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Background: Clinical studies have demonstrated that microbes play a crucial role 
in human health and disease. The identification of microbe-disease interactions 
can provide insights into the pathogenesis and promote the diagnosis, treatment, 
and prevention of disease. Although a large number of computational methods 
are designed to screen novel microbe-disease associations, the accurate and 
efficient methods are still lacking due to data inconsistence, underutilization of 
prior information, and model performance.

Methods: In this study, we proposed an improved deep learning-based framework, 
named GIMMDA, to identify latent microbe-disease associations, which is based on 
graph autoencoder and inductive matrix completion. By co-training the information 
from microbe and disease space, the new representations of microbes and diseases 
are used to reconstruct microbe-disease association in the end-to-end framework. In 
particular, a similarity fusion strategy is conducted to improve prediction performance.

Results: The experimental results show that the performance of GIMMDA is 
competitive with that of existing state-of-the-art methods on 3 datasets (i.e., 
HMDAD, Disbiome, and multiMDA). In particular, it performs best with the area 
under the receiver operating characteristic curve (AUC) of 0.9735, 0.9156, 
0.9396 on abovementioned 3 datasets, respectively. And the result also confirms 
that different similarity fusions can improve the prediction performance. 
Furthermore, case studies on two diseases, i.e., asthma and obesity, validate the 
effectiveness and reliability of our proposed model.

Conclusion: The proposed GIMMDA model show a strong capability in 
predicting microbe-disease associations. We expect that GPUDMDA will help 
identify potential microbe-related diseases in the future.
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1 Introduction

Microbes, often known as microorganisms, are tiny or ultramicroscopic organisms that include 
bacteria, fungi, eukaryotes, archaea, and other microorganisms (Ley, 2022). Microbes inhabiting 
human skin, saliva, oral mucosa, and the gastrointestinal tract are important for human health and 
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life (Aggarwal et al., 2023). Many studies have shown that the abnormality 
in microbial communities can lead to diseases, such as intestinal 
autoimmune diseases, multiple sclerosis, diabetes, neurological disorders, 
and cancer (Miyauchi et al., 2023; Loh et al., 2024; White and Sears, 2024). 
However, it is difficult to identify the relationship between microbes and 
diseases based on conventional biological experiments since they are 
time-consuming, labor-intensive, and expensive. Therefore, it is necessary 
to develop computational approaches with high accuracy and efficiency 
to identify latent microbe–disease associations.

Nowadays, many methods have been developed to screen the 
microbe–disease interactions (Wen et al., 2021; Wang L. et al., 2022). 
Network-based methods usually utilize the topological information of 
different networks to identify potential new relationships. These 
methods with fewer parameters are relatively simple and easy to 
understand, but the prediction accuracy is influenced by the available 
associations and cannot be  applied to new diseases or microbes 
without any known association in the network. The initial work is that 
Chen et  al. (2017) developed the first computational model 
(KATZHMDA) for predicting microbe–disease association based on 
the network measurement Katz by integrating the number and length 
of walks between nodes. Yan et  al. (2020) designed a prediction 
method based on a bi-random walk on the heterogeneous network 
including the microbe network, diseases network, and known 
microbe–disease associations network. In addition, other methods, 
considering network projection, label propagation, multi-similarity 
fusion, etc., are developed to discover potential microbe–disease 
interactions (Qu et al., 2019; Luo and Long, 2020; Yin et al., 2022a,b).

Matrix factorization is another kind of method to screen potential 
associations of microbe–disease entities, which maps the high-
dimensional matrix into the product of low-dimensional matrices 
(Wang et al., 2019; Ma et al., 2020; Peng et al., 2020; Liu Y. et al., 2021; 
Liu et al., 2023). Although it solved the problem of data sparsity well, 
there were also several limitations, such as poor interpretability and 
slow training speed. For example, Ma et  al. (2020) presented a 
computational model (MDNMF) based on non-negative matrix 
factorization to deduce latent disease-related microbe candidates. 
Peng et al. (2020) adopted positive-unlabeled learning and random 
walk to select negative samples and then utilized logistic matrix 
factorization with neighborhood regularization to find possible 
microbe–disease associations. Liu et  al. (2023) used low-rank 
representation to obtain structural similarity information and utilized 
collaborative filtering to identify unknown microbe–disease pairs.

In addition, traditional machine learning methods can achieve an 
accurate prediction of future data, which starts from some training samples. 
The prediction accuracy of machine learning methods is trustworthy, but 
the problem of optimal values of model parameters is still unsolved. 
Furthermore, it is a challenge for them to obtain appropriate feature 
representations for microbes and diseases including all key information 
from the similarity network and association matrix (Wang et al., 2017; Peng 
et al., 2018; Ding et al., 2021; Xu et al., 2021). Peng et al. (2018) developed 
an adaptive Boosting enhanced microbe–disease association (ABHMDA) 
prediction model, the core of which was to calculate the association 
probability of microbe–disease pairs by combining weak classifiers into 
strong classifiers. Xu et al. (2021) used the Kronecker regularized least 
squares to calculate prediction scores with different Kronecker similarities. 
Moreover, some researchers applied graph representation learning to 
achieve rich feature representations for microbe–disease association 
prediction (Lei and Wang, 2020; Wang Y. et al., 2022; Yueyue et al., 2022). 
One representative work is that Yueyue et al. (2022) used an embedding 

algorithm called GraRep to learn global graph features on the 
heterogeneous network and adopted a support vector machine classifier to 
obtain the probability score of the microbe–disease associations.

Recently, deep learning approaches have become popular solutions for 
predicting microbe–disease associations. The basic concept is to use 
multiple processing layers to automatically learn the representation of data 
and multiple levels of abstraction. As deep learning is widely used in 
different fields and shows satisfactory performance, many deep learning-
based prediction methods (such as graph convolutional networks and 
graph attention networks) have been developed for microbe–disease 
association prediction (Li et al., 2021; Long et al., 2021; Chen and Lei, 2022; 
Peng et al., 2023; Zhu et al., 2023). For example, to conclude the underlying 
microbe–disease associations, the novel back-propagation neural network 
model (BPNNHMD) was designed (Li et al., 2021). Long et al. (2021) 
integrated a graph attention network with induction matrix completion to 
predict possible microbial candidates for diseases. Peng et  al. (2023) 
proposed a multi-view feature aggregation model to identify microbe–
disease interactions, in which both linear and nonlinear features were 
extracted, respectively. Moreover, Chen and Lei (2022) employed metapath 
to aggregate graph neural networks for finding potential microbe–disease 
pairs on a microbe–drug–disease heterogeneous network.

