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Ulcerative colitis (UC), characterized by disrupted intestinal barrier integrity 
and chronic inflammation, was modeled in mice via dextran sulfate sodium 
(DSS) induction. This study explored the therapeutic potential of berberine-
evodiamine (BBR-EVO), bioactive components of the traditional Chinese 
medicine Yulian decoction, in DSS colitis. BBR-EVO intervention ameliorated 
weight loss, diarrhea, colonic shortening, and histopathological damage in 
colitic mice. The substance increased antioxidant activity while reducing high 
levels of pro-inflammatory cytokines in the colon, including as TNF-α, IL-1β, and 
IL-6. BBR-EVO inhibited the DSS-induced decrease in the tight junction proteins 
ZO-1 and occludin, according to immunohistochemistry. 16S rRNA sequencing 
demonstrated BBR-EVO partially attenuated DSS-elicited intestinal dysbiosis, 
reducing opportunistic pathogens and restoring diminished beneficial taxa. 
Critically, BBR-EVO alleviated secondary hepatic injury in colitic mice, mitigating 
immune cell infiltration, oxidative stress, cytokine production, and ultrastructural 
damage, likely by beneficially modulating gut-liver crosstalk. This study reveals 
BBR-EVO, derived from a traditional Chinese medicine, confers multi-target 
protective effects in experimental colitis and associated hepatic pathology, 
warranting further evaluation as a potential therapy for inflammatory bowel 
diseases like UC. The mechanisms may involve simultaneous augmentation of 
intestinal barrier integrity, inhibition of inflammation, microbiota regulation, and 
gut-liver axis optimization.
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Introduction

Ulcerative colitis (UC) represents a common subtype of inflammatory bowel disease (IBD) 
affecting the human population. The clinical manifestations of UC encompass anorexia, 
abdominal discomfort, hematochezia, and mucosal discharge (Eom et  al., 2018). Statistical 
evidence suggests that IBD impacts an estimated 50,000 people worldwide, with an ascending 
prevalence (Le Berre et al., 2023). In Western nations, the prevalence of IBD might surpass 0.5% 
(Kaplan, 2015; Du and Ha, 2020). Nonetheless, the etiology of UC remains elusive, and an absolute 
cure has not been established. Research has demonstrated that both genetic predispositions and 
environmental influences elevate the risk for UC (Cosnes et al., 2011). Furthermore, dysregulation 
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of immune responses, disruptions in intestinal microbiota, and other 
contributory factors are associated with UC (Kaser et  al., 2010). 
Substantial evidence indicates that the human gut microbiota consists of 
a diverse array of symbiotic strains and microorganisms (Jia et al., 2008), 
with significant alterations observed in the composition and function of 
this microbiota in IBD patients (Lavelle and Sokol, 2020). Patients with 
IBD present with dysbiosis of gut microbiota, resulting in compromised 
intestinal epithelial barrier integrity, heightened intestinal permeability, 
and the ensuing translocation of endotoxins (e.g., lipopolysaccharides, 
LPS) into the circulatory system, which provokes an inflammatory 
response in the gut (Ungaro et al., 2017; Zhang et al., 2017; Du and Ha, 
2020), This sequence of events can precipitate the activation of the 
hepatic immune system, potentially culminating in liver damage (Fukui, 
2015). Investigations have identified oxidative stress, dysbiosis of the 
intestinal microbiota, and inflammation as shared pathogenic elements 
contributing to both liver injury and IBD (Chao et al., 2016; Rogler et al., 
2021). Considering the liver’s heightened exposure to bacterial toxins, 
the dysbiosis observed in colitis may be implicated in hepatic injury via 
the gut-liver axis. Damage to the intestinal barrier permits the 
translocation of bacterial metabolites and toxins to the liver, which may 
induce a spectrum of hepatic diseases (Ohtani and Kawada, 2019).

