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Introduction: Multidrug-resistant tuberculosis (MDR-TB) remains a challenge

in the TB program of Taiwan, where 0.5% of new cases and 2.1% of

previously treated cases were resistant to at least rifampin (RIF) and isoniazid

(INH). Since >80% of our MDR-TB are new cases, genotyping of MDR

Mycobacterium tuberculosis is implemented to facilitate contact investigation,

cluster identification, and outbreak delineation.

Methods: This is a population-based retrospective cohort study analyzing MDR-

TB cases from 2019 to 2022. Whole genome sequencing (WGS) was performed

using the Illumina MiSeq and analyzed using the TB Profiler. A single nucleotide

polymorphism (SNP) threshold of ≤12 and phylogenetic methods were used

to identify putative transmission clusters. An outbreak was confirmed using

genomic data and epidemiologic links.

Results: Of the 297 MDR-TB cases, 246 (82.8%), 45 (15.2%), and 6 (2.0%)

were simple MDR, extensively drug-resistant tuberculosis (pre-XDR-TB) and

extensively drug-resistant tuberculosis (XDR-TB), respectively. The sublineage

2.2 modern Beijing was the predominant (48.8%) MDR-TB strain in Taiwan.

Phylogenetic analysis identified 25.3% isolates in 20 clusters, with cluster sizes

ranging from 2 to 13 isolates. Nevertheless, only 2 clusters, one household

and one community, were confirmed as outbreaks. In this study, we found that

males had a higher risk of MDR-TB transmission compared to females, and

those infected with the sublineage 2.1-proto-Beijing genotype isolates were

at a higher risk of transmission. Furthermore, 161 (54.2%) isolates harbored

compensatory mutations in the rpoC and non-rifampicin resistant determinant

region (non-RRDR) of the rpoB gene. MDR-TB strains containing rpoB S450L and

other compensatory mutations concurrently were significantly associated with

clusters, especially the proto-Beijing genotype strains with the compensatory

mutation rpoC E750D or the modern Beijing genotype strains with rpoC

D485Y/rpoC E1140D.

Discussion: Routine and continuous surveillance using WGS-based analysis is

recommended to warn of risks and delineate transmission clusters of MDR-TB.

We proposed the use of compensatory mutations as epidemiological markers of

M. tuberculosis to interrupt putative MDR-TB transmission.

KEYWORDS

Mycobacterium tuberculosis, tuberculosis, whole genome sequencing, multidrug-

resistance, transmission, mutation
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1 Introduction

The global emergence of multidrug-resistant tuberculosis

(MDR-TB) poses a threat to achieving the End TB targets. MDR-

TB can arise from delayed diagnosis, prolonged treatment, and

the transmission of MDR Mycobacterium tuberculosis isolates.

Although defining and tracking TB transmission has been

particularly challenging due to the variability in disease progression

after infection, genotyping of M. tuberculosis provides vital insight

into investigating TB transmission patterns and aids in identifying

associated risk factors (Gardy et al., 2011; Lalor et al., 2018).

Understanding these transmission patterns is crucial for

guiding effective public health interventions aimed at preventing

the spread of MDR-TB (Nathanson et al., 2010). Furthermore,

identifying the risk factors associated with MDR-TB clustering

is crucial for improving health outcomes through coordinated

efforts to prevent transmission (Denholm et al., 2024; GBD

2021 Forecasting Collaborators, 2024). Compared to conventional

genotyping methods (Barnes and Cave, 2003; Allix-Béguec et al.,

2008), whole genome sequencing (WGS) provides a more accurate

resolution of phylogenetic clusters, making it a powerful tool for TB

surveillance and control (Luo et al., 2014; Yang et al., 2017; Guthrie

et al., 2018, 2019).

Rifampicin-resistant (RR) isolates exhibit mutations within the

RNA polymerase (rpoB) gene, with rpoB S450L being the most

prevalent mutation (Comas et al., 2011; Brandis and Hughes,

2013). These RR isolates harbor compensatory mutations in RNA

polymerase subunits, such as the rpoA and rpoC genes, or in regions

outside the rpoB rifampin-resistance determining region (RRDR;

non-RRDR). Specific mutations in the rpoA and rpoC genes can

result in high-fitness MDR strains (Comas et al., 2011).

