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Tuta absoluta, known as the South American tomato leaf miner, significantly 
impacts tomato plants (Solanum lycopersicum) economically on a global scale. 
This pest, belonging to the Gelechiidae family, is native to South America and 
was first identified in Peru in 1917. Since its discovery, T. absoluta has rapidly 
spread to Europe, Africa, and Asia, severely threatening tomato production in 
these regions. The widespread application of chemical pesticides against this 
pest has resulted in significant environmental harm, including contamination 
of soil and water, and has had negative effects on non-target species such 
as beneficial insects, birds, and aquatic life. Although substantial research has 
been conducted, biological control methods for T. absoluta remain insufficient, 
necessitating further study. This review covers the Biology, Classification, and 
Entomopathogen-Based Management of T. absoluta (Meyrick) in Asia. It provides 
essential insights into the pest’s life cycle, ecological impacts, and the potential 
of entomopathogens as biocontrol agents. The detailed information presented 
aims to facilitate the development of sustainable pest control strategies, 
minimizing environmental impact and promoting the use of entomopathogens 
as viable alternatives to chemical pesticides in controlling T. absoluta insect pest.
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1 Introduction

Invasive insect pests pose significant threats to global agricultural food production, 
exacerbated by factors such as climate change and the international trade of agricultural 
commodities (Skendžić et  al., 2021). Tuta absoluta (Meyrick, 1917) (Lepidoptera: 
Gelechiidae) exemplifies this challenge as a devastating pest of tomato (S. lycopersicum) and 
other solanaceous crops. The economic impact of T. absoluta is profound, with substantial 
global expenditures incurred for its control and the mitigation of crop losses 
(Vivekanandhan et  al., 2024a,b,c). For instance, Turkey spends approximately $183.7 
million USD annually on T. absoluta control (Oztemiz, 2014), while Nepal reported crop 
losses totaling $19.7 million in the initial year of the invasion (Bajracharya et al., 2016). 
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These losses have significant socio-economic repercussions, 
including a substantial 32% surge in tomato prices (Vivekanandhan 
et al., 2024a,b,c).

The global spread of T. absoluta has been rapid and extensive, 
impacting tomato production across continents (Fiaboe et  al., 
2021; Ndiaye et al., 2021; Vivekanandhan et al., 2024a,b,c). Initially 
detected in Spain in 2006 (Campos et al., 2017), T. absoluta has 
since spread to Africa, Eurasia, and Western Africa following its 
introduction to Niger in 2012 (Biondi et al., 2018). In Asia, the pest 
was first identified in Turkey in 2009 (Kılıç, 2010) and subsequently 
reported in Taiwan (2020), Bangladesh, Nepal (2016), Myanmar 
(2017), and regions of China (2017–2018) (Ramasamy, 2020; Yule 
et al., 2021; Zhang et al., 2021). The movement of tomato seedlings 
and fruits through international trade routes has facilitated its 
dispersal in Asia (Guimapi et al., 2020). To effectively manage the 
spread of T. absoluta and mitigate its impact on non-infested 
regions in Asia such as Bhutan, and North Korea stringent 
quarantine measures and phytosanitary protocols are imperative. 
Understanding the pest’s biology, climatic preferences, and 
pathways of human-mediated dispersal are crucial for assessing 
invasion risks and developing sustainable management strategies 
(Banks et al., 2015).

Research focused on the biology, ecological impact, spread 
dynamics, and control tactics against T. absoluta in Asia is essential 
for mitigating the persistent threat posed by this invasive species. 
Non-infested countries must prioritize proactive measures to 
prevent the introduction of T. absoluta and safeguard their 
agricultural industries from potential disruptions and economic 
losses. By leveraging scientific knowledge and fostering 
international cooperation, we  can effectively reduce the risk of 
T. absoluta invasion while promoting sustainable agricultural 
practices globally.

2 Scientific classifications

Tuta absoluta, commonly known as the tomato leafminer, is 
classified within the domain Eukaryota and kingdom Animalia. It 
belongs to the phylum Arthropoda and class Insecta. This species is 
part of the order Lepidoptera and family Gelechiidae (Table 1). Within 
this family, it is placed in the genus Tuta, with its species designation 

being T. absoluta. This moth is a significant agricultural pest, 
particularly affecting Solanaceae crops.

2.1 Tuta absoluta biology

Tuta absoluta, a holometabolous insect, has a complex life cycle 
encompassing four distinct stages: egg, larva, pupa, and adult 
(Figure  1). Each stage exhibits unique morphological and 
behavioral characteristics. Understanding these stages in detail is 
essential for developing effective and targeted pest management 
strategies, thereby mitigating the significant economic impact on 
tomato production.

2.1.1 Egg stage
Adult female T. absoluta deposit yellow, elliptical eggs 

(0.33 × 0.22 mm) on the upper surfaces of their host plants, such as 
sepals, young leaves, or stems (Figure  1). Each female can lay 
approximately 260 eggs during her lifetime (Uchoa-Fernandes et al., 
1995). Under favorable conditions, the eggs hatch within 4–6 days in 
tomato plants.

2.1.2 Larval stage
The larvae of T. absoluta are highly destructive, causing significant 

damage to plant foliage by mining through the mesophyll layer of 
leaves and later penetrating auxiliary buds and fruits, resulting in yield 
losses (Cocco et al., 2015). The larval stage consists of four instars, 
with body lengths progressively increasing from 2.8 mm to 7.7 mm 
(Colmenárez et al., 2022). Larvae change color from white in the early 
instars to light green in later stages. Under favorable conditions, the 
larval stage lasts 10–13 days in tomato plants.