Although the existing methods have attained significant progress in 
microbe–disease association prediction, there are still some limitations. 
First, most methods only use a single dataset, so the accuracy and 
reliability of the data need to be  further improved. Second, in the 
microbe–disease network, plenty of edges focus on a handful of disease 
nodes, predicting potential edges easily biased toward those with more 
known associations with disease or microbe. Third, most methods cannot 
be applied to the prediction of a new disease or new microbe (i.e., disease 
or microbe without any known associations) owing to similarities 
depending on known microbe–disease association. Additionally, the 
calculated similarity often contains noise due to the lack of high-quality 
experimental data, which affects the accuracy of prediction. Finally, some 
methods cannot accurately capture the complex nonlinear associations.

To address these challenges, we proposed an improved deep learning 
framework with graph autoencoders and inductive matrix completion 
(GIMMDA) to identify the latent microbe–disease associations. First, 
we constructed a robust microbe–disease heterogeneous network, and the 
disease network and microbe network are constructed by a similarity 
fusion strategy on different similarities including functional similarity and 
topological similarity. Then, we adopted an end-to-end framework to 
integrate graph autoencoder and inductive matrix completion, where the 
information from microbe and disease space are co-trained. Finally, the 
score matrix constructed from node representations of graph autoencoders 
is utilized to predict the potential microbe–disease interactions. Our 
model can be considered an end-to-end model that directly maps input 
data to the final output, automatically extracting features from raw data 
and making predictions by probability. In the 5-fold cross-validation 
(5-fold CV), our model obtained a reliable performance.

2 Materials and methods

2.1 The known human microbe–disease 
associations

Currently, the microbe–disease pairs prediction mainly 
depends on several popular databases, including HMDAD (Ma 
et  al., 2017), Disbiome (Janssens et  al., 2018), gutMDisorder 
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(Cheng et  al., 2020), MicroPhenoDB (Yao et  al., 2020), MASI 
(Zeng et  al., 2021) and Peryton (Skoufos et  al., 2021). The 
interactions are screened from biomedical articles with manual 
curation or text-mining, which is shown in Table 1. However, the 
robust datasets are still lacking, due to different adopt strategies, 
noise introduction, and update absence. For more reliable 
prediction, we selected two datasets HMDAD (450 associations 
between 39 diseases and 292 microbes) and Disbiome (8,645 
associations between 351 diseases and 1,582 microbes) to validate 
the performance of the model. Furthermore, we constructed a new 
dataset (multiMDA) including 1,124 associations between 287 
diseases and 567 microbes, where those associations are found in 
at least two of the six datasets mentioned above, after unifying the 
disease name and microbe taxonomy.

In this study, an adjacent matrix A n nd m∈ ×  with 0–1 entries is 
constructed to represent the known microbe–disease associations, 
where A d mi j,( ) =1 if a disease i is associated with a microbe j , 
otherwise A d mi j,( ) = 0.

2.2 Interaction profile similarity for disease 
and microbe

The interaction profile similarity is widely used to predict 
correlation between biological entities, and the underlying assumption 
is that similar diseases (microbes) generally have the same interaction 
patterns with similar microbes (diseases) and vice versa. In this study, 
several popular similarities based on the adjacency matrix A are 
adopted, including Gaussian Interaction Profile (GIP) kernel similarity, 
Cosine similarity, and Jaccard similarity.

2.2.1 Gaussian interaction profile kernel similarity
Gaussian interaction profile kernel similarity is a kernel measuring 

the similarity of nodes in a network, in which the interaction profile 
of a node is a binary vector specifying the presence or absence of 
interaction with other nodes (van Laarhoven et al., 2011). In this 
study, we represent the interaction profile of the disease i as a binary 
vector to encode the interaction pattern with every microbe. It is the 
ith row of the adjacency matrix A, denoting as A di , :( ). Similarly, the 
jth column of matrix A, known as A mj: ,( ), is the microbe interaction 

profile for a microbe j . The Gaussian interaction profile kernel 
similarity for disease pairs or microbe pairs can be  calculated as 
follows by Equations 1, 2:

 
( ) ( ) ( )2, exp , : , :i j d i jGD d d A d A dγ = − − 
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where γ d  and γm  denote the normalized kernel bandwidth 
(Equations 3, 4).
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where γ d
′  and γm

′  are the initial bandwidth parameters, which 
generally are set to 1.

2.2.2 Cosine similarity
Commonly, cosine similarity is a popular metric used to measure 

the similarity of related entities, which considers the cosine angle 
between vector representations of entities in Euclidean space. Then, 
we, respectively, constructed cosine similarity score matrixes for 
diseases and microbes under the adjacency matrix A, where row 
vectors are the disease representation and column vectors are the 
microbe representation. Therefore, the similarity metrics are defined 
as follows by Equations 5, 6:
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where CD d di j,( ) represents the cosine similarity between disease 
i and j , and similarly, CM m mi j,( )  is the microbe cosine similarity 
between microbe i and j . Furthermore, we normalized the cosine 
similarity to the range 0 to 1.

2.2.3 Jaccard similarity
Jaccard similarity is a common proximity measurement for 

characterizing the similarity between two sets of objects. We adopted 
the following formula to calculate the disease similarity between 
disease i and disease j  by Equation 7:

TABLE 1 Summaries of the human microbe-associated datasets.

Databases Associations Microbe Disease

HMDAD (Ma et al., 2017) 450 292 39

Disbiome (Janssens et al., 

2018)

8,645 1,582 351

gutMDisorder (Cheng 

et al., 2020)

1,187 409 81

MicroPhenoDB (Yao et al., 

2020)

5,500 1773 496

MASI (Zeng et al., 2021) 629 123 56

Peryton (Skoufos et al., 

2021)

1747 469 38

multiMDA 1,124 567 287
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where D d A di k i dk
= ( ) ={ }| , : 1 , D d A dj k j dk

= ( ) ={ }| , : 1 . 
Similarly, following the metric, we  derived the microbe Jaccard 
similarity matrix JM n nm m∈ × .