However, the relationship between drug resistance and

compensatory mutations has been inconsistently reported (Cohen

and Murray, 2004). Previous studies revealed that compensatory

evolution can facilitate the spread of MDR M. tuberculosis isolates

by mitigating the fitness costs associated with mutations, thereby

increasing resistance rates (de Vos et al., 2013; Li et al., 2016;

Merker et al., 2018). Conversely, other studies have indicated

that compensatory mutations have a minimal impact on MDR-TB

clustering in China (Liu et al., 2018; Chen et al., 2022).

The prevalence of MDR-TB in Taiwan is estimated to

be over 80% (Chuang et al., 2016; Wu et al., 2023), yet

the pattern of transmission remains unclear. To enhance the

management of MDR-TB, we conducted a cohort study usingWGS

and epidemiological information to investigate putative MDR-

TB transmission.

2 Materials and methods

2.1 Study design and population

In our TB program, bacteriological examination is required

for any presumptive TB cases, with universal drug susceptibility

testing (DST) achieved through the TB laboratory network. This

population-based retrospective study analyzed culture-confirmed

MDR-TB cases reported to the Taiwan Centers for Disease Control

(Taiwan CDC) between 2019 and 2022. For each case, one initialM.

tuberculosis isolate was analyzed using WGS.

M. tuberculosis isolates were cultured and manipulated in a

certified biosafety level 3 laboratory. Demographic information,

bacteriological data, and epidemiological investigation information

were obtained from the National TB Registry. A new case was

defined as one that had never been previously reported or recorded

in the TB Registry as an MDR-TB case. Previously treated MDR-

TB cases included those with recurrent cases, those treated after

loss to follow-up, those treated after failure, and other previously

treated cases. We used a standardized questionnaire to investigate

epidemiological links among MDR-TB cases.

2.2 Mycobacterial culture, identification,
and drug susceptibility testing

Decontaminated specimens were inoculated on both solid and

liquidmedia simultaneously.M. tuberculosis isolates were subjected

to DST using the agar proportion method (APM) with 7H10

and 7H11 media (Coning Technology Limited Company, Taiwan).

The APM procedure is described as follows: M. tuberculosis

was grown in 7H9 complete media [0.2% glycerol, 0.1% Tween,

10% albumin, dextrose catalase (ADC) supplement] to log phase.

Cultures were adjusted to 0.5–1 MacFarland standard using 7H9

complete media and serially diluted (10−2 and 10−4). A 0.1ml

aliquot of each culture mixture was inoculated onto 7H10 agar

plates supplemented with 10% oleic acid, albumin, dextrose, and

catalase (OADC). According to WHO recommendations, the

critical concentrations of the tested drugs in 7H10 media were RIF,

1 mg/L; INH, 1.0 mg/L and 0.2 mg/L; ethambutol (EMB), 5 and

10 mg/L; streptomycin (STM), 2 mg/L and 10 mh/L; levofloxacin

(LFX), 1 mg/L; and moxifloxacin (MXF), 0.5 mg/L. The critical

concentrations of the tested drugs in 7H11 media were amikacin

(AMK), 6 mg/L; kanamycin (KAN), 6 mg/L; capreomycin (CAP),

10 mg/L; ethionamide (ETO), 10 mg/L; and para-aminosalicylic

acid (PAS), 8.0 mg/L. Resistance to pyrazinamide (PZA), 100 mg/L,

was tested using the Bactec MGIT 960 system (Becton Dickinson

Diagnostic Systems, Sparks, MD) as previously described (WHO,

2018). Growth on a control medium was compared to growth

on the corresponding drug-containing medium to determine

susceptibility. Cultures were incubated at 37◦C for 3 weeks, and

colony-forming units (CFUs) were counted. Resistance was defined

as CFUs on the antibiotic quadrant over 1% of the CFUs on

the antibiotic-free quadrant (Woods et al., 2011). The DST result

was used to determine resistance or susceptibility. The tests were

validated based on the susceptibility of M. tuberculosis H37Rv.