2.1.3 Pupal stage
After completing their larval development, mature T. absoluta 

larvae typically drop to the soil to pupate, although pupation can also 
occur on plant leaves. The pupae are initially green but gradually turn 
dark brown (Figure 1). Mature pupae measure approximately 4.35 mm 
in length and 1.1 mm in width (Colmenárez et  al., 2022). Under 
favorable conditions, the pupal stage lasts 8–10 days in tomato plants.

2.1.4 Adult stage
According to Colmenárez et al. (2022), adult T. absoluta moths 

are approximately 6 mm long, with dark gray coloration and brown 
and off-white scales. Nocturnal by nature, they hide among leaves 
during the day (EPPO, 2005). The duration of each life stage varies 
with environmental conditions (Figure 1). Erdogan and Babaroglu 
(2014) reported that at 25°C and 65% relative humidity, the egg, 
larval, and pupal stages last about 4.1, 11.0, and 9.5 days, respectively, 
resulting in an egg-to-adult lifespan of approximately 30.2 days. 
Under favorable conditions, the adult stage lasts 20–25 days in 
tomato plants.

2.2 Life cycle and reproduction

The complete life cycle of T. absoluta typically spans between 29 to 
38 days, with variability influenced significantly by environmental 
conditions such as temperature and humidity (EPPO, 2005). Adult 

TABLE 1 The scientific classification of T. absoluta, commonly known as 
the tomato leafminer.

Tuta absoluta scientific classification

Domain Eukaryote

Kingdom Animalia

Phylum Arthropoda

Class Insecta

Order Lepidoptera

Family Gelechiidae

Genus Tuta

Species T. absoluta

Binomial name Tuta absoluta
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males and females of T. absoluta have relatively short lifespans, with 
males surviving approximately 15.8 days and females about 18.2 days on 
average. The oviposition period lasts around 7.9 days, during which 
females can lay up to 141 eggs each (Erdogan and Babaroglu, 2014; 
Vivekanandhan et al., 2024a,b,c). However, EPPO (2005) suggests a 
higher fecundity rate, reporting that females may lay up to 260 eggs over 
their lifetime. The combination of high reproductive capacity and short 
generation time enables T. absoluta to undergo rapid population growth 
and inflict severe damage on tomato and other solanaceous crops. This 
pest’s ability to complete multiple generations in a single growing season 
further exacerbates its impact on agricultural productivity.

2.2.1 Effect of hot climatic conditions on Tuta 
absoluta development

Temperature profoundly influences the growth, development, and 
behavior of T. absoluta, a significant insect pest impacting tomato and 
solanaceous crops. Studies have extensively examined how 
temperature affects various stages of its life cycle, revealing the species’ 
remarkable adaptability to thermal conditions (Van Damme et al., 
2015). Cuthbertson et al. (2013) identified the optimal temperature 
range for T. absoluta development as 19–23°C, with egg hatching rates 
peaking at 13°C and adult emergence rates at 19°C. Temperatures 
below 10°C were found to result in developmental failure, highlighting 
the pest’s sensitivity to cold conditions. Conversely, Martins et  al. 
(2016) reported an optimal temperature of 30°C for T. absoluta 

development, with lower and upper thresholds of 14°C and 34.6°C, 
respectively, indicating considerable variability in thermal preferences.

Tuta absoluta’s ability to undergo multiple generations per year 
without diapause further underscores its adaptability (EPPO, 2005; 
Biondi et  al., 2018). Overwintering studies in Western Europe, 
particularly in greenhouses, reveal its persistence during colder months. 
Research on cold resistance shows larvae, pupae, and adults can 
withstand temperatures as low as −18.2°C, −16.7°C, and − 17.8°C, 
respectively (Van Damme et al., 2015). Moreover, LT50 values at 0°C 
indicate varying cold tolerance among life stages, with adults exhibiting 
higher resistance compared to larvae and pupae.

Unlike many insects, T. absoluta does not enter reproductive 
diapause in response to seasonal changes in temperature and day 
length, enhancing its ability to thrive in temperate climates (Van 
Damme et al., 2015). These adaptive traits contribute to its widespread 
distribution and ability to inflict substantial economic losses year-
round. Understanding the thermal biology and adaptive mechanisms 
of T. absoluta is crucial for devising effective integrated pest 
management strategies tailored to mitigate its impact on tomatoes and 
other host crops across diverse environmental conditions.

2.2.2 Effect of humidity on Tuta absoluta 
development

Humidity plays a crucial role in the development and population 
dynamics of T. absoluta, the tomato leafminer (Kachave et al., 2020; 

FIGURE 1

Life cycle of T. absoluta (Meyrick) (Lepidoptera; Gelechiidae).
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Vivekanandhan et al., 2024a,b,c). This pest thrives in environments 
with moderate to high humidity levels, which are conducive to its 
reproductive success and overall lifecycle (Buragohain et al., 2021). 
High humidity enhances the survival and growth rates of T. absoluta 
eggs and larvae, facilitating faster development through its various life 
stages (Kachave et  al., 2020; Vivekanandhan et  al., 2024a,b,c). 
However, excessively high humidity levels can also favor the 
proliferation of fungal pathogens that affect T. absoluta populations. 
Conversely, low humidity conditions can impede egg hatching and 
larval development, thereby potentially reducing pest pressure 
on crops.