The persistence of a high recurrence risk in patients with 
inflammatory bowel disease (IBD) post-medication necessitates 
further investigation into potent adjuvant therapies. With its 
therapeutic approach based on the principles of holistic and balanced 
care, Traditional Chinese Medicine (TCM) is becoming more and 
more acknowledged as a valuable complementary and alternative 
modality. It offers sustained therapeutic outcomes, minimal side 
effects, and a diverse range of bioactive constituents with multi-target 
effects (Kaplan, 2015). Given its oral administration, TCM primarily 
acts through the gastrointestinal system, a key site for absorption and 
metabolic processing. Notably, Traditional Chinese medicine (TCM) 
has been extensively utilized for managing ulcerative colitis, owing to 
its overall efficacy in restoring intestinal flora balance (Chen et al., 
2015), along with its antidiarrheal and anti-inflammatory properties. 
Yulian decoction comprises coptidis, evodia fructus, and acostalis, and 
has purgative and analgesic effects. It is commonly prescribed for 
epigastric pain, sour belching, and diarrhea. Modern pharmacology 
has validated the analgesic, anti-ulcer, and antibacterial properties of 
Yulian decoction (Wang L. et al., 2011; Wang Y. et al., 2011). In vitro 
studies have confirmed the anti-inflammatory activity of compounds 
in Yulian decoction, which can suppress TNF-α and IL-6 levels in 
inflammatory cell models (Ran et al., 2022). Moreover, recent studies 
have identified 11 bioactive compounds in Yulian decoction, including 
berberine (BBR) and evodiamine (EVO), present in rat plasma (Li 
T. et al., 2021), while some in vivo studies indicated the protective 
effect of berberine on acute gastric ulcer (Guo et  al., 2024). 
Investigating the synergistic effects of two active compounds, BBR and 
EVO, in Yulian decoction on the intestinal milieu may prove pivotal 
in demystifying the underlying pharmacological mechanisms.

Materials and methods

Animals

Male ICR mice, with an average weight of 25 ± 2 g, were acquired 
from the Comparative Medicine Centre at Yangzhou University 

(Yangzhou, China). These animals were maintained in a controlled 
environment, with a temperature of 22 ± 2°C, relative humidity of 
50 ± 10%, and a 12-h light–dark cycle, with ad libitum access to food 
and water.

Chemicals and reagents

Berberine (BBR, IB0440, Beijing) and evodiamine (EVO, IE0430) 
were purchased from Solarbio (Beijing, China). BBR and EVO are 
initially dissolved in DMSO to prepare 100 mM stock solutions 
(Figure  1A). Dextran Sulfate Sodium Salt (DSS, 60316ES60) was 
provided from Yeasen (Shanghai, China).

Animal experimental design

Following a one-week acclimatization period, all mice were 
randomly allocated into five distinct groups (n = 8 per group): control 
(CON), dextran sulfate sodium saline (DSS), berberine (BBR), 
evodiamine (EVO), and combination of BBR and EVO (BBR-EVO) 
group. The BBR and EVO content in the lyophilized Yulian decoction 
were 9.14 and 0.065%, respectively (Li T. et al., 2021). The ratio of BBR 
to EVO was maintained to reflect their proportions in the original 
Yulian decoction, aiming to preserve potential synergistic effects while 
ensuring physiological relevance. Dose extrapolation from a 70 kg 
human adult to rats (0.05 g/kg) was performed using a body surface 
area normalization factor of 0.018 (Xu, 1991), and an analogous 
calculation was employed for mice using a factor of 0.0026. 
Consequently, the resultant mice equivalent dose was 0.072 g/kg, with 
a daily administration of BBR at 19.74 mg/kg and EVO at 0.141 mg/kg.

Subsequent to the acclimatization phase, mice in the 
pharmacologically treated cohorts were given oral BBR, EVO, or 
BBR-EVO. In contrast, mice in the CON and DSS cohorts received 
daily PBS for 14 days. Commencing on the 7th day of treatment, all 
groups except for the CON group were provided with 3% (w/v) DSS in 
their drinking water for seven consecutive days, with daily renewal of 
the DSS solution, to induce a mouse model of acute ulcerative colitis. 
The assessment of disease severity in murine models was conducted 
through the application of the Disease Activity Index (DAI) scoring 
system. This index encompasses a comprehensive evaluation of 
physiological parameters, namely fecal consistency and bleeding 
(Camuesco et al., 2004). Each parameter was meticulously observed 
and assigned a score based on established diagnostic guidelines.

Inflammatory cytokine analysis and 
antioxidant capacity analyses by ELISA

For preparation of tissue homogenates, samples from either the 
colon or liver were meticulously weighed and homogenized with 
pre-chilled normal saline in a ratio of 1:9 (m/v). The homogenization 
process was carried out at a temperature of 4°C. Subsequently, the 
homogenates were centrifuged at 12,000 rpm for 10 min, and the 
supernatant was collected. The concentrations of Total Antioxidant 
Capacity (T-AOC, YH1246), Malondialdehyde (MDA, YH1217), 
Superoxide Dismutase (SOD, YH1202), and Interleukin-6 (IL-6, 
ANG-E21044M), −1β (IL-1β, ANG-E21027M), and tumor necrosis 
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factor -а (TNF-а, ANG-E21030M) were quantified using appropriate 
commercial ELISA kits, purchased from Nanjing Angle gene 
Biotechnology Co., Ltd. (China).