Since STM was initially tested with RIF, INH, and EMB as first-

line drugs, we categorized STM as a first-line drug. MDR is defined

as an M. tuberculosis isolate that is resistant to at least INH and

RIF. Pre-XDR is defined as an MDR isolate that is resistant to

either fluoroquinolone (FQs; pre-XDR fluo) or at least one of the

injectable drugs (pre-XDR inj; Banerjee et al., 2008). XDR was

defined as MDR TB plus resistance to an FQ and at least one

second-line injectable drug (SLID; WHO, 2007).
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2.3 Whole-genome sequencing

M. tuberculosis isolates were subcultured on 7H11 medium,

and genomic DNA was extracted using the cetyl-trimethyl-

ammonium-bromide method (van Soolingen et al., 1991). The

TruSeq DNA PCR-Free LT Sample Preparation Kit (Illumina,

Inc., San Diego, CA, USA) was used to prepare paired-end

libraries following the manufacturer’s instructions. The average

fragment size (500–600 bp) of the DNA libraries was checked

by the Agilent 2100 Bioanalyzer in combination with the High

Sensitivity DNA Kit. The concentration of the DNA libraries

was measured by quantitative PCR with the KAPA Library

Quantification Kit (Roche Sequencing Solutions, Inc., Pleasanton,

CA, USA). Using the MiSeq Reagent Kit ver. 3 and an Illumina

MiSeq system (Illumina, Inc., San Diego, CA, USA), the 24 pure

DNA libraries were pooled (11 pM) and sequenced (600 cycles)

with an expected coverage of 100X. We analyzed compensatory

mutations in the rpoA, rpoC, and non-RRDR of the rpoB

genes. Putative compensatory mutations were identified based

on the following criteria: (1) the presence of non-synonymous

mutations in the rpoA, rpoB, or rpoC genes in RIF-resistant

isolates; (2) each putative compensatory mutation has been

independently observed in at least two isolates (Liu et al.,

2018).

2.4 Bioinformatics analysis

We conducted a dry laboratory analysis of WGS data (Behzadi

and Ranjbar, 2019). Paired-end Illumina reads were checked using

FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/) for

primary assessment of data quality, and any adapter fragment

and low-quality reads were removed using Trimmomatic. Bowtie2

was used to map paired-end reads to the reference genome

H37Rv (GenBank AL123456). The strict SNP filtering (closed

SNP set) template within the BioNumerics 7.6.3 software was

used to generate a list of high-quality, informative SNPs for

each cluster. The SNP filtration was based on the following

criteria: have total coverage of 5 reads, not contain ambiguous

bases, not contain gaps, and not be within 12 base pairs

of adjoining SNPs. Non-informative SNPs (identical in all

samples) were also excluded. No genomic regions were specifically

excluded from the analysis. The TB Profiler v.4.1.1 was used

to assign lineages and predict gene mutations associated with

drug resistance (Phelan et al., 2019). A phylogenetic tree was

built from 3,453 identified SNP positions, excluding repetitive

genomic regions (PE/PEE), using the maximum likelihood method

with the Tamura-Nei model and 1,000 bootstrap replicates

in MEGA 7.0. iTOL v6 (https://itol.embl.de) was used to

annotate and visualize the phylogenetic tree. Isolates were

defined as clustered or unique based on a genetic distance

of ≤12 or > 12 SNPs, respectively. The sequence data were

deposited in the National Center for Biotechnology Information

Sequence Read Archive under BioProject ID PRJNA1141184.

A minimum spanning tree was constructed using BioNumerics

7.6.3 software.

2.5 Statistical analysis

Descriptive statistics were performed on patients’

demographics, including lineage, sex, age, previous treatment

history, and clustering of MDR isolates. Logistic regression analysis

was used to calculate statistical significance. Odd ratios with

95% confidence intervals (CI) were calculated, and variables with

P-values < 0.05 were considered potential new risk factors. The

odds ratio calculator from MedCalc Software Ltd. (version 20.013)

was used for the statistical analysis.

