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This study aimed to compare the microbiome profiles of patients with colorectal 
cancer (CRC, n = 380) and colorectal adenomas (CRA, n = 110) against generally 
healthy participants (n = 2,461) from various studies. The overarching objective was 
to conduct a real-life experiment and develop a robust machine learning model 
applicable to the general population. A total of 2,951 stool samples underwent a 
comprehensive analysis using the in-house MetaBakery pipeline. This included 
various data matrices such as microbial taxonomy, functional genes, enzymatic 
reactions, metabolic pathways, and predicted metabolites. The study found no 
statistically significant difference in microbial diversity among individuals. However, 
distinct clusters were identified for healthy, CRC, and CRA groups through linear 
discriminant analysis (LDA). Machine learning analysis demonstrated consistent 
model performance, indicating the potential of microbiome layers (microbial taxa, 
functional genes, enzymatic reactions, and metabolic pathways) as prediagnostic 
indicators for CRC and CRA. Notable biomarkers on the taxonomy level and 
microbial functionality (gene families, enzymatic reactions, and metabolic pathways) 
associated with CRC were identified. The research presents promising avenues for 
practical clinical applications, with potential validation on external clinical datasets in 
future studies.
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1 Introduction

The prevalence of colorectal carcinoma (CRC) as the third most common nongender-
related cancer and its associated mortality after lung cancer is of great concern (Sung et al., 
2021). With an aging population leading to an expected 80% increase in global incidence over 
the next two decades, understanding sporadic colorectal cancers has become increasingly 
important (Karsa et al., 2010). These non-hereditary colorectal cancers account for 70–87% of 
cases, with genetics accounting for only a fraction of disease incidence (Frank et al., 2017). The 
lack of a clear genetic link underscores the potential influence of other factors, including 

OPEN ACCESS

EDITED BY

Domenica D’Elia,  
National Research Council (CNR), Italy

REVIEWED BY

Balázs Ligeti,  
Pázmány Péter Catholic University, Hungary
Bruno Fosso,  
University of Bari Aldo Moro, Italy

*CORRESPONDENCE

Blaž Stres  
 blaz.stres@ki.si

RECEIVED 01 May 2024
ACCEPTED 09 August 2024
PUBLISHED 26 August 2024

CITATION

Murovec B, Deutsch L and Stres B (2024) 
Predictive modeling of colorectal cancer 
using exhaustive analysis of microbiome 
information layers available from public 
metagenomic data.
Front. Microbiol. 15:1426407.
doi: 10.3389/fmicb.2024.1426407

COPYRIGHT

© 2024 Murovec, Deutsch and Stres. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 26 August 2024
DOI 10.3389/fmicb.2024.1426407

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2024.1426407&domain=pdf&date_stamp=2024-08-26
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1426407/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1426407/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1426407/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1426407/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1426407/full
mailto:blaz.stres@ki.si
https://doi.org/10.3389/fmicb.2024.1426407
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2024.1426407


Murovec et al. 10.3389/fmicb.2024.1426407

Frontiers in Microbiology 02 frontiersin.org

lifestyle and environmental components, as co-determinants of 
disease (Siegel et al., 2014). Certain risk factors such as age, tobacco 
and alcohol use, physical inactivity, increased body weight, and dietary 
habits have been associated with CRC, but clarification of these 
associations remains an ongoing challenge (Huxley et  al., 2009; 
Johnson et al., 2013).