2.3 Biological function similarity for disease 
and microbe

In addition to network topological information, wide pieces of 
evidence available from different biological sources are applied to 
improve accuracy for predicting microbe–disease associations. For 
disease resources, we  considered disease-related symptom data, 
disease semantic information, and disease-gene functional 
information and also measured the similarity between microbes by 
the evolutionary distance of nucleotide sequences of microbes.

2.3.1 Disease symptom similarity
Zhou et al. (2014) constructed a comprehensive human symptom–

disease network, which made it possible to find similar diseases from 
the perspective of disease symptoms. With representation learning, 
each disease is usually represented by a vector of symptoms, 
d w w wi i i in= …( )1 2, , , , where wij  characterizes the importance of 
symptom fi  to disease j , ranging from 0 to 1. In clinical research, 
there is a common phenomenon that different diseases present trend 
to the prevalence of different symptoms. To highlight heterogeneity, 
the association strength between symptom fi  and disease j  is 
measured as follows by Equation 8:

 
w W n

nij ij
d

i
= log ,

 
(8)

where nd  is the number of diseases, and ni is the number of 
diseases with symptom fi . Wij denotes if symptom fi and disease j  is 
co-occurrent. The symptom-based disease similarity between disease 
pairs can be calculated as follows by Equation 9:

 

SymD d d
d d

d d
i j

l il jl

l il l jl
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∑ ∑2 2
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where di, and d j  donate the symptom vector of the disease i and 
j , respectively.

2.3.2 Disease semantic similarity
Semantic similarity is an important way of similarity 

measurement, which is widely applied to predict association. 
Therefore, we adopted semantic similarity to calculate the similarity 
between diseases. First, we downloaded MeSH descriptors from the 
National Library of Medicine,1 and each disease is represented by a 

1 http://www.nlm.nih.gov/

directed acyclic graph (DAG) structure based on MeSH descriptors. 
By defining a semantic value for each disease, we  calculated the 
semantic similarity between the two diseases. The semantic similarity 
between 0 and 1 is transformed into the disease semantic similarity 
matrix SeD (Yin et  al., 2022a). For disease di, 
DAG d d T d E di i i i( ) = ( ) ( )( ), , , where T(di) denotes the nodes in 
DAG di( ), and E di( ) refers to the edges in DAG di( ). The semantic 
contribution value of disease di to disease d j  can be calculated as 
C d f C d d children of d dD D

1 1( ) = × ( ) ∈{ } ≠′ ′max ,|  D . We can get 

the semantic value of the disease d j  
V d C ds j

d T d
d

j

j
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In addition, the semantic contribution value of the disease di to 
disease d j  can be  calculated as 
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   sseases
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value of disease d j  is presented as V d C ds j
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d
j
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disease di and disease d j , the semantic similarity value is presented as 
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. The final disease 

semantic similarity can be formulated as follows by Equation (10):

 
SeD d d S Si j,( ) = +( )1 2

2/
 

(10)

2.3.3 Disease gene functional similarity
Furthermore, we  computed the disease functional similarity 

with disease-related genes. The underlying assumption is that 
phenotypically similar diseases usually interact with similar genes. 
The interactions between genes are available from the HumanNet 
dataset (Kim et al., 2022), in which an associated log-likelihood 
score (LLS) is used to evaluate the possible functional linkage 
between gene pairs. Given diseases i and j , the functional similarity 
can be formulated as follows by Equation 11:

 
FunD d d

FS g FS g

m ni j
i m G ai j n G bjb a

,( ) =
( ) + ( )

+
≤ ≤ ≤ ≤∑ ∑1 1

,

 
(11)

where G g g ga a a am= …{ }1 2, , ,  and G g g gb b b bn= …{ }1 2, , ,  denote 
gene sets of di and d j , respectively. The functional association  
between a gene and a gene set is defined as follows  
by Equations 12,  13:

 
FS g F g gG ai

j n
ai bjb ( ) = ( )( )

≤ ≤
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1

,

 
(12)

 
FS g F g gG bj

i m
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1

,

 
(13)

where F g gai bj,( ) denotes the functional similarity score between 
gene gaiand gene gbj with log-likelihood score formula (LLS) (Kim 
et al., 2022).
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2.3.4 Microbe sequence similarity and 
evolutionary distance similarity

In molecular biology, the genetic sequences of microorganisms 
usually are considered to determine their structure, function, and 
behavior. Sequence similarity can measure how closely two related 
sequences are at the molecular level. Techniques, such as sequence 
alignment and comparison, are used to determine the degree of 
similarity between the nucleotide or amino acid sequences of 
different microorganisms. Higher sequence similarity suggests a 
closer evolutionary relationship, while lower similarity may indicate 
a more distant evolutionary divergence. In this study, we downloaded 
16S rRNA gene sequences of microbiota in datasets from NCBI and 
compared the targeted sequence against the rest sequences in turn by 
the Basic Local Alignment Search Tool (BLAST+)(Camacho et al., 
2009). The similarity value can be estimated based on the consistency 
of nucleotide sequences, where the normalized microbe sequence 
similarity matrix MIS consists of the identity of the alignment  
Equation 14.

 
( ) ( ) ( )

( ) ( )
, min.

, ,
max. min.

i j
i j

Id m m Id
MIS m m

Id Id
−

=
−

 
(14)

where Id  denotes a matrix about the identity of the alignment with 
size m × m.

Furthermore, we  consider the microbe evolutionary distance 
under the p-distance model, which represents the number of 
nucleotide substitutions occurring between a pair of sequences. The 
evolutionary distance score is obtained by applying MEGA7(Tamura 
et al., 2021), and the normalized evolutionary distance similarity can 
be expressed as follows Equation 15:

 
MES m m

Ed m m Ed
Ed Edi j
i j

,
,( ) = ( ) − ( )
( ) − ( )

min.

max. min.
,

 
(15)

where the Ed m mi j,( ) is the evolutionary distance score between 
microbe i and j .