2.6 Ethics statement

The Taiwan CDC Institutional Review Board approved this

study (TwCDC IRB No. 106211). All procedures were conducted

in accordance with applicable guidelines and regulations. As the

study only involved archived isolates, written informed consent

from participants was not required.

3 Results

3.1 Study population

In this population-based study, 297 cases of MDR-TB

accounted for 1.0% of the 30,193 TB cases from 2019 to 2022

(Figure 1). Of these 297 MDR-TB cases, 219 (73.7%) were male,

and 78 (26.3%) cases were female, with a median age of 63

years (ranging from 50 to 76 years). Among the cases, 242

(81.5%) were new cases, 52 (17.5%) were previously treated cases,

and 3 (1.0%) had an unknown treatment history. A maximum-

likelihood phylogenetic tree was constructed based on 3,453 SNPs

in non-repetitive regions of the studied isolates, which included 45

(15.2%) pre-XDR and 6 (2.0%) XDR-TB cases (Figure 2). Lineage

2 isolates were predominant, including 43 (14.5%) sublineage 2.1

(proto-Beijing) and 145 (48.8%) sublineage 2.2 (modern Beijing)

isolates (Table 1). Data for all 297 MDR-TB cases are shown in

Supplementary Table 3.

3.2 MDR-TB clusters

Using a 12-SNP cut-off, 25.3% (75/297) MDR-TB cases were

grouped into 20 clusters, with cluster sizes ranging from 2 to

13 cases (Tables 1, 2). Cluster 04 was the largest cluster, with

84.6% (11/13) of cases originating from northern Taiwan, all of

which had identical drug-resistance gene mutations, including

fabG1 t-8c and rpoB S450L, along with a compensatory mutation,

rpoC E750D (Table 2 and Supplementary Table 2). The univariate

analysis revealed a correlation between MDR-TB clusters and male

sex. Individuals carrying the sublineage 2.1-proto-Beijing genotype

had a higher risk of transmitting the infection (Table 1). Of the

20 clustered MDR-TB cases, 8 (40%) had definite epidemiological

links. Minimum Spanning Tree (MST) analysis showed household

and community links in clusters 10 and 11 (Figures 3, 4). In

cluster 10, the SNP differences among the 7 cases ranged from 0

to 1 (Figure 3A). Cases 19MDR_01, 19MDR_09, 19MDR_10, and
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FIGURE 1

Classification of multidrug-resistant tuberculosis based on treatment history and genomic analysis. PTB, pulmonary tuberculosis; DST, drug

susceptibility testing; MDR-TB, multidrug-resistant tuberculosis.

19MDR_39 lived in the same household, while cases 19MDR_01

and 19MDR_44 attend the same school (Figure 3B). However,

19MDR_36 and 20MDR_103 had no known epidemiological links

with other cases in the cluster. In cluster 11, cases 21PXDR_32,

21PXDR_47, and 19PXDR_09 were pre-XDR TB cases with SNP

differences ranging from 0 to 8 (Figure 4A) and were from a high-

burden village with presumptive infection from the community

(Figure 4B). Cases 21PXDR_32 and 21PXDR_41 were household

members (Figure 4B). Although the SNP difference between cases

20MDR_100 and 21PXDR_32 was 5, no epidemiological links

were recalled.

3.3 Compensatory mutations

We identified putative compensatory mutations in the rpoA,

rpoC, or non-RRDR of the rpoB genes in 161 (54.2%) MDR

isolates. The most predominant mutation was rpoC V483G

(17/161, 10.6%), one of the high-probability compensatory

mutations (HCMs) identified by Comas et al. (2011), followed by

the rpoC A172V (14/161, 8.7%) and rpoC E750D (14/161, 8.7%)

mutations (Supplementary Table 1). The putative compensatory

mutation rpoC E750D was not previously reported and was found

only among sublineage 2.1 isolates (Supplementary Table 1).