The human gut microbiome, which encompasses the microbial 
communities in the intestinal tract, is becoming increasingly 
important because of its role in human disease (Pasolli et al., 2016). 
Supported by evidence that bacterial organisms trigger carcinogenic 
mechanisms, the role of the gut microbiome in the development of 
CRC has been proposed (Wong and Yu, 2023). The association of 
Fusobacterium nucleatum with CRC was revealed by amplicon 
sequencing of the 16S ribosomal RNA (rRNA) gene and later 
confirmed as causative in animal models CRC (Kostic et al., 2012, 
2013; Rubinstein et al., 2013). While 16S rRNA gene studies revealed 
such associations, metagenomic sequencing studies revealed a smaller 
number of CRC-associated microbial species and functional activities. 
However, the consistency and prognostic potential of these high-
resolution microbial signatures across different cohorts and study 
designs remain uncertain. Although the use of the gut microbiome for 
CRC diagnostics has been proposed, its validation in multiple 
independent studies is still pending (Zackular et al., 2014; Zeller et al., 
2014; Feng et al., 2015; Baxter et al., 2016; Yu et al., 2017).

Therefore, there remains a need to establish and validate links 
between the human gut microbiome and CRC across different 
populations, cohorts, and microbiome tools. While some cross-cohort 
studies have been based on 16S rRNA gene studies, this technique has 
its own limitations (Durazzi et  al., 2021). The advent of whole-
metagenome shotgun datasets for CRC cohorts facilitates a 
comprehensive exploration of the CRC-associated microbiome that 
includes strain-level precision and meta-analytic prediction strategies. 
Therefore, extensive cross-cohort studies are essential for an unbiased 
and robust assessment of the relationship between CRC and the 
gut microbiome.

While sequencing of gene amplicons for microbial identification, 
especially 16S rRNA sequencing, remains a priority, metagenomic 
analysis by genome-wide shotgun sequencing is becoming increasingly 
important. It was shown before that with shotgun sequencing entire 
microbial community can be  screened (including viruses, fungi), 
especially the less abundant taxa, which can also be  biologically 
important. On the other hand, with shotgun sequencing, microbial 
genes and metabolic pathways can be detected. In contrast, amplicon 
sequencing only allows for the prediction of microbial genes and 
metabolic pathways (Durazzi et  al., 2021). Shotgun sequencing 
integrates function, taxonomy and phylogeny and provides insights 
into the structure and function of the microbial community. It allows 
us to identify not only taxonomic units, but also genes, enzymatic 
reactions and metabolic pathways involved in microbial functionality. 
Given that there are 150 times more microbial genes than human 
genes, shotgun sequencing will soon enable us to understand the 
mechanisms behind the association of the microbiota with various 
diseases, including CRC (Qin et al., 2010; Wang et al., 2015).

The aim of this study was to compare the microbiome of patients 
with colorectal cancer and colorectal adenomas with that of generally 
healthy participants from different studies. With this goal in mind, 
we  sought to conduct a real-life experiment and create a robust 
machine learning model that can be applied to the general population.

In a typical procedure for building a disease classifier, a certain 
number of individuals with and without a disease are sampled by 
some research group in order to obtain data for machine learning. The 
pool of sampled individuals is necessarily limited, by means of which 
their diversity is less than satisfactory. Hence, the resulting machine-
learning model is necessarily overfitted to the very participants in a 
study. In contrast, the study in this article was conduct on as large 
dataset as it was possible to constellate from available sampled data 
from all over the world. The aim was to incorporate as rich diversity 
of a broad population into the resulting machine learning model. With 
this regard, it is reasonable to expect that at least some confounding 
factors are removed from the obtained disease classifier.

2 Methods

2.1 Data

Paired read sequences from 2,461 healthy participants, 380 CRC 
patients and 110 CRA individuals were downloaded from publicly 
available datasets studying different associations of different diseases 
and healthy controls. The main data selection criteria were the number 
of samples, depth of sequencing, the quality of resulting QC-ed 
sequences and the availability of metadata. Healthy individuals were 
defined as those who were reported as not having any overt disease 
not adverse symptoms at the time of the original study. The list of 
available datasets used in this study is available in 
Supplementary Table S1. The same dataset was used in study 
representing gut microbiome health index (Gupta et al., 2020). With 
a larger, healthy cohort, the aim was to consider the substantial 
variability of the human gut microbiome among healthy individuals 
(He et al., 2018).