Histopathological analysis

In line with the methodology outlined by Wang et al. (2019), 
hematoxylin and eosin (H&E) staining was employed to evaluate the 
histopathological alterations in the mouse colon and liver. Tissue 
samples fixed in 4% paraformaldehyde were sequentially dehydrated 
using graded ethanol solutions prior to a three-hour wax immersion. 
Subsequently, mouse colon and liver samples were sectioned to a 
thickness of 5 micrometers (μm). These sections were subsequently 
rehydrated, cleared of wax using xylene, and stained with hematoxylin 
and eosin, following standard histological protocols. Finally, 
morphological changes in the tissues were assessed and documented 
using an Olympus optical microscope (Olympus, Japan) and a Leica 
microscopic imaging system (Leica Biosystems, Germany).

Immunohistochemistry analysis

Briefly, for antigen retrieval, the paraffin-embedded slides were 
submerged in 0.01 mM citrate buffer and microwaved for 10 min. 

Following a phosphate-buffered saline (PBS) wash, the slides were 
incubated at room temperature, first with 3% hydrogen peroxide (H₂O₂) 
for 10 min and then with goat serum for 15 min. The slides were then 
treated with goat anti-rabbit secondary antibody, followed by a 30-min 
incubation at room temperature. Subsequent to a PBS rinse, each slide 
was covered with a diaminobenzidine (DAB) solution (DA1010, 
Solarbio, China) and allowed to react at room temperature. One minute 
later, each slide was gently washed with water, counterstained with 
hematoxylin, dehydrated, and sealed with neutral gum before storage 
for subsequent analysis. Microscopic images of the stained sections were 
captured using a Nikon optical microscope (Nikon, Japan).

Western blot analysis

Approximately 50 mg of colon tissue was mixed with an 
appropriate volume of pre-cooled PIPA Lysis Buffer and then 
completely lysed using a low-temperature homogenizer (Servicebio, 
Wuhan, China) for 10 to 15 min. The supernatant was then collected 
following centrifugation at 12,000 rpm for 20 min. Upon determining 
the protein concentration, samples were normalized to a uniform 
concentration and subjected to denaturation. Resolving gels of 
varying concentrations were prepared in accordance with the 
molecular weight of the target protein. The protein samples were then 
subjected to electrophoresis, followed by transfer onto a 

FIGURE 1

The main active components of Yulian decoction treatment relieve DSS-induced colitis. (A) Chemical structures of berberine and evodiamine. (B) The 
results of mice colon length, n  =  8. (C) Variations in mice body weight. (D) Disease Activity Index (DAI) scores during the colitis induction period. Data 
are presented by mean  ±  SD; *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.0001, compared to CON group; #p  <  0.05, ##p  <  0.01, ###p  <  0.001, 
####p  <  0.0001, compared to DSS group.
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polyvinylidene difluoride (PVDF) membrane. The PVDF membrane 
was blocked using a Tris-buffered saline with Tween (TBST) 
containing 5% skimmed milk, followed by incubation with the 
primary antibody diluent overnight at 4°C. Following washes with 
TBST, the membrane was incubated with the secondary antibody 
diluent for 1.5 h at room temperature. Details of the antibodies 
utilized are listed in Table  1. Subsequently, the membranes were 
treated with a chemiluminescent HRP substrate solution (Biosharp, 
Anhui, China). Signals on the PVDF membranes were detected using 
a Bio-Rad chemiluminescence imaging system. Band densities were 
quantitatively analyzed using ImageJ software, with all data 
normalized to β-actin levels prior to analysis.

Extraction of microbial genomic DNA from 
murine intestinal content

Genomic DNA was extracted from the intestinal content 
samples of mice belonging to three experimental cohorts 
(designated as BBR, EVO, and BBR-EVO group) employing the 
QIAamp DNA Mini Kit (QIAGEN, Germany). The quantification 
of genomic DNA was achieved through spectrophotometric analysis 
using the NanoDrop technology (Thermo Scientific, Wilmington), 
while the DNA integrity was ascertained by conducting 
electrophoresis on a 1% agarose gel at 150 V for a duration of 
40 min. Purified DNA samples were stored at −80°C pending 
further analytical procedures.