2.3.5 Microbe similarity based on disease 
semantic

We followed the hypothesis that functionally similar microbes 
are implicated in similar diseases (Wang et al., 2023) and obtained 
the microbe similarity based on disease semantics. If microbes mi 
and mj  refer to the disease sets Di and Dj, respectively, the max 
similarity between a disease 'd  and disease set D is defined as 
follows Equation 16:

 
SIM d D SeD d d

d D
′ ′( ) = ( )( )

∈
, ,max ,

 
(16)

where SeD d d′( ),  is the disease semantic similarity between 'd  
and d, the final similarity between microbe mi  and mj is calculated as 
follows Equation 17:
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SIM d D SIM d D

D DMFS i j
d D i d D j

i j
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+
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2.4 Construction of microbe–disease 
heterogeneous network

It is well known that precisely predicting microbe–disease association 
underlying a robust microbe–disease heterogeneous network. However, 
most studies insufficiently consider the similarity network of the 
biological entities (disease or microbe) in terms of different attributes 
(interaction profile and biological function information), to scream 
potential microbe-disease pairs due to the diversity of biological data.

In this study, we constructed the similarity networks for biological 
entities, respectively, where each similarity network considers different 
fusion strategies including the network topology based on the 
interaction profile and the biological function as illustrated in Figure 1.

2.4.1 Fusion strategy within the same attributes
For the same attributes (network topology based on interaction 

profile or biological function information), we  adopted similarity 
network fusion (SNF) (Wang et  al., 2014). SNF is a nonlinear 
combination method, which is used to fuse the similarity of the same 
biological entities from different similarity metrics.

In the SNF procedure, after defining the similarity matrix W of 
each view data, a normalized weight matrix P and a local affinity 
matrix S are constructed. Then, the fusion process based on message-
passing theory starts from P as the initial state and S as the kernel 
matrix to iteratively update the similarity matrix on m  datasets 
Equation 18:

 
P S

P

m
S v mv v k v

k
v T( ) ( ) ≠

( )
( )= ×

−
× ( ) = …

∑
1

1 2, , ,

 
(18)

The final similarity matrix can be defined as by Equation 19:

 
P

P

m
v
m v

= =
( )∑ 1

 
(19)

For the disease entity, we derive the disease topological similarity 
matrix DStop  by integrating three similarity metrics (GD, CD, and 
JD), and disease functional similarity matrix DS fun under considering 
similarity metrics (SymD, SeD, and FunD). In addition, microbe 
topological similarity MStop  and microbe functional similarity matrix 
MS fun are obtained similarly.

2.4.2 Fusion strategy between different attributes
Furthermore, the disease similarity Ds  and microbe similarity Ms 

are integrated by linear fusion (LNF) as follows Equations 20, 21:

 
D DS DSs top fun= + −( )µ µ1

 (20)

 
M MS MSs top fun= + −( )µ µ1 ,

 (21)
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where � �� �0 1,  is a weight parameter that controls topological 
similarity and functional similarity. Finally, the microbe–disease 
heterogeneous network is constructed based on similar networks Ds, 
Ms, and microbe–disease association A.

3 Method

In this study, we adopted an end-to-end framework GIMMDA 
to predict latent microbe–disease associations integrating the 
graph autoencoder and inductive matrix completion. The 
overview of the GIMMDA framework is shown in Figure 1. First, 
the preprocessing module integrates information from different 
biological sources using SNF and LNF methods. Second, the 
learning module learns new latent feature representations of 
microbes and diseases based on the graph autoencoder and 
inductive matrix completion. Finally, the prediction module 
utilizes the score matrix constructed from node representations 
of graph autoencoder to predict the potential microbe–
disease interactions.

3.1 Graph autoencoder

Graph autoencoder is popularly applied to unsupervised learning 
and link prediction. Usually, graph autoencoder consists of the 
encoder and decoder, where the graph encoder generates an 
embedding matrix Z f X Y� � �,  taking a feature matrix X  and a graph 
adjacency matrix Y , and the decoder reconstructs the graph adjacency 
matrix ( )Y g Z=  or node features matrix X  using pairs of node 
embedding vectors.

Here, we applied the graph autoencoder framework to obtain 
node representations on the disease network and microbe network, 
respectively, where the microbe–disease association matrix is regarded 
as the node attributes. First, we adopted graph convolution encoders 
to generate the node representation by aggregating node information 
from neighbors and graph structure information (Kipf and Welling, 
2016) Equations 22, 23.

 

( ) ( )0 1tanh T
d s s d dZ D Relu D A

  
= Ψ Ψ     




 
(22)

 

( ) ( )0 1tanh ,T
m s s m mZ M Relu M A

  
= Ψ Ψ     





 
(23)

where Ψd  and Ψm are the learnable weight parameters, and sD  
and sM  denote the normalized adjacency matrix of the disease graph 
and microbe graph, respectively.

At the decoder part, we  reconstruct the microbe–disease 
association matrix A  with the embedding of the diseases and 
microbes Zd and Zm, respectively, which can be expressed as follows 
Equations 24, 25:

 

( ) ( )0 1
d s s d d dS sigmoid D Relu D Z

  
= Θ Θ     

 

 
(24)

 

( ) ( )0 1 ,m s s m m mS sigmoid M Relu M Z
  

= Θ Θ     




 
(25)

where dΘ  and mΘ  are trainable parameter matrices.
In the graph autoencoder framework, we  minimized the 

reconstruction loss of node features as follows by Equation 26:

 
( )

22
F F

1 T
d mLr A S A Sα α= − + − −

 (26)

where� �� �0 1,  is the balance factor between the microbe and 
disease spaces.

3.2 Inductive matrix completion

Inductive matrix completion (IMC) usually is considered as 
transductive multi-label learning, where the association matrix can 
be generated by applying feature representations of its row and column 

FIGURE 1

The flowchart of the GIMMDA model.
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entities to a low-rank matrix Z. In microbe–disease association prediction, 
the goal is to recover a feature projection matrix Z using the known 
microbe–disease association matrix A, which can be formulated as an 
optimization problem as follows by Equation 27 (Li et al., 2020):

 
( )2 2 2

FFF,
min ,

d m

T
d m d mA Z Z λ

Ψ Ψ
− + Ψ + Ψ

 
(27)

where Zm n km� �  and Zd n kd� �  are the new embedding 
representations of microbes and diseases, respectively. k  denotes the 
embedding dimension, Ψd  and Ψm are the learnable weight 
parameters. The inductive matrix completion loss can be defined as 
follows by Equation 28:

 

2

F
T

d mLc A Z Z= −
 (28)

3.3 Collaborative optimization

Minimizing Lr is equivalent to training graph autoencoders on 
microbe and disease networks, respectively. However, previous 
studies have shown that collaborative training can improve the 
accuracy of predicting associations of biological entities (Jin et al., 
2021; Shi et al., 2021). We defined the total loss  of GIMMDA as 
follows by Equation 29:

 

( )

( )
, , ,
2 2 2 2
F F F F

min 1

.
d m d m

d m d m

Lr Lcβ β λ
Ψ Ψ Θ Θ

= + − +

Ψ + Ψ + Θ + Θ



 
(29)

Let W d m d m� � �¨ ,¨ ,˜ ,˜ , the above equation can be rewritten 
as follows by Equation 30:

 
( ) 2

Fmin 1 ,
W

Lr Lc Wβ β λ= + − +
 

(30)

where � �� �0 1,  is the balance factor between reconstruction loss 
and inductive matrix completion loss. The Adam (Jin et al., 2021) 
optimizer is used for optimization. Finally, the predicted score matrix 
S is obtained under the optimal model parameters follows by 
Equation 31.