2.2 Sequence processing

Paired-end reads were obtained from publicly available datasets 
using download procedures of European Nucleotide Archive1 
(Supplementary Table S1; Supplementary material: Extended 
discussion) and analyzed using our custom metagenomics sequence 
processing pipeline MetaBakery (currently in preparation, Deutsch 
et al., 2022a). MetaBakery is a new implementation of the BioBakery 
workflow (Beghini et al., 2021) and includes tools such as KneadData 
v0.12.02 with contaminant databases human_hg38_refMrna and 
hg37dec_v0.1 for quality control, MetaPhlAn 3.1.0 with database 
mpa_v31_CHOCOPhlAn_201901 for taxonomic analysis (for 
bacteria, archaea, fungi, protozoa and viruses) (Beghini et al., 2021) 
and HUMAnN 3.1.1 (Beghini et  al., 2021) with databases 
full_chocophlan.v201901_v31 and uniref90_201901b_full for 
inferring functional genes, enzymatic reactions and metabolic 
pathways. In addition, MelonnPan 0.99.0 (Mallick et al., 2019) was 
used for the prediction of microbial metabolites. MetaBakery is 

1 https://ena-docs.readthedocs.io/en/latest/retrieval/file-download.html

2 https://huttenhower.sph.harvard.edu/kneaddata/, accessed October 

10, 2023.
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containerized as a Singularity image and optimized for high 
performance clustering processing of large numbers of samples. For 
diversity assessment, Mothur 1.46.1 was integrated as part of 
MetaBakery pipeline utilizing biome format for diversity calculators 
(n = 35) (Schloss et al., 2009; Schloss, 2020). For this study no hand-
crafted command-line parameters were used for executing the above-
mentioned programs. If not instructed differently, the MetaBakery 
pipeline executes each program with its default parameters, as they 
apply to execution within the bioBakery workflow.

Minor steps of the analyses with MetaBakery were performed on 
a dual Xeon system with 32 CPU cores (64 hyperthreads), 512 GB 
RAM and 6 TB SATA hard disk at the Faculty of Electrical Engineering, 
University of Ljubljana, Slovenia. HPC system Vega at the Institute of 
Information Science3 and the HPC infrastructure Leo3, Leo4e of the 
University of Innsbruck, Austria, were utilized for heavy duty 
processing. In total, 980,000 CPUh were consumed.

2.3 Statistical analysis

Python 3.94 (Van Rossum and Drake, 2009) served as the basis for 
our statistical analysis. We used the non-parametric Mann–Whitney 
test integrated in the scipy.stats library (Virtanen et  al., 2020) to 
accurately determine the statistical significance between groups in 
terms of diversity and the features identified in the auto machine-
learning (autoML) analysis. These features were selected by an 
automatic machine learning analysis based on taxonomic signatures, 
gene families, enzymatic reactions, metabolic pathways and predicted 
metabolites in the different groups (CRC, CRA, healthy). We used the 
Python libraries matplotlib (Hunter, 2007) and seaborn (Waskom, 
2021) to visualize our results. The scikit-learn library (Pedregosa et al., 
2011) in Python facilitated the linear discriminant analysis (LDA), 
while the preprocessing was done using the StandardScaler method. 
Using the LDA method, we visualized and interpreted the differences 
between three different clusters: CRC, CRA and healthy participants. 
These observations were based on taxonomic signatures, gene families, 
enzymatic reactions, metabolic pathways and predicted metabolites, 
leading to a comprehensive understanding of the data. In addition 
UMAP clustering was performed using JADBIO machine learning 
(Tsamardinos et al., 2022).