2.2.3 Host plants of Tuta absoluta
Tuta absoluta is a polyphagous pest with a broad host range 

primarily within the Solanaceae family. It significantly impacts 
economically important crops such as tomato, potato, brinjal, sweet 
pepper, and tobacco (Mohamed et  al., 2015; Abbes et  al., 2016; 
Vivekanandhan et  al., 2024a,b,c). Abbes et  al. (2016) identified 
Solanum nigrum (European black nightshade) as particularly 
susceptible to T. absoluta infestations. Furthermore, this pest has been 
documented to harm plants from diverse families including 
Malvaceae, Amaranthaceae, Fabaceae, and Convolvulaceae, indicating 
its polyphagous behavior and adaptability to various agricultural and 
weed species (Bawin et al., 2016).

Tuta absoluta is recognized as a highly destructive pest that 
imposes significant economic losses in tomato farming (Figures 2A–F). 
In both greenhouse and open field environments, unchecked 
infestations of T. absoluta can result in yield reductions ranging from 
80 to 100% (Figures 2A–F). The pest typically establishes colonies on 
tomato plants shortly after transplanting and reaches peak infestation 
levels during flowering and fruiting stages (Figures 2A–F). Diatte et al. 
(2018) documented the highest rates of T. absoluta infestation during 
the early fruiting stage, followed by early flowering, vegetative growth, 
and harvesting stages.

Research in Nepal by Bajracharya et al. (2018) highlighted varying 
degrees of damage caused by T. absoluta across different tomato varieties. 
The Karita variety suffered extensive damage ranging from 76 to 100%, 
while the Samjhana and Srijana varieties exhibited damage levels between 
51 and 75%. This variability underscores the importance of understanding 
host susceptibility and emphasizes the need for selecting resistant or 
tolerant tomato cultivars as part of integrated pest management strategies. 
The infestation patterns and damage severity associated with T. absoluta 
underscore its impact on global tomato production.

3 Invasion in Asian countries

The invasion of T. absoluta in Asian countries has profoundly 
affected agriculture and economies since its initial appearance. The 
pest was first detected in Turkey in 2009 and has subsequently spread 
across a wide swath of Asia, including Iran, Kazakhstan, Afghanistan, 
Lebanon, Bangladesh, Myanmar, Bahrain, Pakistan, Iraq, 
Turkmenistan, China, Kuwait, India, Nepal, Israel, Jordan, Kyrgyzstan, 
Qatar, Saudi  Arabia, Syria, Tajikistan, United  Arab  Emirates, 
Uzbekistan, and Yemen (Guimapi et al., 2020; EPPO, 2023) (Figure 3).

In India, T. absoluta was first reported in 2014 in Maharashtra 
and has since spread to key tomato-growing regions like Karnataka, 
Tamil Nadu, Gujarat (Ballal et  al., 2016), Andhra Pradesh, 

Telangana (Kumari et al., 2014), New Delhi (Shashank et al., 2016), 
Madhya Pradesh (Swathi et al., 2017), Punjab (Sidhu et al., 2017), 
Meghalaya (Sankarganesh et al., 2017), Himachal Pradesh (Sharma 
and Gavkare, 2017), and Uttarakhand (Singh and Panchbhaiya, 
2018). The exact entry route into India remains uncertain, likely 
facilitated by unrestricted agricultural trade between states and 
prevailing wind patterns (Shashank et  al., 2016). In May 2016, 
Bangladesh recorded its first instance of T. absoluta in tomato fields 
in Panchagarh district, swiftly spreading to neighboring districts 
(Hossain et al., 2016).

China documented infestations in the Ili Kizakg and Ili Xinjiang 
regions, causing significant damage to tomato, potato, and eggplant 
crops (Zhang et al., 2020). Taiwan faced invasion by T. absoluta in June 
2020 (Ramasamy, 2020), while Myanmar reported varying infestation 
levels from 10 to 82% (Yule et al., 2021). Southeast Asian and Pacific 
nations like Indonesia, Korea, Japan, and Australia have not officially 
reported T. absoluta invasion but remain susceptible due to extensive 
trade in tomatoes and related crops with affected regions (McNitt 
et al., 2019; El-Shafie, 2020; Zhang et al., 2021).

4 Tuta absoluta management

Management strategies for T. absoluta utilizing entomopathogens 
offer a broad array of effective options, encompassing various 
biological agents such as entomopathogenic fungi (e.g., Beauveria 
spp., Metarhizium spp.), bacteria (e.g., Bacillus thuringiensis), viruses 
(e.g., nucleopolyhedroviruses), and nematodes (e.g., Steinernema 
spp.). These agents exhibit efficacy against multiple life stages of the 
T. absoluta insect pest, including eggs, larvae, pupae, and adults (see 
Table 2). Their application with entomopathogens based management 
programs provides sustainable alternatives to chemical pesticides, 
contributing to environmentally friendly and economically viable pest 
control strategies.

4.1 Entomopathogenic fungi and bacteria

Entomopathogenic fungi (EPF) are heterotrophic, eukaryotic 
filamentous microorganisms that reproduce conidia either sexually or 
asexually (Mora et al., 2017; Vivekanandhan et al., 2021, 2024a,b). The 
majority of EPF, including Beauveria bassiana, Metarhizium anisopliae, 
Metarhizium acridum, Metarhizium brunneum, Isaria fumosorosea, 
Hirsutella thompsonii, and Lecanicillium lecanii, are classified as 
Ascomycetes and highly virulent to a broad range of medical and 
agricultural insect pests (Dara, 2017; Vivekanandhan et al., 2022a,b, 
2023, 2024a,b,c; Swathy et  al., 2023, 2024; Krutmuang et  al., 2024; 
Perumal et  al., 2024a,b). The fungi are pathogenic to various insect 
genera, causing muscardine disease in a wide range of hosts with 
minimal environmental impact and insect resistance (El-Hindi, 2016; 
Krutmuang et al., 2023; Perumal et al., 2023a,b). Although the efficacy 
of these entomopathogenic fungi depends on environmental conditions, 
B. bassiana and M. anisopliae are the most extensively researched and 
commercialized fungal species (Vivekanandhan et al., 2020; Kannan 
et al., 2023; Vivekanandhan et al., 2024a,b,c). These EPF demonstrated 
high larval mortality against several agriculturally important insect pests.