We observed that 43.43% (129/297) of M. tuberculosis isolates

harbored concurrent compensatory mutations with rpoB

S450L mutation. Notably, these mutations were significantly

associated with clustering (Table 1). In addition, the rpoC

E750D in sublineage 2.1 and the rpoC D485Y/rpoC E1140D

in sublineage 2.2 were associated with MDR-TB transmission

(Table 3).

4 Discussion

To contain and mitigate ∼80% of new MDR-TB cases

confirmed annually in Taiwan, we applied WGS analysis alongside

epidemiological investigation to delineate the putative transmission

network and guide public health responses. We found that the

MDR-TB clustering rate was 25.3%, consisting of 20 clusters with

two outbreaks. In comparison, the clustering rates were 20 and 15%

in the US and UK, respectively (Moonan et al., 2013; Anderson

et al., 2014). The Beijing genotype was predominant, with 39.5% of

the proto-Beijing genotype isolates found in clusters (Table 1). Our

results recapitulated that MDR isolates harboring the low fitness

cost rpoB S450Lmutation and compensatorymutations in the rpoC

gene have an impact onMDR-TB transmission (de Vos et al., 2013).

Particularly, sublineage 2.1 MDR isolates harboring the rpoB S450L

and a compensatory mutation in rpoC E750D had a heightened risk

of clustering.

Our results supported previous findings indicating that lineage

2 isolates were the most common in MDR-TB clusters (Yang et al.,

2017; Yin et al., 2022; Xiao et al., 2023). Previous studies revealed

that lineage 2 isolates displayed greater virulence than other

lineages in East Asia. Specifically, lineage 2 isolates induce reduced

lower levels of pro-inflammatory cytokines TNF and IL-12p40 and

proliferate rapidly within monocyte-derived macrophages (Sarkar

et al., 2012; Smith et al., 2022). These characteristics facilitate

immune evasion, contributing to the widespread transmission

of lineage 2 isolates in densely populated East Asian regions

(Borrell and Gagneux, 2009; Chai et al., 2020; Allué-Guardia

et al., 2021; Chandra et al., 2022). Notably, we identified 14.5% of

isolates as belonging to sublineage 2.1, a prevalence comparable

to that in southern China, Guangxi (9.3%), and Hainan Island

(27.2%; Liang et al., 2023; Wang et al., 2023), but not in

central China, Ningbo (0.9%), or Japan (2.35%; Che et al., 2024;

Yokoyama et al., 2010). This suggests that sublineage 2.1 exhibits

considerable geographic variability, potentially influenced by local

environmental conditions and specific genetic adaptations that

may confine its epidemic presence to certain areas. Additionally,

research has shown that sublineage 2.1 isolates in MDR or XDR-

TB cases have been linked to transmission in Thailand, although

the reasons remain unclear (Srilohasin et al., 2020). Investigating

host immune responses to sublineage 2.1 strains might further

clarify the relationship between geographic distribution and

epidemiological patterns.
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FIGURE 2

Maximum likelihood phylogenetic tree of the 297 MDR-TB isolates from Taiwan. The tree was constructed based on 3,453 genome-wide SNPs.

Lineages are represented by di�erent colored blocks. Mutations encoded resistance were represented by filled circles (presence of mutation) or

empty circles (absence of mutations) icons. The square beside the nodes shows the presence of pre-extensively drug-resistant (pre-XDR, blue) and

extensively drug-resistant (XDR, red) phenotypes among the multidrug-resistant tuberculosis strains. The figure was generated using iTOL v6 (https://

itol.embl.de). RIF, rifampicin; INH, isoniazid; EMB, ethambutol; PZA, pyrazinamide; STM, streptomycin; FQs, fluoroquinolones; AMK, amikacin; KAM,

kanamycin; CAP, capreomycin; ETO, ethionamide; PAS, para-aminosalicylic acid; CMs, compensatory mutations.