Amplification and sequencing of bacterial 
16  s rRNA genes

The amplification of the V3-V4 hypervariable regions of the 
bacterial 16S rRNA genes was conducted using the primer pair 
338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R 
(5′-GGACTACHVGGGTWTCTAAT-3′). The resultant PCR 
products were then subjected to a purification process employing 
Vazyme VAHTSTM DNA Clean Beads (Vazyme, China), with an 
ensuing validation step via 1% agarose gel electrophoresis. 
Sequencing libraries were meticulously prepared from the purified 
amplicons to ensure a singular peak at a standard concentration of 
2 nM. High-throughput sequencing was executed on an Illumina 
HiSeq platform (Illumina, San Diego, USA), facilitating a 
comprehensive analysis of the bacterial genomic composition. 
Experimental results are uploaded to the Genescloud Platform for 
microbiome bioinformatics analysis.1

1 https://www.genescloud.cn

Statistical analysis

Data are expressed as the mean ± standard deviation (SD). 
Differences between groups were analyzed using the one-way ANOVA 
test followed by the Tukey test for multiple comparisons for normally 
distributed data, or the Kruskal-Wallis test followed by Dunn’s test for 
multiple comparisons for non-normally distributed data. A p-value 
≤0.05 was deemed to denote statistical significance.

Result

BBR-EVO ameliorated DSS-induced colitis 
in mice

Mice in the DSS group exhibited a reduction in body weight and 
a decrease in colon length compared to the CON group (Figures 1B, 
C). In contrast, mice treated with BBR, EVO, and BBR-EVO showed 
an increase in both body weight and colon length relative to the DSS 
group. Notably, the BBR-EVO combination was more effective in 
improving DAI scores (Figure 1D).

As demonstrated in Figure 2, as compared to the CON group, the 
levels of ALT and AST in the DSS group’s serum increased considerably 
(p < 0.01), whereas the levels of ALP, BUN, and CRE kept unchanged. 
After BBR and BBR-EVO interventions, ALT and AST levels reduced 
dramatically (p < 0.001), CRE levels increased significantly (p < 0.05), 
and BUN levels increased significantly (p < 0.0001). BUN levels rose 
considerably during EVO intervention (p < 0.05).

Hematoxylin and Eosin (HE) staining facilitated the histological 
examination of colon tissue, as depicted in Figure 3. The CON group 
exhibited a normal colonic mucosal structure. In stark contrast, the DSS 
group’s colon tissue displayed significant disruption of colonic crypts, 
abnormal gland distribution, and elevated inflammatory cell infiltration. 
Following pretreatment with BBR, EVO, and particularly the BBR-EVO 
combination, there was notable tissue repair. The colon tissues exhibited 
intact crypts and reduced inflammation. Most remarkably, the 
BBR-EVO group’s colon tissue closely resembled that of the CON group, 
with a successfully restored structure and slightly inflammation.

BBR-EVO alleviated the inflammatory 
response of colon tissue in DSS-induced 
colitis mice

Cytokine levels were quantified using enzyme-linked immunosorbent 
assay (ELISA) to assess the suppressive effects of BBR-EVO. Mice with 
DSS-induced colitis exhibited significantly elevated levels of IL-6, TNF-α, 
and IL-1β (Figure 4). Treatment with BBR and EVO effectively reduced 
the production of these cytokines in colitic mice, with a more pronounced 
reduction observed when BBR and EVO were combined.

BBR-EVO inhibited the oxidative state

At the same time, representative oxidative stress factors were also 
detected (Figure 5). The findings revealed that the DSS group’s MDA 
content was significantly higher than that of the CON group (p < 0.0001) 
and that the activities of SOD and T-AOC were reduced to varied 

TABLE 1 F/B values in each group mice.

Group Firmicutes (%) Bacteroidetes (%) F/B

CON 52.25 31.92 1.64

DSS 19.07 11.07 1.72

BBR-EVO 38.91 24.07 1.62
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degrees (p < 0.01). SOD and T-AOC levels considerably increased 
(p < 0.01) and MDA levels dramatically decreased (p < 0.01) under the 
administration of BBR and BBR-EVO, whereas MDA and T-AOC levels 
in the colon of mice treated with EVO alone did not significantly alter. 
Therefore, BBR-EVO may have the ability to inhibit inflammatory 
response and enhance antioxidant defense to inhibit DSS injury.

The IHC staining findings indicated that the expression levels of 
nuclear factor erythroid 2-related factor 2 (Nrf2) and NQO1 in the 
DSS group’s colon tissue were lower than in the CON group, indicating 
that the antioxidant signaling pathway in the DSS group was 
suppressed (Figure  6). This is consistent with the antioxidant 
parameter test findings.