 
S S Z Zre d m

T� � �� �� �1 ,
 (31)

where S S Sre d m� � �� �� �1 .
The detailed steps of GIMMDA are summarized in Algorithm 1.

ALGORITHM 1 . GIMMDA algorithm
Input: initial interaction matrix A
Output: final score matrix S
1: Compute the disease similarity matrix Ds and the microbe 

similarity matrix Ms
2: Compute the adjacent matrix of the disease graph Ds  and 

microbe graph Ms  respectively
3: repeat

4: Learn the embedding vectors of diseases and microbes via 
Encoder (expression here is defined in Equations 22, 23)

5: Reconstructed score matrix via Decoder (expression here is 
defined in Equations 24, 25)

6: Train the new feature representations of disease and microbe 
space through optimizing Loss and update W  (i.e., parameters of graph 
convolutional networks) by Adam optimizer

7: Until Convergence
8: return S S Z Zre d mT� � �� �� �1

4 Results

4.1 Experiment setting

In our experiments, we performed a 5-fold CV on the association 
matrix under three different settings: a global test adopts randomly 
zeroed values to the association matrix; a horizontal test for diseases 
where rows of the association matrix are randomly zeroed; and a 
vertical test for microbes where columns of the association matrix are 
randomly zeroed.

The global test compares the ability to identify latent 
microbe–disease associations on all methods. Horizontal tests for 
diseases and vertical tests for microbes compare the ability to 
predict new diseases and microbes, respectively. To reduce the 
impact of random splitting on performance, we  repeated the 
5-fold CV of each method 10 times. The average AUC, F1 score, 
accuracy, sensitivity, and specificity values are used as the 
performance indicators.

4.2 Parameter selection

The proposed GIMMDA model involves six important 
hyperparameters, such as the learning rate lr, the dimension of the 
embedding k , the disease and microbe spatial balance factor α , the 
loss-term balance factor β , the decay factor of regularization γ , and 
the number of iterations epochs. It is worth noting that we used the 
global test in a 5-fold CV for parameter selection under the multiMDA 
dataset and considered different combinations of all parameters by 
grid search. As shown in Figure 2, our proposed model performs best 
when lr = 0 05. , k =128, � � 0 5. , � � 0 6. , � � �

10
7
, and epochs = 300.

4.3 Performance evaluation

In this study, we compared the proposed GIMMDA model 
with nine other state-of-the-art methods, including classical 
network-based methods [KATZHMDA (Chen et  al., 2017), 
BRWMDA (Yan et al., 2020), and NTSHMDA (Luo and Long, 
2020)], matrix factorization models [NBLPIHMDA (Wang et al., 
2019) and MDLPHMDA (Qu et al., 2019)], and machine learning 
and deep learning models [LRLSHMDA (Wang et  al., 2017), 
GATMDA (Long et al., 2021), BPNNHMDA (Li et al., 2021), and 
MVFA (Peng et al., 2023)].

Table 2 shows the performance comparison between GIMMDA 
and the other 9 methods in the global test of 5-fold CV based on 
HMDAD and Disbiome datasets. We  observed that the AUC, F1 
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score, and accuracy values of the GIMMDA achieved 0.9735 ± 0.0050, 
0.9140 ± 0.0239, and 0.9817 ± 0.0051 on the HMDAD dataset, which 
was the highest among all compared methods. Compared with the 

second-best method MVFA, the GIMMDA increased the AUC, F1 
score, and accuracy by 2.17, 3.85, and 2.47%, respectively. On the 
Disbiome dataset, the GIMMDA also achieved the best performance 

FIGURE 2

The comparison of different indicators in 5-fold CV on the multiMDA dataset for (A) learning rate lr , (B) embedding dimension d , (C) spatial balance 
factor α , (D) loss balance factor β , (E) decay factor λ, and (F) number of iterations epochs.

TABLE 2 Performance comparison of the 10 methods under the global test of 5-fold CV on HMDAD and Disbiome datasets.

Datasets Methods AUC F1 Score Accuracy Sensitivity Specificity

HMDAD

Network-based KATZHMDA 0.8331 ± 0.0171 0.8260 ± 0.0404 0.8578 ± 0.0541 0.7056 ± 0.0579 0.8591 ± 0.0523

BRWMDA 0.8936 ± 0.0169 0.8884 ± 0.0386 0.8440 ± 0.0525 0.8013 ± 0.0628 0.8443 ± 0.0534

NTSHMDA 0.8866 ± 0.0200 0.8868 ± 0.0428 0.8321 ± 0.0622 0.7991 ± 0.0678 0.8324 ± 0.0632

Matrix 

factorization

NBLPIHMDA 0.9004 ± 0.0153 0.8949 ± 0.0247 0.8614 ± 0.0344 0.8107 ± 0.0407 0.8618 ± 0.0349

MDLPHMDA 0.8942 ± 0.0186 0.8884 ± 0.0386 0.8249 ± 0.0418 0.8013 ± 0.0628 0.8443 ± 0.0534

Machine 

learning

LRLSHMDA 0.8816 ± 0.0150 0.7964 ± 0.0322 0.7970 ± 0.0532 0.8138 ± 0.0527 0.7969 ± 0.0540

GATMDA 0.9222 ± 0.0102 0.8772 ± 0.0277 0.8842 ± 0.0168 0.9667 ± 0.0143 0.8808 ± 0.0178

BPNNHMDA 0.9242 ± 0.0103 0.8951 ± 0.0344 0.8371 ± 0.0616 0.8624 ± 0.0600 0.8369 ± 0.0626

MVFA 0.9518 ± 0.0056 0.8755 ± 0.0707 0.9570 ± 0.0125 0.9004 ± 0.0181 0.9605 ± 0.0139

GIMMDA 0.9735 ± 0.0050 0.9140±0.0239 0.9817 ± 0.0051 0.8976 ± 0.0140 0.9827 ± 0.0094

Disbiome

Network-based KATZHMDA 0.5340 ± 0.0060 0.4322 ± 0.0292 0.8575 ± 0.0233 0.2761 ± 0.0239 0.8594 ± 0.0224