Our study demonstrated a significant association between

rpoC compensatory mutations and MDR-TB clustering. Previous

studies have shown that RIF-resistant M. tuberculosis isolates

with concurrent compensatory mutations significantly impact

increased transmission rates (de Vos et al., 2013; Casali et al.,

2014; Li et al., 2016; Merker et al., 2018; Gygli et al., 2021; Goig

et al., 2023). A study in South Africa showed that clustered M.

tuberculosis isolates had a significantly higher prevalence of rpoC

mutants than non-clustered isolates (30.8 vs. 9.4%). Although

the association between rpoC gene mutations and MDR-TB

dissemination has been hypothesized, the transmission mechanism

remains unclear (de Vos et al., 2013). We observed a high-

probability compensatory mutation, rpoC V483G, in 10.6% of

MDR isolates, which was prevalent in high-burden MDR isolates

(Comas et al., 2011). The compensatory mutation in rpoC V483G

could restore the significant fitness cost caused by the low fitness

rpoB S450L under stringent growth conditions (Song et al.,

2014).
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TABLE 1 Demographic and other factors associated with TB clustering (≤12 SNPs di�erence).

Characteristic Case (n = 297),
No. (%)

Cluster (n = 75),
No. (%)

Non-cluster (n = 222),
No. (%)

OR (95% CI) P-value

Sex

Female 78 (26.3) 13 (17.3) 65 (29.3) 1.00

Male 219 (73.7) 62 (82.7) 157 (70.7) 1.97 (1.01-3.84) 0.04

Age

<25 16 (5.4) 8 (10.7) 8 (3.6) 1.00

25–44 44 (14.8) 9 (12.0) 35 (15.8) 0.25 (0.08–0.97) 0.03

45–54 41 (13.8) 12 (16.0) 29 (13.1) 0.41 (0.12–1.36) 0.15

55–64 56 (18.9) 19 (25.3) 37 (16.7) 0.51 (1.17–1.58) 0.25

≥65 140 (47.1) 27 (36.0) 113 (51.0) 0.24 (0.08–0.69) 0.01

Case category

New 242 (81.5) 64 (85.3) 178 (80.2) 1.00

Previously treated 52 (17.5) 10 (13.3) 42 (18.9) 0.66 (0.31–1.40) 0.23

Unknown 3 (1.0) 1 (1.3) 2 (0.9) 1.39 (0.12–15.60) 0.79

Treatment outcome

Cured/Treatment

completed

160 (53.9) 47 (62.7) 113 (50.9) 1.00

Died 95 (32.0) 20 (26.7) 75 (33.8) 0.64 (0.35–1.17) 0.15

Unknown 42 (14.1) 8 (10.7) 34 (15.3) 0.57 (0.24–1.31) 0.18

Genotype

Beijing 145 (48.8) 34 (45.3) 111 (50.0) 1.00

Proto-Beijing 43 (14.5) 17 (22.7) 26 (11.7) 2.13 (1.04–4.39) 0.04

Non-Beijing 109 (36.7) 24 (32.0) 85 (38.3) 0.92 (0.51–1.67) 0.8

Drug resistance mutations

w/o rpoB S450L 98 (33.0) 11 (14.7) 87 (39.2) 1.00

w rpoB S450L 70 (23.6) 13 (17.3) 57 (25.7) 1.80 (0.76–4.30) 0.2

w rpoB

S450L+CMs

129 (43.4) 51 (68.0) 78 (35.1) 5.17 (2.52–10.62) <0.01

OR, odds ratio; CI, confidence interval; CMs, compensatory mutations; w, with; w/o, without. Statistical significances are represented in bold.

When exposed to RIF, MDR isolates carrying the rpoB S450L

and F503S mutations demonstrated increased in vitro growth

(Zhong et al., 2010). Furthermore, studies have indicated that

the presence of the rpoB S450L mutation, along with additional

compensatory mutations, is associated with higher transmission

rates (Conkle-Gutierrez et al., 2024). A study from Russia further

demonstrated that MDR isolates with the rpoB S450L mutation

and the compensatory mutation, rpoB E761D, could enhance

transmission (Casali et al., 2014).