2.4 Automated machine learning

The web-based machine learning platform “Just Add Data Bio” 
(JADBIO, Ver. 1.4.105) was used to investigate potential biomarkers 
(Tsamardinos et al., 2022). A two-stage methodology was used for the 
analysis. First, the models were trained individually for each 
component of the data matrix, i.e., for taxonomy, functional genes, 
enzymatic reactions, metabolic pathways and predicted metabolites. 
Subsequently, an integration step was performed in which all 
significant features were merged, and the model was retrained. 
JADBIO was developed for predictive modeling and uses advanced 

3 www.izum.si

4 https://www.python.org/, accessed October 10, 2023.

statistical and machine learning techniques to create robust diagnostic 
predictive models. The analysis was systematically performed to rule 
out personal analytical bias and methodological statistical errors by 
autonomously examining different modeling settings (Deutsch and 
Stres, 2021; Murovec et  al., 2021; Deutsch, 2022; Deutsch et  al., 
2022a,b). This process led to the identification of key features that 
allow effective discrimination between different groups. Using 
considerable computational resources and careful parameter tuning, 
JADBIO was used to model different dataset variations. The data was 
preprocessed to retain all rows (representing taxonomical features, 
gene families, enzymatic reactions and metabolic pathways) with at 
least 1,250 non-zero values, aiming to exclude the influence of large 
proportion of zeroes in the dataset. More than 2000 different model 
configurations were used to find the best possible model per every 
data matrix (Supplementary Table S2). All steps involving machine 
learning were used as implemented in JADBIO. Different model 
configurations were tested with different preprocessing steps, feature 
selectors, feature selection hyperparamters, predictive algorithms and 
hyperparameters were tested (Supplementary Table S2; 
Supplementary material: Extended discussion). The analysis included 
features extracted from samples of different projects and groups, with 
the data split 70:30 into training and test datasets. The training dataset 
was used to develop the model, while the test dataset evaluated its 
performance (Deutsch and Stres, 2021; Murovec et al., 2021; Deutsch, 
2022; Deutsch et al., 2022a,b). Receiver operating characteristic curves 
(ROC) were generated for all groups studied to evaluate the model. 
These curves graphically represented the trade-off between the rate of 
true-positive findings (sensitivity) and the rate of false-positive 
findings (1-specificity). Individual conditional expectation plots (ICE) 
were used for depth to illustrate the differential contribution of each 
feature to the predictive power of the model. Progressive feature 
inclusion plots were also created to provide insight into the impact of 
feature inclusion on model performance.

3 Results

3.1 Diversity

The in-house analytical pipeline MetaBakery (in preparation, 
Deutsch et al., 2022a) was used to preprocess the sequence data with 
integrated tool KneadData5 and to analyze the sequences at the level 
of taxonomy [MetaPhlAn3 (Beghini et al., 2021)], diversity [Mothur 
(Schloss et  al., 2009)], functional genes, enzymatic reactions and 
metabolic pathways [HUMAnN3 (Beghini et al., 2021)] and predicted 
metabolites [MelonnPan (Mallick et al., 2019)]. Sequences from 2,461 
healthy individuals, 380 CRC patients and 110 individuals with 
confirmed CRA were used for the analysis. A total of 1839 taxonomic 
units (kingdoms, phyla, clades, orders, families, genera and species) 
including archaea, bacteria, protozoa and viruses, 80,372 gene 
families, 34,008 enzymatic reactions, 31,555 metabolic pathways and 
81 predicted metabolites were identified and analyzed in the human 
gut microbiota. 19 different diversity metrics were used to compare all 

5 https://huttenhower.sph.harvard.edu/kneaddata/, accessed October 

10, 2023.
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three groups and determine the presence of differences. Although in 
most cases the diversity metrics were higher in the CRC and CRA 
groups, these differences were not significant, including the Shannon 
diversity index (Figure 1) as determined by the Mann–Whitney test 
(Supplementary Table S3; Supplementary Figure S1).