Studies on the effectiveness of B. bassiana and B. thuringiensis 
against T. absoluta have demonstrated varying levels of vulnerability 
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across larval stages. González-Cabrera et al. (2011) and Alsaedi et al. 
(2017) found that first instar larvae were the most susceptible to 
B. thuringiensis, aiding in keeping T. absoluta populations below 
economic thresholds. In contrast, research indicated that third instar 
larvae were particularly vulnerable to both B. bassiana and 
B. thuringiensis.

Additionally, Biondi et  al. (2018) reported that Wolbachia 
bacterial infection might benefit T. absoluta by affecting its 
reproduction. Spinosad, derived from Saccharopolyspora spinosa, has 
also been effective in controlling T. absoluta (Baniameri and 
Cheraghian, 2012; Caparros Megido et al., 2012). Studies by El-Ghany 
et al. (2016) and Aynalem et al. (2022) highlighted the significant 
pathogenicity of entomopathogenic fungi and bacteria, such as 
B. bassiana, M. anisopliae, and B. thuringiensis, against T. absoluta in 
field conditions.

B. bassiana has demonstrated potential as an epiphytic, endophytic, 
and insecticidal agent in greenhouse environments (Klieber and 
Reineke, 2016). It can colonize tomato plants endophytically, providing 
effective control against the tomato leaf miner (Allegrucci et al., 2017). 

Ibranhim et al. (2017) suggested that M. anisopliae and B. bassiana 
conidia are promising for short-term T. absoluta control. Further studies 
by Tadele and Emana (2017) and Ayele et al. (2020) confirmed the high 
insecticidal activity of these fungi in Ethiopian laboratories 
and glasshouses.

Entomopathogenic bacteria, such as B. thuringiensis, can 
induce diseases in various insect pests. B. thuringiensis (Bt) is a 
Gram-positive, spore-forming bacterium that produces 
δ-endotoxin, hemotoxin, and vegetative proteins. Since the 1950s, 
Bt has been used as a natural insecticide to control specific insect 
pests. The toxic genes on the Bt plasmid, which encode crystal 
proteins, are vital for developing pest-resistant genetically 
modified plants. This makes Bt a significant biopesticide 
worldwide, with targeted insecticidal activity that minimizes harm 
to non-target organisms. Researchers have classified numerous 
crystal protein-coding genes in Bt, grouped based on their 
sequences. Different Cry genes produce toxins targeting specific 
insect groups, including lepidopterans, coleopterans, nematodes, 
and dipterans. Bt strains can carry multiple crystal toxin genes, 

FIGURE 2

Symptoms of T. absoluta infection in tomato plants. T. absoluta damage in tomato plants and their parts (A–F).
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suggesting a mechanism for gene transfer between strains, 
enhancing toxin diversity (Aynalem, 2022).

4.2 Entomopathogenic nematode

Entomopathogenic nematodes (EPNs) are cosmopolitan, 
non-segmented, cylindrical, and elongated organisms playing a 
crucial role in biological control (Hominick et  al., 1996). These 
nematodes are classified into 23 families, with seven families, 
including Mermithidae, Tetradonematidae, Allantonematidae, 
Phaenopsitylenchidae, Sphaerulariidae, Heterorhabditidae, and 
Steinernematidae, containing the most effective species for insect pest 
control (Lacey and Georgis, 2012). EPNs have shown high efficacy in 
controlling T. absoluta larvae, achieving 79–100% mortality under 
laboratory conditions (Batalla-Carrera et al., 2010). Leaflet bioassays 
revealed 77–92% larval nematode infection within the galleries, while 
pot experiments demonstrated an 87–95% reduction in T. absoluta 
infection (Batalla-Carrera et al., 2010).

Two nematode species, Heterorhabditis bacteriophora and 
Steinernema carpocapsae, caused 92–96% and 89–91% larval 
mortality under laboratory conditions, respectively. These species 
also achieved 48–51% control of T. absoluta in greenhouse 
conditions (Kamali et  al., 2018). Additionally, H. bacteriophora, 
S. carpocapsae, and Steinernema feltiae showed significant 
insecticidal activity, with 77–97.4% mortality on T. absoluta larvae 
(Van Damme et  al., 2016). EPNs utilize mutualistic intestinal 
bacteria to eliminate insect pests (Boemare, 2002; De Waal et al., 
2011; Van Damme et al., 2016).

Their use in pest management is widespread and effective 
across various taxa, including similar Lepidopterans like the false 

codling moth (Thaumatotibia leucotreta), codling moth (Cydia 
pomonella), and sugarcane borer (Eldana saccharina) (De Waal 
et  al., 2011; Malan et  al., 2011; Nthenga et  al., 2014). Recent 
research has confirmed that S. feltiae, S. carpocapsae, and 
H. bacteriophora are effective against all larval instars of 
T. absoluta (Kamali et  al., 2018). These findings indicate that 
EPNs have significant potential in managing T. absoluta and can 
be integrated into pest management strategies.