BRWMDA 0.8612 ± 0.0046 0.8702 ± 0.0233 0.7957 ± 0.0327 0.7709 ± 0.0363 0.7957 ± 0.0330

NTSHMDA 0.8300 ± 0.0043 0.9065 ± 0.0105 0.6905 ± 0.0202 0.8292 ± 0.0175 0.6901 ± 0.0203

Matrix 

factorization

NBLPIHMDA 0.8844 ± 0.0034 0.9033 ± 0.0104 0.7949 ± 0.0177 0.8238 ± 0.0173 0.7948 ± 0.0178

MDLPHMDA 0.8889 ± 0.0026 0.9124 ± 0.0105 0.7935 ± 0.0165 0.8390 ± 0.0177 0.7934 ± 0.0166

Machine 

learning

LRLSHMDA 0.7948 ± 0.0034 0.9444 ± 0.0076 0.5949 ± 0.0132 0.8947 ± 0.0137 0.5940 ± 0.0133

GATMDA 0.8431 ± 0.0081 0.8015 ± 0.0188 0.8115 ± 0.0168 0.8849 ± 0.0133 0.8013 ± 0.0189

BPNNHMDA 0.7771 ± 0.0149 0.8443 ± 0.0603 0.6912 ± 0.0861 0.7349 ± 0.0906 0.6912 ± 0.0861

MVFA 0.9102 ± 0.0027 0.8728 ± 0.0037 0.9010 ± 0.0146 0.7861 ± 0.0059 0.8284 ± 0.0042

GIMMDA 0.9156 ± 0.0050 0.9478 ± 0.0062 0.9218 ± 0.0105 0.9092 ± 0.0073 0.9220 ± 0.0107

The highest value in each column is highlighted in bold, and the second-ranked value is underlined.
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in AUC, F1 score, accuracy, sensitivity, and specificity, which were 
0.54, 7.5, 2.08, 12.31, and 9.36%, respectively, better than the second-
best method MVFA.

In addition, we validated the robustness of these 10 methods on a 
multiMDA dataset. Figure 3 illustrates the area under the receiver 
operator characteristic (AUROC) curve and the area under the 
precision-recall curve (AUPRC) of the 10 MDA prediction models 
using the 5-fold CV on microbe–disease pairs.

Under the 5-fold CV, the GIMMDA computed a better AUC value 
of 0.93969 and the best AUPRC value of 0.763 among the 10 methods. 
These results demonstrated that the proposed GIMMDA model also 
achieved the best comprehensive performance compared with the 
other nine state-of-the-art methods on the multiMDA dataset, 
confirming the validity and robustness of our proposed model.

4.4 Ablation study

To verify whether our model can be applied to new diseases or 
new microbes without known associations, we  performed the 
horizontal test for diseases and the vertical test for microbes with a 
5-fold CV on the HMDAD and Disbiome datasets.

4.4.1 Performance comparison under CV on 
diseases

As shown in Table 3, our method still outperformed other models 
under CV on diseases, 80% of diseases were taken as the training set 
and the remaining was used as the test set. The GIMMDA obtained 
the AUCs of 0.6763 and 0.7123, the AUC and F1 score values of the 
GIMMDA ranked second, and the accuracy value ranked third 
respectively, outperforming LRLSHMDA, NTSHMDA, BRWMDA, 
NBLPIHMDA, MDLPHMDA, and KATZHMDA models.

4.4.2 Performance comparison under CV on 
microbes

Under CV on microbes, 80% of microbes were taken as the 
training set and the remaining was used as the test set. Table 4 shows 
the performance compared with the other nine methods under CV on 
microbes. The GIMMDA obtained better AUC values of 0.94168 and 
0.7685 compared to LRLSHMDA, NTSHMDA, BRWMDA, 
NBLPIHMDA, MDLPHMDA, and KATZHMDA models.

4.4.3 Performance comparison under different 
similarity fusion methods

To verify the effectiveness of our proposed similarity fusion 
method, we  compared the model performance while using the 
proposed strategy and the other 3 similarity fusion methods.

Proposed strategy (SNF-LNF): the proposed similarity fusion 
strategy was explained in detail in Section 2.4. We set the optimal 
parameter µ  as 0.5.

Compared strategies:

Strategy 1 (LNF-LNF): for the same attributes within network 
topology or biological function information and different attributes 
between network topology and biological function information, we all 
selected the LNF method to average the similarity matrixes.

Strategy 2 (SNF-SNF): in this strategy, we  adopted the SNF 
method to fusion all similarity matrixes constructed from network 
topology and biological function information.

Strategy 3 (LNF-SNF): it took the opposite method to our 
proposed strategy, LNF was applied to fuse the same attributes and 
SNF was used for similarity fusion between different attributes.

The comparison results of our proposed method and the other 
three strategies are shown in Figure 4. We can observe that the AUC 
of strategy 3 was 0.42% higher than our method. However, the F1 

FIGURE 3

Performance comparison using the global test 5-fold CV on a multiMDA dataset for (A) AUROC; and (B) AUPRC.
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TABLE 3 Performance comparison of the 10 methods under horizontal test for disease using 5-fold CV on HMDAD and Disbiome datasets.