FIGURE 2

Effects of main active components of Yulian Decoction treatment on blood biochemical indices in mice, n  =  5. (A) Alanine aminotransferase (ALT). 
(B) Aspartate aminotransferase (AST). (C) Alkaline phosphatase (ALP). (D) Creatinine (CRE). (E) Blood urea nitrogen (BUN). Data are presented by 
mean  ±  SD; *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.0001, compared to CON group; #p  <  0.05, ##p  <  0.01, ###p  <  0.001, ####p  <  0.0001, compared to 
DSS group.

FIGURE 3

Effects of the main active components of Yulian decoction on histopathological changes in the mouse colon assessed by hematoxylin and eosin 
staining (H&E). Scale bar  =  100  μm. Black circles indicate decreased goblet cells; yellow triangles indicate inflammatory infiltrate; blue arrows indicate 
abnormal crypt structure.
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BBR-EVO enhanced the tight junction 
proteins expressions of colon tissue in 
DSS-induced colitis mice

Intestinal barrier function is mainly attributed to intercellular 
tight junction proteins (ZO-1 and occludin) in colon tissue. As a 

result, we used Western blot and IHC labeling to examine the levels of 
ZO-1 and occludin expression in mice colon tissues (Figure 7). As 
predicted, the expression of ZO-1 and occludin was considerably 
lower in the DSS group than in the control group (p < 0.05). However, 
preventing BBR-EVO significantly reduced the reduction in ZO-1 and 
occludin expression caused by DSS (p < 0.05).

FIGURE 6

Effects of the main active components of Yulian decoction on the expression of antioxidant proteins nuclear factor erythroid 2-related factor 2 (Nrf2) 
and NAD(P)H quinone dehydrogenase 1 (NQO1) in the colon tissues of DSS-induced colitis mice, as determined by immunohistochemistry method. 
Scale bar  =  50  μm.

FIGURE 4

Levels of pro-inflammatory cytokines in mouse colon tissues as determined by enzyme-linked immunosorbent assay (ELISA), n  =  5. (A) Interleukin-6 
(IL-6). (B) Tumor necrosis factor alpha (TNF-α). (C) Interleukin-1 beta (IL-1β). Data are presented by mean  ±  SD; *p  <  0.05, **p  <  0.01,***p  <  0.001, 
****p  <  0.0001, compared to CON group; #p  <  0.05, ##p  <  0.01, ###p  <  0.001, ####p  <  0.0001, compared to DSS group.

FIGURE 5

Effects of the active components of Yulian decoction on oxidant and antioxidant indices in liver homogenates of colitis mice, n  =  5. (A) MDA. (B) SOD. 
(C) T-AOC. Data are presented by mean  ±  SD; *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.0001, compared to CON group; #p  <  0.05, ##p  <  0.01, 
###p  <  0.001, ####p  <  0.0001, compared to DSS group.
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Effects of BBR-EVO on the intestinal flora 
abundance of DSS-induced colitis in mice

We examined the gut microbiome structure to verify the impact 
of BBR-EVO on it. To confirm the effect of BBR-EVO on the intestinal 
microbiome, we  analyzed the composition of the intestinal 
microbiome. α-diversity analysis showed that the Shannon and 
Simpson indices of mice were significantly decreased under DSS 

influence. However, BBR-EVO intervention significantly increased the 
Simpson index related to community richness and increased the 
diversity of microbial colonies to some extent. Whereas the 
community diversity determined by the Chao1 and Pielou_e indices 
did not change significantly (Figures 8A–D). The results of the Venn 
diagram showed that the numbers of different ASVs/OTUs between 
the BBR-EVO group and the CON group were both higher than those 
of the DSS group (Figure  8E). We  used PCoA analysis, NMDS 
analysis, and sample hierarchical clustering analysis to measure 

FIGURE 7

Effects of the active components of Yulian decoction on tight junction function in the colon tissues of colitis mice. (A,B) Protein expression of ZO-1 
and occludin in colon tissues. (C,D) Immunohistochemical analysis results of ZO-1 and occludin. Scale bar  =  50  μm. Data are presented by mean  ±  SD; 
*p  <  0.05, **p  <  0.01,***p  <  0.001, ****p  <  0.0001, compared to CON group; #p  <  0.05, ##p  <  0.01, ###p  <  0.001, ####p  <  0.0001, compared to DSS group.
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FIGURE 8

BBR-EVO regulates the abundance and composition of intestinal microbiota of DSS-induced colitis in mice, n = 5. (A–D) Indexes of Chao1, Shannon, 
Simpson and Pielou_e. (E) Venn diagram. (F) Hierarchical clustering analysis based on unweighted_unifrac distance matrices. (G) PCoA plot based on 
jaccard distance matrices. (H) NMDS analysis based on weighted_unifrac distance matrices. Data are presented by mean ± SD; *p  < 0.05, 
**p < 0.01,***p < 0.001, ****p < 0.0001, compared to CON group; #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001, compared to DSS group.