Entomopathogenic fungi, such as B. bassiana and M. anisopliae, 
are often preferred over entomopathogenic bacteria, viruses, and 
nematodes for controlling T. absoluta due to their broader host 
range and effective modes of action. These fungi can infect 
T. absoluta through direct contact or ingestion, providing effective 
control against both larvae and adults. They are environmentally 
safe, adaptable to various conditions, and less prone to resistance 
development compared to other entomopathogens (Aynalem, 
2022). Furthermore, fungi offer versatility in formulation and 
application methods, making them suitable for integrated pest 
management strategies. Entomopathogenic fungi present 
promising prospects for sustainable and effective 
T. absoluta management.

5 Mode of action of entomopathogenic 
fungi on Tuta absoluta

Entomopathogenic fungi are a group of fungi that specifically 
infect and kill insect pests. These fungi have evolved intricate 
strategies to invade, proliferate within, and ultimately cause the death 
of their insect hosts. The mode of action of entomopathogenic fungi 
involves several key steps:

FIGURE 3

Depicts the Asian continent highlighted in green, with a red dot indicating the location in Turkey where T. absoluta was first discovered in 2009. This 
location marks the initial entry point of T. absoluta into Asia (Adapted from Guimapi et al., 2020).

https://doi.org/10.3389/fmicb.2024.1429690
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


V
ivekan

an
d

h
an

 et al. 
10

.3
3

8
9

/fm
icb

.2
0

24
.14

2
9

6
9

0

Fro
n

tie
rs in

 M
icro

b
io

lo
g

y
0

7
fro

n
tie

rsin
.o

rg

TABLE 2 Entomopathogens against tomato insect pest T. absoluta.

S. no Entomopathogens Test concentration Effective within Host Reference

Entomopathogenic fungi

1 B. bassiana 150 μg/mL 24 h Larvae Vivekanandhan et al. (2024a,b,c)

2 V. lecanii 1 × 103 spore/ml 4 Days Eggs Abdel-Raheem (2020)

3 B. bassiana 1 × 103 spore/ml 4 days Eggs Abdel-Raheem (2020)

4 M. anisopliae 0.5 × 109 conidia/g

1 × 108 conidia.ml−1

5 days Adults pre-pupae Akutse et al. (2020)

5 B. bassiana 108 spores/ml 6 days Larvae Ndereyimana et al. (2019)

6 B. bassiana 108 spores/ml 6 days Larvae Ndereyimana et al. (2019)

7 M. anisopliae 108 spores/ml 5 days Larvae Ndereyimana et al. (2019)

8 M. anisopliae 5 × 108 3–6 days Pupae Erasmus et al. (2021)

9 M. anisopliae 1.615 × 107 3–6 days Pupae Erasmus et al. (2021)

10 B. bassiana 2.75 × 108 3–6 days Pupae Erasmus et al. (2021)

11 B. bassiana 5.48 × 105 3–6 days Pupae Erasmus et al. (2021)

12 Aspergillus oryzae 1.0 × 108 conidia mL−1 2–3 days Larvae, pupae and adult Zekeya et al. (2019)

13 Aspergillus oryzae 1.0 × 108 conidia mL−1 Larvae, pupae and adult Zekeya et al. (2019)

14 B. bassiana 1 × 108 conidia mL−1 6 days Larvae Silva et al. (2020)

15 B. bassiana 1 × 108 conidia mL−1 7 days Larvae Silva et al. (2020)

16 B. bassiana 1 × 108 conidia mL−1 8 days Larvae Silva et al. (2020)

17 B. bassiana 1 × 107 spores /ml 6 days Larvae Hammad et al. (2021)

18 B. bassiana 1 × 107 spores /ml 6 days Larvae Hammad et al. (2021)

19 B. bassiana 1 × 107 spores /ml 7 days Larvae Hammad et al. (2021)

20 P. lilacinum 1 × 107 spores /ml 6 days Larvae Hammad et al. (2021)

21 B. bassiana 2 × 108 conidia/ml 3 days Larvae Karaca et al. (2022)

22 I. fumosorosea 2 × 108 conidia/ml 7 days Larvae Karaca et al. (2022)

23 P. lilacinum 2 × 108 conidia/ml 7 days Larvae Karaca et al. (2022)

24 Metarhizium species 2 × 108 conidia/ml 7 days Larvae Karaca et al. (2022)

25 M. anisopliae 107 conidia/ml 8 days Larvae Alikhani et al. (2019)

26 B. bassiana 2.5 × 107 spores/ml 3 days Larvae El-Hindi (2016)

27 Beauveria bassiana 2.5 × 109 conidia/ml−1 5 days Larvae Tadele and Emana (2017)

28 M.

anisopliae

2.5 × 109 conidia/ml−1 5 days Larvae Tadele and Emana (2017)

(Continued)
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TABLE 2 (Continued)

S. no Entomopathogens Test concentration Effective within Host Reference

29 B. bassiana 1010 spores/ml 5 days Eggs and larvae Shalaby et al. (2013)

30 M. anisopliae 1010 spores/ml 5 days Eggs and larvae Shalaby et al. (2013)

31 B. bassiana (Sn182) 4 × 107 spores/ml 24 h Larvae Mohamed Mahmoud et al. (2021)

32 Clonostachys species 4 × 107 spores/ml 24 h Larvae Mohamed Mahmoud et al. (2021)

33 M. anisopliae 106 conidia/mL 72 h Eggs Pires et al. (2009)

34 M. anisopliae 5.5 × 109 conidia/mL 14 Days Larvae Bayram (2019)

35 B. bassiana 4× 109 conidia/ml 7 Days Larvae Bayram (2019)

Entomopathogenic bacteria

36 B. thuringiensis 10 × 28 spores/ml 1–2 days Larvae Giustolin et al. (2001)

37 B. thuringiensis 2 g/L−1 4 weeks Larvae González-Cabrera et al. (2011)

38 B. thuringiensis 2 g/L−1 4 weeks Larvae González-Cabrera et al. (2011)

39 B. thuringiensis 2 g/L−1 4 weeks Larvae González-Cabrera et al. (2011)

40 B. thuringiensis 1.84× 106 spores/ml 3 days

4 days

3 days

2 days

2 days

Neonate larvae

First instar

Second instar

Third instar

Forth instar

Giustolin et al. (2001)