Datasets Methods AUC F1 Score Accuracy Sensitivity Specificity

HMDAD

Network-based KATZHMDA 0.2625 ± 0.0777 0.5234 ± 0.1151 0.1649 ± 0.0371 0.3630 ± 0.1117 0.1636 ± 0.0377

BRWMDA 0.3829 ± 0.0825 0.5769 ± 0.3827 0.3318 ± 0.1231 0.5114 ± 0.4092 0.3292 ± 0.1256

NTSHMDA 0.4396 ± 0.1082 0.5032 ± 0.1151 0.4147 ± 0.2086 0.3434 ± 0.0966 0.4152 ± 0.2090

Matrix 

factorization

NBLPIHMDA 0.3846 ± 0.1316 0.5978 ± 0.1496 0.2481 ± 0.1841 0.4430 ± 0.1602 0.2468 ± 0.1849

MDLPHMDA 0.4498 ± 0.1240 0.6403 ± 0.1234 0.3734 ± 0.3990 0.4833 ± 0.1399 0.3713 ± 0.4017

Machine 

learning

LRLSHMDA 0.3794 ± 0.1462 0.5629 ± 0.1338 0.4029 ± 0.3159 0.4032 ± 0.1266 0.4022 ± 0.3171

GATMDA 0.4586 ± 0.0195 0.4647 ± 0.0548 0.7591 ± 0.0509 0.5050 ± 0.0520 0.7573 ± 0.0523

BPNNHMDA 0.6166 ± 0.1743 0.7129 ± 0.1619 0.4321 ± 0.1506 0.6732 ± 0.2292 0.4289 ± 0.1522

MVFA 0.7664 ± 0.0512 0.4247 ± 0.0279 0.7793 ± 0.0125 0.4498 ± 0.0181 0.6605 ± 0.0139

GIMMDA 0.6763 ± 0.1085 0.6859 ± 0.2944 0.7162 ± 0.2753 0.7459 ± 0.2193 0.7402 ± 0.2486

Disbiome

Network-based KATZHMDA 0.5139 ± 0.0221 0.6591 ± 0.1455 0.5243 ± 0.2764 0.5091 ± 0.1686 0.5241 ± 0.2779

BRWMDA 0.5153 ± 0.0170 0.3883 ± 0.0282 0.9384 ± 0.0089 0.2413 ± 0.0220 0.9406 ± 0.0089

NTSHMDA 0.5343 ± 0.0205 0.5576 ± 0.0514 0.7633 ± 0.0221 0.3883 ± 0.0503 0.7645 ± 0.0224

Matrix 

factorization

NBLPIHMDA 0.5874 ± 0.0181 0.5325 ± 0.0555 0.8237 ± 0.0377 0.3648 ± 0.0536 0.8251 ± 0.0380

MDLPHMDA 0.6900 ± 0.0044 0.7195 ± 0.0224 0.8073 ± 0.0253 0.5623 ± 0.0275 0.8081 ± 0.0255

Machine 

learning

LRLSHMDA 0.6365 ± 0.0171 0.6344 ± 0.0519 0.8484 ± 0.0384 0.4666 ± 0.0570 0.8497 ± 0.0388

GATMDA 0.7637 ± 0.0295 0.4679 ± 0.0089 0.7493 ± 0.0309 0.7784 ± 0.0322 0.7489 ± 0.0225

BPNNHMDA 0.3118 ± 0.0133 0.1145 ± 0.0090 0.4375 ± 0.0057 0.0608 ± 0.0050 0.4387 ± 0.0057

MVFA 0.7040 ± 0.0148 0.3395 ± 0.0396 0.4793 ± 0.0125 0.4465 ± 0.0456 0.4526 ± 0.0220

GIMMDA 0.7123 ± 0.0212 0.7599 ± 0.0305 0.6856 ± 0.0353 0.6503 ± 0.0281 0.6285 ± 0.0410

The highest value in each column is highlighted in bold, and the second-ranked value is underlined.

TABLE 4 Performance comparison of the 10 methods under vertical test for microbes using 5-fold CV on HMDAD and Disbiome datasets.

Datasets Methods AUC F1 Score Accuracy Sensitivity Specificity

HMDAD

Network-based KATZHMDA 0.8756 ± 0.0484 0.8456 ± 0.0263 0.8641 ± 0.0418 0.7828 ± 0.0423 0.8645 ± 0.0420

BRWMDA 0.8657 ± 0.0309 0.7985 ± 0.0493 0.9061 ± 0.0049 0.6673 ± 0.0670 0.9438 ± 0.0053

NTSHMDA 0.4396 ± 0.1082 0.8430 ± 0.1151 0.8857 ± 0.0742 0.7318 ± 0.0758 0.8869 ± 0.0754

Matrix 

factorization

NBLPIHMDA 0.8384 ± 0.0417 0.7968 ± 0.0496 0.9280 ± 0.0034 0.6651 ± 0.0705 0.9302 ± 0.0039

MDLPHMDA 0.8019 ± 0.0288 0.8061 ± 0.0238 0.8470 ± 0.0473 0.6759 ± 0.0332 0.8484 ± 0.0478

LRLSHMDA 0.8465 ± 0.0258 0.8267 ± 0.0499 0.8964 ± 0.0701 0.7064 ± 0.0561 0.8979 ± 0.0710

Machine 

learning

GATMDA 0.9063 ± 0.0111 0.6917 ± 0.0263 0.8644 ± 0.0235 0.9091 ± 0.0214 0.8636 ± 0.0238

BPNNHMDA 0.9057 ± 0.0112 0.8653 ± 0.0485 0.8739 ± 0.0452 0.8307 ± 0.0830 0.8744 ± 0.0462

MVFA 0.9144 ± 0.0235 0.8112 ± 0.0193 0.9279 ± 0.0125 0.7613 ± 0.0238 0.8605 ± 0.0139

GIMMDA 0.9168 ± 0.0261 0.8918 ± 0.0331 0.9123 ± 0.0329 0.9286 ± 0.0540 0.8902 ± 0.0406

Disbiome

Network-based KATZHMDA 0.8016 ± 0.0141 0.8243 ± 0.0182 0.7915 ± 0.0218 0.7015 ± 0.0263 0.7918 ± 0.0219