β-diversity. The results showed that BBR-EVO was significantly 
distinct from the DSS group (Figures  8F–H). This indicates that 
BBR-EVO supplementation can significantly regulate the DSS-induced 
changes in the composition of the intestinal microbial structure.

The differences in gut microbiota composition across groups were 
further analyzed at the phylum and genus levels (Figure 9). After DSS 
treatment, mice exhibited a substantial increase in the relative 
abundance of Proteobacteria (p < 0.05), while the abundance of 
Firmicutes and Bacteroidetes decreased, and the ratio of Firmicutes to 
Bacteroidetes (F/B) increased slightly (p > 0.05) (Figures  9A–D; 
Table 1). The genus-level composition of the top 20 abundant taxa is 
depicted in Figure 9E. According to genera composition and LEfSe 
analysis, finding revealed considerable variations and development in 
the gut microbiome via BBR-EVO administration (Figures  9F,G). 
Compared to the CON group, the abundance of Psychrobacter and 
Corynebacterium, two important bacterial genera, was markedly 
higher in the DSS group, whereas the abundance of Lactobacillus was 
reduced. Following BBR-EVO administration, the abundance of 
Psychrobacter (p < 0.01) and Corynebacterium (p < 0.05) were 
significantly decreased, and the abundance of Lactobacillus was 
improved, although not significantly (p > 0.05). In addition, after DSS 

induction, the richness of Adlercreutzia decreased (p < 0.05) and that 
of Jeotgalicoccus increased (p < 0.05), which were slightly reversed by 
BBR-EVO (Figure  9G). In summary, whilst BBR-EVO does not 
re-establish normobiosis within the gastrointestinal microbiome 
subsequent to DSS perturbation, the data indicate that it may confer 
modulatory effects on the compositional variability and biodiversity 
of the gut microbiota. These alterations may contribute to an 
amelioration of the DSS-induced dysbiosis, suggesting a potential 
therapeutic role for BBR-EVO in the management of microbiota-
mediated gastrointestinal pathologies.

BBR-EVO alleviated liver damage in mice 
with DSS-induced colitis

This experiment evaluated the attenuating effect of BBR-EVO 
on colitis-related liver injury. H&E staining and electron microscopy 
revealed that DSS-induced liver histological damage was 
characterized by immune cell infiltration, even local hemorrhage, a 
reduction in mitochondrial count, cellular edema, and 
mitochondrial vacuolization (Figure  10A). Post-treatment 
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assessment with BBR, EVO and BBR-EVO revealed a diminution in 
both liver structural and ultrastructural damage in mice. 
Furthermore, ELISA analyses demonstrated that, relative to the 
CON group, hepatic concentrations of pro-inflammatory 
cytokines—IL-6, TNF-α, and IL-1β—were significantly elevated in 

the DSS group. Contrastingly, these inflammatory markers were 
substantially reduced in the liver tissues of the mice subjected to the 
therapeutic interventions (Figure 10B). This suggests that BBR-EVO 
might exert hepatoprotective effects in the context of 
DSS-induced colitis.

FIGURE 9

BBR-EVO changes the composition of intestinal microbiota in different taxa levels, n  =  5. (A–D) Relative abundance of gut microbiota in Phylum level, 
Firmicutes abundances, Proteobacteria abundances and Bacteroidetes abundances. (E) Relative abundance of gut microbiota in genus level. (F) LEfSe 
analysis. (G) Relative abundance of specific genera. Data are presented by mean  ±  SD; *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.0001, compared to 
CON group; #p  <  0.05, ##p  <  0.01, ###p  <  0.001, ####p  <  0.0001, compared to DSS group.
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BBR-EVO reduced DSS-treated mice from 
liver oxidative stress

When compared to colitis mice, liver T-AOC and SOD levels were 
considerably higher following BBR, EVO, and BBR-EVO intervention, 
while liver MDA levels were significantly lower (Figure  11A). 
Similarly, as compared to the DSS group, the frozen section data 
indicated a drop in ROS levels in the liver, indicating a reduction in 
oxidative stress (Figure 11B). Furthermore, liver IHC staining revealed 
that colitis caused oxidative stress in the liver, which BBR-EVO may 
significantly relieve by stimulating the expression of the Nrf2/NQO1 
protein (Figure 11C).