In addition, Brunner et al. showed that isolates harboring

the rpoB S450L mutation along with compensatory mutations

promoted lineage and cluster formation during in vitro growth

(Brunner et al., 2024). These compensatory mutations likely

facilitate the clustering of MDR isolates with rpoB S450L, possibly

due to their effects on protein structure. The rpoB mutation might

disrupt the structural confirmation and interactions among the β
′

,

β , and α subunits of RNA polymerase, negatively impacting growth

and RNA transcription. However, compensatory mutations could

reverse these impacts (Gagneux et al., 2006; Brandis et al., 2012; Li

et al., 2016; Brunner et al., 2024).

Previous studies suggest that the survival and evolution

of MDR isolates may involve epistatic interactions between

various drug-resistant and compensatorymutations (Phillips, 2008;

Borrell and Gagneux, 2011). The epistatic interactions between

specific mutations, such as rpoB S450L and rpoC compensatory

mutations, particularly novel and high-confidence mutations,

warrant further investigation.

Compensatory mutations could be lineage-specific. The lineage

markers, tlyA N236K and rpoC G594E, were identified in lineage

4.6.2 (Cameroon genotype) and lineage 4.1.2 (Haarlem lineage),

respectively (Comas et al., 2011; Walker et al., 2018). In our

study, all lineage 1.2.1 and 1.2.2 isolates carried the compensatory

mutation rpoC A172V, consistent with findings in Indo-Oceanic

genotype EAI isolates in India (Comas et al., 2011; Advani et al.,
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TABLE 2 Characteristics of MDR-TB clusters based on whole genome sequencing analysis.

Clusters Number of
cases in a
cluster

Lineage Median age
(years [IQR])

Number of patients
living in the same

region

Number of
new cases

Treatment outcome
(number of patients)

Nature of
epidemiological link

Cluster 04 13 2.1 67 (54–76) 11 13 Cure or completed (10), died (2),

unknown (1)

Unknown

Cluster 19 8 2.2 65 (50–77) 5 8 Cure or completed (5), died (2),

unknown (1)

Unknown

Cluster 10 7 4.5 52 (25–64) 6 7 Cure or completed (6), died (1) Household (5), social (school [2])

Cluster 11 7 2.2 40 (34–46) 2, 5∗ 5 Cure or completed (5), died (2) Household (2), social (resident

community [3])

Cluster 01 5 1.2.1 58 (56–58) 5 4 Cure or completed (3), died (1),

unknown (1)

Unknown

Cluster 05 4 4.5 55 (48–59) 4 2 Cure or completed (2), died (2) Unknown

Cluster 13 4 2.2 61 (56–66) 3 3 Cure or completed (3), died (1) Unknown

Cluster 20 3 2.2 56 (53–64) 3 3 Cure or completed (3) Unknown

Other clusters∗∗ 24 2.1 or 2.2 or 4.5 59 (52–75) ND 19 Cure or completed (11), died (9),

unknown (4)

Unknown

∗Five cases were from the eastern region, and two cases were from the central region.
∗∗Genomic cluster includes two independent MDR-TB strains.

ND, not determined.
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FIGURE 3

The minimum spanning tree of genomic cluster 10. (A) Minimum spanning tree of genomic cluster 10. (B) Putative transmission network based on

epidemiological links. The numbers on the black lines are the di�erence in the number of SNPs between isolates. The first two digits of the case’s

identification indicated the year MDR-TB was notified.

FIGURE 4

The results of the epidemiology investigation and genomic analysis of cluster 11. (A) Minimum spanning tree of genomic cluster 11 (B) Putative

transmission network based on epidemiological links. The numbers on the black and red lines are the di�erence in the number of SNPs between

isolates. The first two digits of the case’s identification indicated the year MDR-TB was notified.

2019). A cluster-specific gene marker has been used in Shigella

and enteroinvasive Escherichia coli (EIEC) for epidemiological and

diagnostic inquiries (Zhang et al., 2021). Our research showed

that compensatory mutations in the rpoC gene could prompt

clustering and transmission (Table 3 and Supplementary Table 2),

indicating their potential use as epidemiological gene markers or

lineage-specific markers to predict putative clusters. Compensatory

mutations may serve as prognostic indicators, facilitating epidemic

alerts and responses to MDR-TB clustering and outbreaks.