41 B.

Thuringiensis

1010 spores/ml 4 days Larvae Shalaby et al. (2013)

42 B. thuringiensis 2 × 109 cfu/mL 3 days Larvae Eski et al. (2024)

43 Staphylococcus petrasii 1 × 109 cfu/mL 3 days Larvae Eski et al. (2024)

44 Citrobacter freundii 1 × 109 cfu/mL 3 days Larvae Eski et al. (2024)

45 Chishuiella changwenlii 1 × 109 cfu/mL 3 days Larvae Eski et al. (2024)

46 E. casseliflavus 1 × 109 cfu/mL 3 days Larvae Eski et al. (2024)

47 P. tremae 1 × 109 cfu/mL 3 days Larvae Eski et al. (2024)

Entomopathogenic nematodes

48 H. bacteriophora 50 IJs/50 μL 48 h Larvae El Aimani et al. (2021)

49 H. bacteriophora 50 IJs/50 μL 48 h Larvae El Aimani et al. (2021)

50 H. bacteriophora 50 IJs/50 μL 48 h Larvae El Aimani et al. (2021)

51 S. feltiae 200 IJs/ml−1 3 days Larvae Yüksel (2022)

52 H. bacteriophora 200 IJs/ml−1 2 days Larvae Yüksel (2022)

53 H. bacteriophora 200 IJs/ml−1 3 days Larvae Yüksel (2022)

(Continued)
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S. no Entomopathogens Test concentration Effective within Host Reference

54 S. feltiae 200 IJs/ml−1 3 days Larvae Yüksel (2022)

55 S. feltiae 200 IJs/ml−1 3 days Larvae Yüksel (2022)

56 S. feltiae 200 IJs/ml−1 3 days Larvae Yüksel (2022)

57 S. feltiae 200 IJs/ml−1 3 days Larvae Yüksel (2022)

58 S. feltiae 200 IJs/ml−1 2 days Larvae Yüksel (2022)

59 S. feltiae 200 IJs/ml−1 2 days Larvae Yüksel (2022)

60 S. feltiae 200 IJs/ml−1 2 days Larvae Yüksel (2022)

61 S. feltiae 200 IJs/ml−1 2 days Larvae Yüksel (2022)

62 Steinernema feltiae 50 IJs/50 μL 48 h Larvae El Aimani et al. (2021)

63 S. feltiae 50 IJs/50 μL 48 h Larvae El Aimani et al. (2021)

64 S. carpocapsae 50 IJs/cm2 15 days Larvae Gözel and Kasap (2015)

65 H.

bacteriophora

50 IJs/cm2 9 Days Larvae Gözel and Kasap (2015)

66 Steinernema affine 50 IJs/cm2 15 days Larvae Gözel and Kasap (2015)

67 Steinernema feltiae 50 IJs/cm2 3 Days Larvae Gözel and Kasap (2015)

Entomopathogenic virus

68 PhopGV 5.54 × 107 OBs/ml−1 13 days Larvae Mascarin et al. (2010)

69 Colombian granuloviruses 1 × 109 OBs/ml−1 14 days Larvae Gómez Valderrama et al. (2018)

70 Colombian granuloviruses 1 × 109 OBs/ml−1 8.6 days Larvae Gómez Valderrama et al. (2018)

TABLE 2 (Continued)
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5.1 Attachment and adhesion

Entomopathogenic fungi possess specialized spores called conidia, 
which are adapted to attach to the insect’s cuticle. These conidia feature 
structures such as hydrophobins or other adhesive proteins that facilitate 
binding to the insect’s exoskeleton (see Figure 4). This attachment is 
crucial for initiating the infection process and subsequent penetration 
into the insect’s body. The hydrophobic nature of these structures ensures 
that the spores adhere firmly to the insect’s surface, even under humid 
conditions, establishing the fungal infection effectively (Vidhate et al., 
2023). This initial adhesion is a critical step in the process through which 
entomopathogenic fungi infect their insect hosts.

5.2 Penetration

Once attached to the insect’s cuticle, the conidia of entomopathogenic 
fungi undergo germination, developing specialized structures essential 
for host penetration. One such structure is the appressorium, a highly 
specialized cell type that exerts mechanical force and enzymatic activity 
to breach the insect cuticle. Appressoria are pressure-sensitive cells that 
apply physical pressure to penetrate the insect cuticle. Additionally, they 
secrete enzymes, including chitinases and proteases, which degrade the 
cuticle’s components. Chitinases target chitin, a major component of the 
cuticle, while proteases break down cuticular proteins. This combined 
mechanical and enzymatic action allows the fungal hyphae to penetrate 

the insect’s body, overcoming the protective barrier of the cuticle and 
establishing infection within the host (Ma et al., 2024).