Discussion

In our study, we explored the therapeutic potential of BBR-EVO, 
a principal component derived from the traditional Yulian decoction, 
on a model of colitis elicited by DSS administration. Our findings 
indicate that BBR-EVO not only attenuates the damage to the colon 
induced by DSS but also promotes the recovery of intestinal barrier 
functions and reduces permeability issues. The compound 
demonstrated a capacity to suppress inflammatory responses in the 
colon and to effect positive changes in the gut microbiota, which in 
turn contributed to a decrease in associated liver damage and oxidative 
stress. This interaction appears to be mediated by the gut-liver axis. 
Our research methodology was informed by a pioneering concept 
known as “Preparations Quality Markers” (p-Marker) (Du et al., 2021; 
Li T. et al., 2021; Ran et al., 2022), which was developed by our team. 

This innovative approach provides a systematic framework for the 
identification and quantification of bioactive substances within 
complex herbal formulations. By applying this strategy, we were able 
to establish an effective ratio of BBR to EVO, ensuring the therapeutic 
efficacy of BBR-EVO in our colitis model.

Intestinal health is frequently linked to a wide range of disorders, 
including cardiovascular disease, gastrointestinal disease, and even 
cancer. Interestingly, intestinal inflammation can cause an imbalance 
in the body’s immune, resulting in increased inflammation in other 
organs such as the liver, breast, and brain (Hu et al., 2023; Zhao et al., 
2023; Zou et al., 2023). In recent years, intestinal flora has been 
considered as a key factor in ulcerative colitis. According to the 
α-diversity and β-diversity index, DSS reduced the diversity and 
richness of intestinal flora in fecal samples (Agus et  al., 2018). 
Consistent with previous studies, the relative abundance of gut 
microbiota was shown at the phylum level. The DSS group in this 
study also showed ecological imbalance of gut microbiota, including 
a significant decrease in the abundance of Bacteroides and Firmicutes, 
a slight increase in the ratio of Firmicutes/Bacteroides (F/B), and an 
increase in the abundance of Proteobacteria (Shin et  al., 2015), 
accompanied by the loss of microbial diversity. Our study showed 
that BBR-EVO could reverse the F/B ratio in DSS-treated mice and 
decreasing the abundance of Proteobacteria. An increase in the F/B 
ratio is considered a sign of intestinal flora disturbance (Hou et al., 
2022). Proteobacteria is thought to be  the primary pathogenic 
bacterium, which is capable of producing endotoxins (Vester-
Andersen et  al., 2019; Wang et  al., 2020; Zhu et  al., 2020). The 
inflammatory reaction to DSS might be connected to the rise in 
Proteobacteria abundance (Wang et al., 2020). Psychrobacter was 

FIGURE 10

Effects of the active components of Yulian decoction on liver damage in colitis mice. (A) H&E staining (50  μm) and electron microscopy (2  μm). Black 
arrows indicate bleeding; Yellow arrows indicate inflammatory infiltrate; Yellow triangles show that mitochondria are swollen and vacuolated. (B) IL-6, 
TNF-α, IL-1β levels, n  =  5. Data are presented by mean  ±  SD; *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.0001, compared to CON group; #p  <  0.05, 
##p  <  0.01, ###p  <  0.001, ####p  <  0.0001, compared to DSS group.
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prominent in the digestive tracts of DSS-treated mice and belonged 
to the Proteobacteria genus. Although limited is known about the 
clinical significance of Psychrobacter, several Psychrobacter species 
have been known to cause conjunctivitis, peritonitis, endocarditis, 
infant meningitis, arthritis, surgical wound infection, and 
bacteremia, mainly in immunocompromised patients (García-López 
et al., 2014), such as the gut of immunodeficiency virus infection 
(Qing et al., 2019). We found a significant change in the abundance 

of Corynebacterium in the gut microbiota. Corynebacterium is 
considered to be  one of the microorganisms associated with 
bacteremia (Yamamuro et  al., 2021). Another study found that 
cadmium exposure induced Corynebacterium to move from the 
intestines to the blood (Liu et al., 2023). Jeotgalicoccus is a member 
of the Staphylococcaceae family known to be associated with colitis 
(Li H. et al., 2021), which was further confirmed by this study. In 
addition, Staphylococcus aureus, which frequently leads to 