3.2 LDA analysis

Using the scikit-learn Python library, linear discriminant analysis 
(LDA) was used to explore potential differences between healthy 
individuals, CRA and CRC patients in the five data matrices 
(taxonomy, functional genes, enzymatic reactions, metabolic pathways 
and predicted metabolites). As shown in Figure 2, LDA clustering 
effectively discriminates between CRC, CRA and healthy individuals 
based on four different metagenomic fingerprints (taxonomy in 
Figure  2A, functional genes in Figure  2B, enzymatic reactions in 
Figure 2C and metabolic pathways in Figure 2D). However, no clear 
LDA cluster separation was observed for the predicted metabolites 
(Supplementary Figure S2). In addition, UMAP analysis was 
performed using JADBIO (Supplementary Figure S3).

3.3 Machine learning results

Although clear separation was observed in only four datasets 
(taxonomy, genes, enzymatic reactions and metabolic pathways), all 
five metagenomics data matrices (taxonomy data, functional genes, 
enzymatic reactions, metabolic pathways and predicted metabolites) 
were used for automatic machine learning using the JADBIO 

web-based tool. All matrices were prepared such that rows with at 
least 1,250 non-zero entries were retained in the dataset.

Based on the 1839 categories describing the taxonomic data of 
four different kingdoms (Archaea, Bacteria, Protozoa and Viruses), 
the models were trained using extensive tuning effort in search of 
biologically meaningful distinguishing features between all three 
groups. All important features were representative of the Bacteria 
kingdom and the best performing model was Classification Random 
Forest training 1,000 trees with deviance splitting criterion, minimum 
leaf size = 2, splits = 1, alpha = 1 and variables to split = 1.0 sqrt (nvars) 
according to JADBIO, after testing more than 2000 different 
configurations. More than 25 features were selected as the most 
appropriate to achieve the best possible differentiation between all 
three groups (AUC = 0.817), but the first ten taxonomic units can 
achieve more than 95% successful performance for differentiation 
(Figure 3A; Supplementary Figure S4; Supplementary Table S4). This 
model was tested with all 25 selected features using test data and 
achieved a performance of AUC = 0.787.

HUMAnN3 (Beghini et al., 2021), integrated in our MetaBakery 
pipeline, was used to assess the functional potential of the microbiome. 
Functional genes were determined using the UniRef database (Suzek 
et al., 2007, 2015). 80.372 functional genes were discovered in the 
samples and 70% of the total dataset was used to find the best possible 
model. The best possible model was Classification Random Forest 
training 1,000 trees with deviance splitting criterion, minimum leaf 
size = 3, splits = 1, alpha = 1 and variables to split = 0.577 sqrt (nvars) 
with an area under the curve value of 0.815 (Figure 3B). From the 
entire pool of genes, 25 of them were selected as the most important 
features for differentiation. However, a classification performance of 
100% was achieved with the first 15 of them (Supplementary Figure S5). 

FIGURE 1

Boxplots representing Shannon diversity metrics for healthy individuals and patients with colorectal cancer or colorectal adenoma.
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The model was tested on 30% of the entire dataset and achieved an 
accuracy of AUC = 0.822.

The aggregation of functional gene information into enzymatic 
reactions (Figure 3C) led us to model 34,008 enzymatic reactions. The 
best model was Classification Random Forest training 1,000 trees with 
deviance splitting criterion, minimum leaf size = 1, splits = 1, alpha = 1 
and variables to split = 0.577 sqrt (nvars), with an Area under the 
Curve (AUC) value of 0.825. 25 different features were identified as 
the most important for discrimination and the first 18 of them can 
achieve a prediction performance of 100% (Supplementary Figure S5; 
Supplementary Table S4). The model was tested and achieved a 
performance with an AUC value of 0.812.

The aggregation of enzymatic reactions into metabolic pathways 
(Figure 3D) led to the modeling of 31,555 metabolic pathways. The 
best model was Classification Random Forest training 100 trees with 
deviance splitting criterion, minimum leaf size = 2, splits = 1, alpha = 1 
and variables to split = 0.577 sqrt (nvars), with an area under the curve 
(AUC) value of 0.799.25 different features were identified as the most 
important for discrimination and the first 13 of them can reach a 
prediction performance of 100% (Supplementary Figure S6; 
Supplementary Table S4). The model was tested on the test dataset and 
achieved a performance with an AUC value of 0.768.