5.3 Colonization and proliferation

After penetrating the insect’s cuticle, the entomopathogenic fungus 
enters the hemocoel, the body cavity containing hemolymph. Inside 
the hemocoel, the fungus undergoes a transformative growth phase, 
developing filamentous hyphae. These hyphae extend and spread 
throughout the hemocoel, invading various tissues and organs of the 
insect host. As the hyphae proliferate, they disrupt normal physiological 
functions and cause extensive damage to internal structures. The 
fungal hyphae absorb nutrients from the insect’s tissues, depriving the 
host of essential resources necessary for survival. This invasive process 
highlights the pathogenic nature of entomopathogenic fungi and their 
ability to efficiently colonize and exploit their insect hosts. Ultimately, 
the fungal infection progresses, consuming vital host tissues and 
resources, leading to the death of the insect (Ma et al., 2024).

5.4 Nutrient utilization and host tissue 
degradation

Nutrient utilization and host tissue degradation by 
entomopathogenic fungi are critical phases in the infection process. 

FIGURE 4

Mode of action of entomopathogenic fungi on T. absoluta.
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Once inside the insect’s body, the invading fungal hyphae secrete 
various enzymes that facilitate tissue degradation and nutrient 
acquisition. Proteases and lipases play pivotal roles in this process. 
Proteases target proteins, cleaving them into smaller peptides and 
amino acids, which breaks down structural and functional proteins 
within the host’s body. Lipases hydrolyze lipids, accessing lipid 
reserves and membrane-bound lipids, which are essential components 
of cell membranes and storage tissues in insects (Quesada-Moraga 
et al., 2024).

This enzymatic activity leads to significant degradation of host 
tissues, disrupting normal physiological functions. Vital organs and 
structures, such as muscles and fat bodies, are progressively broken 
down by the fungal hyphae, releasing nutrients required for fungal 
growth and reproduction. This process exemplifies the parasitic nature 
of entomopathogenic fungi, as they sustain their growth and 
propagation by harnessing host-derived nutrients. The disruption of 
normal physiological functions due to tissue degradation contributes 
to the progression of the fungal infection and eventual mortality of the 
insect (Liu et al., 2023).

5.5 Immune evasion

Immune evasion is a critical adaptation employed by 
entomopathogenic fungi to overcome the insect’s immune defense and 
establish successful infections. These fungi have evolved sophisticated 
strategies, including the production of secondary metabolites, to 
evade or suppress the host’s immune response.

One key mechanism involves the secretion of secondary 
metabolites that have immunomodulatory effects. These 
metabolites can disrupt the recognition and activation of immune 
cells, such as haemocytes, which are the main cellular defense 
against pathogens. Some metabolites directly inhibit immune 
responses, such as phagocytosis (the engulfment of pathogens by 
immune cells) or the production of antimicrobial peptides. By 
impairing these immune mechanisms, the fungi can proliferate and 
spread within the insect’s body without encountering effective 
cellular defense (Ma et al., 2024).

Furthermore, entomopathogenic fungi may secrete compounds 
that disrupt signaling pathways involved in immune activation, 
dampening the insect’s ability to mount a robust immune response. 
This ability to evade or suppress the host’s immune defense is 
critical for the pathogenicity and successful colonization of the 
insect host. By manipulating the insect’s immune system through 
the production of specific secondary metabolites, these fungi can 
establish infections and exploit host resources for growth 
and reproduction.

5.6 Systemic effects and death

As entomopathogenic fungi establish and progress through 
infection within the insect host, they induce systemic effects that 
ultimately culminate in the death of the host organism. These effects 
arise from the relentless growth and metabolic activity of the fungal 
hyphae within the insect’s body (Mahanta et al., 2023).

The fungal hyphae proliferate and extensively colonize the insect’s 
tissues, actively consuming and depleting host nutrients, including 

proteins, carbohydrates, and lipids. This nutrient drain deprives the 
insect of essential resources necessary for sustaining life functions and 
physiological processes. The invasive growth of fungal hyphae disrupts 
the integrity and function of vital organs and tissues within the insect’s 
body, leading to organ failure and impairing critical physiological 
processes such as digestion, circulation, and metabolism (De Fine 
Licht et al., 2024).

Entomopathogenic fungi frequently disrupt the insect’s molting 
process, which is crucial for growth and development. The presence 
of fungal hyphae can disrupt the synthesis and release of molting 
hormones, leading to improper or failed molting cycles. This hampers 
the insect’s ability to shed its exoskeleton and grow, ultimately 
compromising its survival (Yang et al., 2023).

During the course of infection, entomopathogenic fungi produce 
various metabolic by-products and toxins. The accumulation of these 
toxic metabolites within the insect’s body contributes to physiological 
stress, cellular damage, and an overall decline in health. After killing 
the insect host, the fungus produces new spores (conidia) on the 
cadaver. These spores are released into the environment and can infect 
new susceptible hosts, completing the fungal life cycle (Lima et al., 
2024) (see Figure 4).

6 Entomopathogenic fungi: 
advantages, limitations, and future 
directions

Entomopathogenic fungi offer several advantages as biocontrol 
agents for managing insect pests. They are highly specific to insects, 
exhibiting low toxicity to non-target organisms, including humans 
and other vertebrates. This specificity makes them suitable for 
integrated pest management (IPM) strategies, minimizing ecological 
impact. These fungi are environmentally friendly alternatives to 
chemical pesticides, as they are naturally occurring organisms that 
degrade quickly in the environment. They support sustainable pest 
management approaches that reduce reliance on synthetic chemicals 
(Sharma et al., 2023; Perumal et al., 2024a).

Entomopathogenic fungi employ multiple modes of action to kill 
insects, including mechanical penetration, enzymatic degradation, 
and immune evasion. This multifaceted approach reduces the 
likelihood of insect resistance development compared to single-mode 
chemical insecticides (Liu et al., 2023). Some entomopathogenic fungi 
can persist in the environment for extended periods, providing longer-
term pest control benefits. They also demonstrate adaptability to 
various environmental conditions and host species, enhancing their 
versatility in pest management programs. Entomopathogenic fungi 
can be effectively integrated with other pest management tactics, such 
as cultural practices, biological controls (e.g., predators, parasitoids), 
and, when necessary, chemical controls. This integration enhances 
overall pest control efficacy and sustainability (Smagghe et al., 2023).