FIGURE 11

Effects of the active components of Yulian decoction on liver oxidative damage in colitis mice, n  =  5. (A) MDA, SOD and T-AOC levels. (B) Fluorescence 
of ROS (400×). (C) Immunohistochemical analysis results of Nrf2, NQO1. Scale bar  =  50  μm. Data are presented by mean  ±  SD; *p  <  0.05, **p  <  0.01, 
***p  <  0.001, ****p  <  0.0001, compared to CON group; #p  <  0.05, ##p  <  0.01, ###p  <  0.001, ####p  <  0.0001, compared to DSS group.
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inflammation, is especially prevalent in people with digestive system 
problems (Ikeuchi et al., 2006). In addition, BBR-EVO pretreatment 
reduced the levels of IL-1β, IL-6 and TNF-α in colon tissue. 
Adlercreutzia has been shown to be  a probiotic or positively 
associated with human/animal health (Galipeau et al., 2021). After 
DSS treatment, the abundance of Adlercreutzia in the intestine 
decreased significantly (Galipeau et al., 2021; Song et al., 2023). In 
this study, BBR-EVO could reverse the disturbance of DSS on 
intestinal flora, significantly reduce the richness of Psychrobacter and 
Corynebacterium, and slightly adjust the richness of Jeotgalicoccus 
and Adlercreutzia, and confirm that the possible mechanism may 
be related to the improvement of intestinal function by balancing the 
micro-environment of the gut microbiota.

IBD is a gastrointestinal dysfunction caused by an immune 
response. Furthermore, intestinal barrier failure of the context of 
disease in the organism, accompanied by the aggravation of 
inflammation, can cause disturbed immune homeostasis in gut and 
allow harmful exogenous compounds to enter the body and induce 
liver damage (Cash et al., 2006; Hu et al., 2020; Pabst et al., 2023; 
Wang et  al., 2023; Yang et  al., 2023). It has been reported that 
alkaloids have unique advantages in the treatment of ulcerative 
colitis due to their multiple targets and high safety (Zhang et al., 
2018; Li Q. et al., 2021; Li et al., 2022). This study showed disordered 
colon tissue with intestinal villus destruction and intercellular tight 
junction destruction in DSS group mice. The expression levels of 
Occludin and ZO-1 protein in colon tissue of DSS group mice were 
significantly decreased, indicating that the tight junction of 
intestinal mucosal barrier was destroyed after the establishment of 
ulcerative colitis model, which was consistent with previous 
research results (Cui et al., 2021). After BBR-EVO intervention, the 
intestinal tissue structure damage, inflammation and intestinal 
oxidative stress in mice were alleviated, which was speculated to 
be related to the repair of intestinal barrier by BBR-EVO. According 
to our hypothesis, the disruption of intestinal flora, particularly the 
growth of Proteobacteria, has been proven to be one of the origins 
of endotoxin (Wang et al., 2020). Flora metabolites or certain flora 
metabolites reach the liver via the intestinal barrier and cause liver 
injury (Fang et al., 2018). By measuring the inflammatory indexes 
of the liver, we proved that the liver tissue of DSS model mice had 
inflammatory cell infiltration, increased inflammatory factors, and 
destroyed liver tissue structure. In addition, in the preventive 
intervention of BBR-EVO, the degree of liver damage in mice was 
reduced. Our study also demonstrated that BBR-EVO might protect 
the liver in DSS-induced colitis by activating the Nrf2-ARE-NQO1 
pathway and improving mitochondrial function. These findings 
align with previous research on Nrf2’s role in liver protection (Liu 
et  al., 2024). Increased Nrf2 and NQO1 expression following 
BBR-EVO treatment is consistent with berberine’s known ability to 
activate Nrf2 signaling (Li et al., 2023), ultimately increasing the 
activity of antioxidant enzymes. BBR-EVO also mitigated 
mitochondrial damage, significant given the role of mitochondrial 
dysfunction in liver diseases (Qin et al., 2019; Yang et al., 2024). The 
interplay between Nrf2 activation, antioxidant capacity, and 
mitochondrial function creates a protective against liver 
inflammation and oxidative damage.

Although our study confirmed that BBR-EVO has a protective 
effect on ulcerative colitis mice by regulating the gut-liver axis 
related to gut microbiota to reduce oxidative stress and 
inflammatory response in the liver and intestine, there are still some 

limitations in this study. The relationship between gut bacteria, gut 
and liver is complex and dynamic. Whether the increase and 
decrease of related microbiota are related to the degree of liver 
injury has not been directly proved by more experiments. Therefore, 
we need to continue to study in vitro and in vivo experiments in the 
next step.
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