The LDA analysis and clustering visualizations have already 
shown that the lowest expected performance can be obtained when 
modeling the predicted metabolite data obtained with the MelonnPan 
tool (Mallick et al., 2019). This was also confirmed with Classification 
Random Forest training 1,000 trees with deviance splitting criterion, 

minimum leaf size = 2, splits = 1, alpha = 1 and variables to split = 1.0 
sqrt (nvars) as the best prediction algorithm based on 81 predicted 
metabolites. However, the performance of this model was low 
(AUC = 0.621). The performance on the test dataset was even lower 
(AUC = 0.606) (Supplementary Figures S7, S8; 
Supplementary Table S4).

All features identified by JADBIO through automatic machine 
learning were also tested using the Mann–Whitney statistics to check 
correctness and significance between groups for each feature. Most 
comparisons for each feature in the areas of taxonomy, functional 
genes, enzymatic reactions, and metabolic pathways were statistically 
significant, especially when comparing CRC and healthy controls. 
Comparisons of CRA and healthy controls on the one hand or CRC 
and CRA on the other were less significant. The differences in the 
selected predicted metabolites were not significant 
(Supplementary Table S5).

In the final step of the machine learning analysis, the most 
important features were integrated into a data set and the machine 
learning was repeated on this reduced data set. Classification Random 
Forest trained 1,000 trees with deviance splitting criterion, minimum 
leaf size = 3, splits = 1, alpha = 1 and variables to split 0.816 sqrt was 
selected as the most successful for aggressive feature selection and 25 
out of 120 features were selected as the most important for 
classification (5 belong to taxonomy–kingdom bacteria, 12 to gene 
families, 5 to enzymatic reactions and 3 to metabolic pathways). None 
of the predicted metabolites from the first step were selected in the 
second step. The final performance of this model was 0.87 (AUC).

FIGURE 2

LDA scores plots of components one and two for healthy (red), patients with CRC (green) and CRA (blue): (A) taxonomy, (B) gene families, 
(C) enzymatic reactions, and (D) metabolic pathways.
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4 Discussion

A total of 2,951 stool samples from different studies, including 
healthy individuals as well as those with CRC and CRA, were 
subjected to comparative analysis. Our MetaBakery pipeline was used 
for sequence processing. Comprehensive data matrices were used that 
included various features such as microbial taxonomy (1839 
taxonomic units), functional genes (80,372 genes), enzymatic 
reactions (34,008 enzymes), metabolic pathways (31,555 metabolic 
pathways), and predicted metabolites (81 metabolites). In addition, 
we integrated 19 different diversity matrices calculated using methods 
consistent with Mothur’s approach.

We showed that there is no statistically significant difference in 
microbial diversity in patients with colorectal cancer (CRC). These 
results are consistent with some other studies suggesting that 
microbial diversity and richness may increase in colorectal cancer 
patients (Feng et al., 2015; Thomas et al., 2019; Qi et al., 2022; Liu 
J. et  al., 2023). To further investigate possible differences, we first 
performed a comprehensive analysis of the entire dataset using linear 
discriminant analysis (LDA) to identify possible clusters. Significant 
differences emerged in four different metagenomic data matrices 
(taxonomy, functional genes, enzymatic reactions and metabolic 
pathways), which formed separate clusters for each group (healthy, 
CRC, CRA). A clear difference was seen between the healthy and CRC 
patient groups. However, the CRA patients were consistently 
positioned between the healthy controls and the CRC patients, 

emphasizing that CRA represents a closer step to the development of 
CRC in terms of the composition of the microbiome. CRA is 
considered as a stage 0 in development of intramucosal carcinoma and 
can progress into malignant forms, which is also known as an 
adenoma-carcinoma sequence. The most important question here is 
whether the change in the microbiome is the consequence of the 
development of the disease or whether the disease is a consequence of 
the change in the microbiome. Given the obvious differences observed 
in LDA analysis between healthy microbiomes, CRC and CRA 
samples, machine learning (ML) analysis was performed. Datasets 
from different studies were used to represent real-world scenarios and 
achieve a level of variability that corresponds to natural conditions 
rather than exerting excessive control.