The strength of this study lies in its population-based

cohort design, which effectively demonstrates MDR-TB clustering.

However, there are some limitations to be considered. First,

the lack of detailed epidemiological data hinders the ability to

definitively identify true outbreaks among cases within the same

cluster. Additionally, the lack of spatial transmission analysis limits

our comprehensive understanding of the transmission dynamics.

To address this, we plan to employ Geographic Information

Systems (GIS) to conduct spatial analysis to enhance molecular

epidemiological investigations.

5 Conclusion

In conclusion, this study provides the first report on the

population-based genomic epidemiological analysis of MDR-TB in

Taiwan, revealing that 25.3% of cases were clustered. The sublineage

2.1-proto-Beijing genotype MDR isolates were identified as having

a high risk of transmission. We found that 54.2% of isolates

harbored compensatory mutations in the rpoC gene and non-

RRDR regions of the rpoB gene.

Notably, proto-Beijing genotype isolates with concurrent rpoB

S450L/rpoC E750D mutations and modern Beijing genotype

isolates harboring rpoC D485Y/rpoC E1140D mutations were

significantly associated with MDR clusters.
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TABLE 3 Univariable analysis of MDR-TB strains harbored rpoB S450L with compensatory mutations associated with clustering.

Gene catalog Case (n = 129),
No. (%)

Cluster (n = 51),
No. (%)

Non-cluster
(n = 78), No. (%)

OR (95% CI) P-value

rpoC V483G 15 (11.6) 4 (7.8) 11 (14.1) 0.52 (0.16–1.72) 0.29

rpoC E750D 13 (10.1) 13 (25.5) 0 (0.0) 55.1 (3.19–950.72) <0.01

rpoC N698S 9 (7.0) 4 (7.8) 5 (6.4) 1.24 (0.92–4.87) 0.76

rpoC A172V 8 (6.2) 0 (0.0) 8 (10.3) 0.08 (0.004–1.43) 0.09

rpoC D485Y+ rpoC E1140D 8 (6.2) 7 (13.7) 1 (1.3) 12.3 (1.46–102.86) 0.02

rpoC H525Q 5 (3.9) 0 (0.0) 5 (6.4) 0.13 (0.01–2.40) 0.17

rpoC V483A+ rpoC A172V 8 (6.2) 5 (9.8) 3 (3.8) 2.71 (0.62–11.9) 1.18

rpoC E750G 4 (3.1) 0 (0.0) 4 (5.1) 0.16 (0.01–3.05) 0.22

rpoC L449V 4 (3.1) 4 (7.8) 0 (0.0) 14.87 (0.78–282.46) 0.07

rpoC P1040S 4 (3.1) 1 (2.0) 3 (3.8) 0.5 (0.05–4.94) 0.55

rpoB F503S 3 (2.3) 2 (3.9) 1 (1.3) 3.14 (0.28–35.60) 0.36

rpoB G890C 3 (2.3) 3 (5.9) 0 (0.0) 11.33 (0.57–224.13) 0.11

rpoB I491V 3 (2.3) 2 (3.9) 1 (1.3) 3.14 (0.28–35.60) 0.36

rpoC L516P 3 (2.3) 0 (0.0) 3 (3.8) 0.21 (0.01–4.14) 0.30

Others∗ 39 (30.3) 6 (11.9) 33 (42.4) 0.18 (0.07–0.48) <0.01

∗Gene catalog of compensatory mutations occurred in two independent MDR-TB strains.

OR, odds ratio.

Statistical significances are represented in bold.

We propose that specific compensatory mutations could

serve as epidemiological markers to detect clusters and putative

outbreaks. Overall, we modernized and strengthened laboratory

services and surveillance by systemically integrating WGS-based

analysis with public health investigations to elucidate the genetic

basis of MDR-TB clusters.
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