2019;Wang Y. et al., 2017).We too found that

soil P, SOC and pHwere important drivers of diazotrophic diversity

(Supplementary Figure S3), but pHwas the only one that correlated

positively with diazotrophic diversity. These inconsistent results

may be attributed to the different soil types in the different studies.

Consistent with a previous study (Gao et al., 2021), we found

that alfalfa-maize intercropping lowered diazotrophic diversity at

the site with poor soil, at least when compared to the alfalfa

monoculture, but diversity was not lowered at the site with average

soil. Though the variation was statistically insignificant, this may

relate to the difference in soil TP between the AA and A/M

systems at the site with poor soil (Table 1, Figure 5). Some studies

reported that P addition can significantly increase soil diazotrophic

diversity (Xiao et al., 2020b). Soil N and P contents were low at

the site with poor soil (Table 1). Alfalfa-maize intercropping may

promote N fixation via the alfalfa (Yong et al., 2018), but it may

also exacerbate P limitation (Solanki et al., 2020), thereby leading

to decreased diazotrophic diversity. Some researchers have shown

that legume-based systems had higher diazotrophic diversity than

do non-legume systems (Yang et al., 2019; do Rego Barros et al.,

2021). Thus, the inclusion of maize in an alfalfa system may be

accompanied by a decrease in diazotrophic diversity.

4.2 Responses of diazotrophic structure to
di�erent crop systems across sites

As in a previous study (Pereira et al., 2011), the diazotrophic

community structure (e.g. NMDS1) differed between the sites with

poor and average soil, independent of the crop systems. This can
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FIGURE 4

Diazotrophic community networks of AA (A, C) and A/M (B, D) systems at two di�erent sites. Node size is proportional to the node degree. Red and

green edges indicate positive and negative correlations, respectively. AA, alfalfa monoculture; A/M, alfalfa-maize intercropping.

be mainly attributed to the differences in soil P, N, SOC and pH

(Supplementary Figure S3), which were similar to the research of

Reardon et al. (2014), who reported that N fertilization had greater

effects on diazotrophic structure than did crop type. This indicated

that soil properties played a major role in shaping soil diazotrophic

community structure.

We found that alfalfa-maize intercropping changed the

diazotrophic structure at the site with poor soil, but not at the

site with average soil. Studies have shown that plants can recruit

specific microbes through root exudates (Zou et al., 2020). Alfalfa

and maize secreted different exudates, thereby recruiting different

microbial groups that would consequently change the respective

diazotrophic community structure. This was further demonstrated

by the changes in genus abundance in the intercropping system,

where 11 bacterial genera increased in relative abundance and three

decreased (Figure 3). Interestingly, intercropping had no significant

impact on diazotrophic structure at the site with average soil, which

indicated that the effect of intercropping on diazotrophic structure

can be regulated to a stronger degree by other factors (e.g., soil

properties). However, given that this study covered a short time

period, whether long-term intercropping changed diazotrophic

structure more strongly deserved investigation in future studies.
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FIGURE 5

Pearson’s correlation (r) between diazotrophic diversity and soil properties at the sites with poor and average soil. * <0.05. (A) Poor soil site. (B)

Average soil site.

4.3 Responses of diazotrophic network to
di�erent crop systems across sites

We found that the diazotrophic network was more complex

at the site with poor soil than at the site with average soil. In the

poor soil, the network had more nodes, links and a higher average

degree. In general, diazotrophic network was more complex in low-

fertility soil than in high-fertility soil (Han et al., 2019). Thus, the

more complex network at the site with poor soil may be related to

the lower contents of SOC, N and P (Supplementary Figure S4). In

addition, we found that, under the A/M system, there was a higher

proportion of negative links at the site with poor soil than at the site

with average soil. This indicated that the competition for resources

among different microorganisms was intensified at the site with

poor soil (Coyte et al., 2015).

The results showed that alfalfa-maize intercropping reduced

the network complexity, meaning there were fewer nodes and

links and a lower average degree, at the site with poor soil only.

This may be ascribed to the variation in soil TP between the AA

and A/M systems (Figure 6). However, we found that alfalfa-maize

intercropping increased the proportion of negative links at the site

with poor soil only, thus indicating that intercropping intensified

the competition among diazotrophs for limited resources under

poor soil conditions (Deng et al., 2016; Yuan et al., 2021).

In addition, alfalfa-maize intercropping can create distinctive

environmental niches and spatial isolation (Berti et al., 2021), which

may lead to even more negative links (Fuhrman, 2009; Berry and

Widder, 2014).

5 Conclusions

In summary, the diazotrophic community differed significantly

between the sites with poor and average soil, with higher

community diversity and network complexity found at the site

with poor soil. The alfalfa-maize intercropping lowered the

diazotrophic community diversity and network complexity,

but it increased the competition between diazotrophs, at

the site with poor soil. However, at the site with average

soil, the intercropping altered the diazotrophic community
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FIGURE 6

Pearson’s correlation (r) between diazotrophic network attributes and soil properties at the sites with poor (A) and average soil (B). * <0.05.

structure. Our results highlight that the effects of short-term

alfalfa-maize intercropping on diazotrophic communities

are soil property-dependent, while the effects of long-

term intercropping on diazotrophic community will require

further study.
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