BRWMDA 0.7397 ± 0.0090 0.8152 ± 0.0142 0.6882 ± 0.0180 0.6882 ± 0.0201 0.6882 ± 0.0181

NTSHMDA 0.6788 ± 0.0132 0.6960 ± 0.0522 0.7817 ± 0.0474 0.5361 ± 0.0606 0.7825 ± 0.0477

Matrix 

factorization

NBLPIHMDA 0.6800 ± 0.0159 0.6650 ± 0.0202 0.7877 ± 0.0175 0.4984 ± 0.0227 0.7886 ± 0.0175

MDLPHMDA 0.6304 ± 0.0114 0.6389 ± 0.0179 0.7518 ± 0.0221 0.4697 ± 0.0191 0.7527 ± 0.0221

Machine 

learning

LRLSHMDA 0.7279 ± 0.0085 0.7596 ± 0.0301 0.7567 ± 0.0323 0.6134 ± 0.0399 0.7571 ± 0.0325

GATMDA 0.8112 ± 0.0164 0.4366 ± 0.0092 0.7431 ± 0.0242 0.8797 ± 0.0179 0.7427 ± 0.0242

BPNNHMDA 0.7964 ± 0.0060 0.8479 ± 0.0217 0.7046 ± 0.0292 0.7366 ± 0.0319 0.7045 ± 0.0294

MVFA 0.8796 ± 0.0156 0.7536 ± 0.0039 0.7503 ± 0.0068 0.7050 ± 0.0076 0.8647 ± 0.0211

GIMMDA 0.7685 ± 0.0303 0.8841 ± 0.0920 0.8250 ± 0.1230 0.3699 ± 0.1316 0.8322 ± 0.1270

The highest value in each column is highlighted in bold, and the second-ranked value is underlined.
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score and accuracy of our method were 6.18 and 1.64% higher than 
the strategy 3.

4.5 Case study

To further validate the predictive performance of the proposed 
GIMMDA, we selected two common diseases, i.e., asthma and obesity 
as case studies on the multiMDA dataset. After excluding known 
related microbes for these two diseases, the top 20 microbe candidates 
were selected based on the ranking scores for validation by searching 
previous publications. The results showed that 19 and 14 of the top 20 
bacteria linked to asthma and obesity were confirmed by previous 
literature studies. Tables 5, 6 present the findings of the literature 
validation of the top  20 predicted microbes linked to obesity 
and asthma.

Asthma is a common chronic inflammatory disease of the airways 
that is estimated to affect more than 300 million people worldwide 
over the life course (Varkonyi-Sepp et al., 2022). A large literature has 
reported that the development of asthma is closely related to genes, 
the environment, and specific microbes in the gut or respiratory tract 
(Frei et al., 2022). In our predictions, Proteobacteria, Helicobacter 
pylori, Bacteroidetes, and Prevotella were the most relevant influencing 
factors for asthma in the top 20 score list. Zhang et al. found that the 
relative abundance of Proteobacteria was significantly enrichment and 
lower levels of Bacteroidota (synonym Bacteroidetes) in the asthma 
patients group compared to that in the control group (Zhang et al., 
2022). Wang D. et  al. (2022) demonstrated a significant inverse 
correlation between Helicobacter pylori infection and asthma. Clinical 
studies have shown that patients with asthma have reduced numbers 
of Prevotella compared to healthy individuals (Gu et al., 2023). Except 
for microbes validated by literature, Bacteroides vulgatus has no direct 

evidence of an association with asthma. There was a report that 
Bacteroides vulgatus appeared to increase in relative abundance in 
depression patients (Liang et  al., 2022), where depression was a 
comorbidity of asthma (Tamayo et  al., 2024). In other words, 
conventional biological experiments will further verify the significant 
role that microbes play in asthma, for which there is currently no 
direct evidence.

Obesity is another major global health problem determined by 
genetics and environment, and its incidence is increasing every year 
(Liu B. N. et  al., 2021). Extensive studies have shown that gut 
microbiota is an important factor in the development of metabolic 
diseases such as obesity. Megur, Daliri, Baltriukiene, and Burokas 
(Megur et  al., 2022) detected that obesity is associated with an 
increase in the number of Firmicutes and a decrease in the diversity 
of Bacteroidetes, where they were all in the top 20 score list. In 
addition, Alcaligenaceae in the top 20 score list was rarely reported 
about obesity, but Ishaq, Mohammad, Hussain, Parveen, Shirazi, 
Fan, Shahzad, Hayat, Li, Ihsan, Muhammad, Usman, Zhang, Yuan, 
Ullah, Paiva-Santos, and Xu (Ishaq et  al., 2022) found that the 
abundance of Alcaligenaceae was significantly reduced in patients 
with thyroid cancer compared with healthy individuals, where 
thyroid cancer had an association with obesity (Rahman et  al., 
2020). Another less-reported microbe related to obesity was 
Lysobacter. However, there was evidence that Lysobacter can 
produce cellulase, which has the potential use in preventing obesity 
and restoring intestinal homeostasis in obese individuals (Fu et al., 
2021). In the future, microbes in our prediction results that have 
not been validated in literature may also serve as novel biomarkers 
for obesity. In conclusion, the prediction results illustrated that our 
proposed method can accurately and reliably predict the microbe–
disease, which can contribute to the diagnosis, treatment, 
and prevention.

FIGURE 4

Comparative analysis of the proposed and compared similarity fusion methods.
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5 Discussion

In recent years, researchers have paid more attention to the 
associations between microbes and diseases. However, biological 
experiments are expensive and inefficient for screening the microbe–
disease associations. Therefore, more and more computational 
methods are used to predict potential microbe–disease interactions. 
In addition, the primary challenges of computational models are the 
reliability of the data, the richness of prior knowledge, and the 
prediction accuracy of the model.

In this study, we  developed an end-to-end deep learning 
framework GIMMDA based on graph autoencoders and the 
inductive matrix completion with multiple similarities fusion. First, 
we  integrated and screened a new dataset (multiMDA) from six 
diverse association databases. Second, we fused the known microbe–
disease association and different priori knowledge by SNF and LNF 
methods to the microbe similarity network and disease similarity 
network, respectively. Third, we  learned the node feature 
representations by the information from node neighbors and itself 
based on graph convolutional networks. Finally, we  adopted 
collaborative optimization of the loss to obtain the final microbe–
disease association prediction scores. In addition, comparative 
experiments with nine other models and case studies of two diseases 
showed that our proposed GIMMDA model achieved superior 
predictive performance, excellent reliability, and broad application.

However, our proposed model still has some limitations that need 
to be  improved in the future. First, although we  integrated six 
databases, the known associations are still sparse compared with the 
entire association space, which affected the prediction performance. 
Self-supervised learning provides a solution to address association 
sparseness. Second, the proposed GIMMDA model still lacked prior 
knowledge and needed to be further explored, such as the abundance, 
metabolism, gene sequence information of microbes, drugs, and 
metabolites information of diseases. In the future, we  will make 
further improvements to overcome these shortcomings.
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