We obtained consistent model performance with AUC values 
around 0.8 for all data inputs. In this study, we present several groups 
of microbial taxa, functional genes, enzymatic reactions and metabolic 
pathways that offer potential for the prediagnostic evaluation of CRC 
and CRA that represent an early stage in the development of 
CRC. Several CRC biomarker species were independently identified 
in the different studies by univariate statistics (Segata et al., 2011): 
Fusobacterium nucleatum, Solobacterium moorei, Porphyromonas 
asaccharolytica, Parvimonas micra, Peptostreptococcus stomatis and 
Parvimonas ssp. (Kostic et  al., 2012, 2013; Thomas et  al., 2019; 
Mizutani et al., 2020; Qi et al., 2022). In our study different groups of 
taxa, from phylum to genera, were identified important for 
distinguishing between different conditions (health, CRC or CRA). 

FIGURE 3

ROC plots for classification between healthy individuals (green), CRC (orange) and CRA (blue) patients based on taxonomy (A), functional genes (B), 
enzymatic reactions, (C) and metabolic pathways (D).
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Many previous studies focused exclusively on a binary classification 
including only colorectal cancers and healthy individuals, which may 
have introduced bias. The detection of individuals with CRA, a 
precursor of CRC, is important from a diagnostic point of view.

In recent years, research into the functionality of the microbiome 
has become increasingly important. The emergence of microbial 
metagenomics has highlighted that data modeling must also 
be approached from the perspective of microbial functionality, as the 
ratio of human to microbial genes is 1:150 (Qin et al., 2010). This shift 
is crucial as it provides a better understanding of overall microbial 
functionality rather than microbial taxonomy (Deschênes et al., 2023). 
Furthermore, it promises to reveal why certain components of the 
microbiome may be  associated with the occurrence of various 
diseases. With this in mind, our investigations extend to microbial 
functional potential, which includes functional genes, enzymatic 
reactions, metabolic pathways and predicted metabolites.

Our initial focus on functional genes, enzymatic reactions and 
metabolic pathways has led to promising results and moderate 
classification accuracy. Based on the UniRef database (Suzek et al., 
2007, 2015), 15 different gene families were discovered that are 
important for classification between all three groups. Most of the 
discovered gene families belong to the human gut microbiota. 
Moreover, for example, the gene family A0A015S3B6|unclassified 
belongs to the protein of Bacteroides fragilis, which has also been 
previously mentioned as one of the biomarker candidates for CRC 
(Pandey et  al., 2023). The gene family A0A078RCV9 belongs to 
Phocaeicola vulgatus, (formerly Bacteroides vulgatus, which was 
already associated with CRC in 1995) (Moore and Moore, 1995; Lucas 
et  al., 2017; Vu et  al., 2022). The gene families A0A174XNP7 
(belonging to Flavonifractor plautii) and A0A174Q9G9 (Bacteroides 
intestinalis) have been associated with colorectal cancer patients in 
India (Gupta et al., 2019).