6.1 Challenges of entomopathogenic fungi 
in pest management

Entomopathogenic fungi, while promising as biocontrol agents, 
face several challenges that limit their widespread adoption in pest 
management strategies. Compared to chemical insecticides, 
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entomopathogenic fungi typically exhibit slower action in controlling 
insect populations. They require time to infect, colonize, and 
ultimately kill target insects, which may not provide rapid control 
needed in some agricultural settings (Vivekanandhan et al., 2023).

Environmental sensitivity poses another challenge. Factors such 
as temperature and humidity significantly influence the efficacy of 
entomopathogenic fungi. Optimal environmental conditions are 
crucial for successful fungal infection and proliferation, limiting their 
effectiveness under adverse conditions (Perumal et al., 2024a). While 
entomopathogenic fungi are highly specific to insects, their narrow 
host range can restrict their utility to certain target pests. Some fungi 
are effective only against specific insect groups or life stages, which 
limits their broader applicability across diverse pest populations.

The production and formulation of entomopathogenic fungi for 
commercial use present technical and economic challenges. Large-
scale production requires specialized facilities and technologies, 
making it costly and technically demanding. Improvements in 
production methods and formulation technologies are necessary to 
enhance the practicality and cost-effectiveness of using these fungi in 
pest management (Jaronski, 2023; Quesada-Moraga et  al., 2024). 
Moreover, regulatory approval for entomopathogenic fungi as 
biopesticides can be  complex and time-consuming. The process 
involves rigorous evaluation of safety and efficacy data, which adds to 
the challenges of bringing these products to market and integrating 
them into agricultural practices. Addressing these challenges through 
research and innovation will be essential to maximize the potential of 
entomopathogenic fungi in sustainable agriculture and integrated pest 
management programs.

6.2 Advancing entomopathogenic fungi in 
pest management

Entomopathogenic fungi represent a promising avenue for 
sustainable pest management, yet advancing their application requires 
addressing several key areas of research and development (Qin et al., 
2023). Efforts should prioritize enhancing formulation technologies 
to improve the stability, shelf-life, and application methods of 
entomopathogenic fungi (Bhattacharyya et al., 2023). Innovations in 
encapsulation, adjuvants, and targeted delivery systems are crucial for 
maximizing efficacy and practicality in diverse environmental 
conditions. Expanding the host range and efficacy of 
entomopathogenic fungi through genetic and ecological studies is 
essential. Genetic engineering can potentially enhance traits such as 
virulence and environmental tolerance, broadening the spectrum of 
pests these fungi can effectively control.

Optimizing the integration of entomopathogenic fungi with other 
pest management tactics, including biological controls and cultural 
practices, will enhance overall efficacy and sustainability (Smagghe 
et al., 2023). Continued research is needed to develop integrated pest 
management strategies that synergistically combine these approaches. 
Comprehensive environmental monitoring and impact assessments 
are critical to ensure the safe and sustainable use of entomopathogenic 
fungi across different ecosystems. Understanding their persistence and 
ecological interactions is vital for minimizing unintended 
environmental consequences.

Streamlining production processes, reducing costs, and 
navigating regulatory pathways are essential for the successful 

commercialization and widespread adoption of entomopathogenic 
fungi in agricultural and urban settings (Lankinen et al., 2024). 
Overcoming these hurdles will facilitate their integration into 
mainstream pest control practices (Ahmed et  al., 2024). 
Entomopathogenic fungi offer significant potential as effective, 
environmentally friendly tools for pest management. Addressing 
current challenges and exploring these future directions will 
be  instrumental in realizing their full potential and promoting 
sustainable agriculture worldwide.

7 Conclusion and perspectives

Entomopathogenic microorganisms, such as bacteria, fungi, 
and viruses, present promising prospects for controlling 
T. absoluta, a notorious pest of tomato crops. Extensive studies 
have underscored the effectiveness of various entomopathogens, 
including B. thuringiensis (Bt), B. bassiana, M. anisopliae, and 
nucleopolyhedroviral viruses (NPVs), against both larvae and 
adults of T. absoluta. Utilizing entomopathogens offers several 
advantages in insect pest management. Entomopathogens are 
highly specific to insects, exerting minimal impact on non-target 
organisms, which positions them as environmentally friendly 
alternatives to chemical pesticides. Moreover, entomopathogens 
employ diverse modes of action such as direct infection, toxin 
production, and physiological interference with insect hosts. 
However, the successful application of entomopathogens for 
T. absoluta control necessitates addressing several challenges. 
These include optimizing application methods to enhance 
efficacy under varying environmental conditions, improving 
formulation stability to prolong shelf-life and efficacy, and 
comprehensively understanding their interactions with 
environmental factors.

Future directions in entomopathogens research involve 
exploring novel strains or combinations of entomopathogens, 
developing integrated pest management (IPM) strategies that 
synergize entomopathogens with other pest control methods, and 
innovating delivery systems to ensure consistent and reliable pest 
suppression. Entomopathogens hold significant promise as 
sustainable tools for managing T. absoluta, offering effective 
alternatives to synthetic pesticides while promoting environmentally 
friendly agricultural practices. Continued research and innovation 
are imperative to fully harness the potential of entomopathogens 
within integrated pest management programs aimed at 
sustainable agriculture.
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