The most important enzymatic reaction is 3.5.1.88-RXN 
according to feature selection, which belongs to Holdemanella 
biformis, one of the species that can act anti-oncogenically through the 
production of SCFAs (Zagato et al., 2020). Reaction 3.4.21.92-RXN 
belongs to Lawsonibacter asaccharolyticus, previously associated with 
acetate, a potential therapeutic agent in the treatment of colorectal 
cancer (Marques et al., 2013; Sahuri-Arisoylu et al., 2021; Dong et al., 
2023). Reatcion 3.2.1.1-RXN belongs to Clostridium sp. CAG_58, the 
most important taxon from the taxonomic data feature selection, was 
previously associated with adiposity. Higher obesity has generally 
been associated with an increased likelihood of CRC (Bull et al., 2020; 
Asnicar et  al., 2021). Reaction 2.5.1.64-RXN belongs to Klebsiella 
oxytoca, another microbial species that has been isolated from patients 
with CRC and is one of the reasons for the increased inflammation in 
these patients due to biofilm formation (Abbas et al., 2020). One of the 
most interesting features discovered in the enzymatic reactions was 
2.3.1.180-RXN belonging to Fusobacterium nucleatum, which, as 
mentioned above, was one of the most important species-level 
biomarkers observed in other studies (Kostic et al., 2012, 2013). Even 
though we did not observe this species at the taxonomic level, we did 
observe this reaction. Reaction 2PGADEHYDRAT-RXN was also 
identified and belongs to Collinsella aerofaciens, a microbe observed 
in the stool of patients with elevated blood levels (Chénard et al., 2020).

MetaCyc (Caspi et  al., 2020) metabolic pathways were also 
identified as important features for classification. The most important 
feature in this regard was ARO-PWY: chorismate biosynthesis 

I. Chorismate is also a precursor of tryptophan. It was observed that 
the reduction in the amount of tryptophan is proportional to the poor 
quality of life of colorectal cancer patients (Zhang et al., 2019). The 
next metabolic pathway was ARGSYN-PWY: L-arginine biosynthesis 
I. It was observed that supplementation with L-arginine can alleviate 
intestinal inflammation. Increased intestinal inflammation was 
observed to be associated with the initiation and progression of CRC 
(Zhang et al., 2021; Liu Y. et al., 2023). Arginine was also observed to 
have significant diagnostic value for CRC patients (Yi et al., 2023).

However, the AUC values for the predicted metabolites were lower 
compared to other data matrices. Pantothenate was observed to be the 
most important feature. Pantothenate was previously observed as an 
important metabolite for the diagnosis of CRC patients (Yi et al., 
2023). Putrescine, the second most important feature, is a polyamine 
that is basically involved in all steps of tumorigenesis (Sánchez-
Alcoholado et al., 2021).

Although there are still no definitive explanations for many 
discovered genes, enzymes and metabolic pathways, this uncertainty 
will decrease over time. For example, it is expected that questions about 
the significance of a particular metabolic pathway for the classification 
of a particular disease will be clarified. We have also ventured into the 
prediction of metabolites using relaxation networks such as those 
included in MelonnPan. Although the results were statistically 
insignificant, it is plausible that subsequent iterations of this tool or 
similar tools could improve the prediction of metabolites. This potential 
breakthrough could facilitate the linking of metabolite predictions with 
results from fecal or blood metabolome analyses (Šket et  al., 2020; 
Deutsch et al., 2022a). Such an integrated approach could reveal new 
dimensions in the understanding of microbe-host relationships, 
enriching our knowledge and potentially paving the way for practical 
clinical applications. With the approach outlined in this study, we have 
shown that it is possible to develop robust prediagnostic methods for 
colorectal cancer detection based on microbial fingerprints (Cammarota 
et al., 2020; Su et al., 2022; Zhou et al., 2024) integrating all layers of 
information (taxonomy, diversity, functional genes, enzymatic reactions, 
metabolic pathways, metabolites). One of the limitations mirroring the 
current status of the research in this fields and of our study is the lack of 
external clinical datasets of sufficient high quality of sequences and 
metadata to validate our models. However, with the advent of novel 
datasets the models created in this study could be used in larger studies 
in the future to evaluate the results obtained. Nevertheless, the research 
presented here provides one of the first important steps toward efficient, 
reproducible and tractable classification of CRC and CRA samples in a 
form of prediagnostic informative tool.
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