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Introduction: Seagrass-associated microbial communities play a crucial role in 
the growth and health of seagrasses. However, like seagrass meadows, seagrass-
associated microbial communities are often affected by eutrophication. It 
remains unclear how eutrophication influences the composition and function 
of microbial communities associated with different parts of seagrass.

Methods: We employed prokaryotic 16S rRNA gene high-throughput sequencing 
combining microbial community structure analysis and co-occurrence network 
analysis to investigate variances in microbial community compositions, potential 
functions and complexities across sediment, seagrass leaves, and seawater 
within different eutrophic areas of two adjacent seagrass meadows on Hainan 
Island, China.

Results: Our results indicated that microbial diversity on seagrass leaves was 
significantly lower than in sediment but significantly higher than in seawater. 
Both sediment and phyllosphere microbial diversity showed no significant 
difference between the highly eutrophic and less eutrophic sites in each 
lagoon. However, sediment microbial diversity was higher in the more eutrophic 
lagoon, while phyllosphere microbial diversity was higher in the less eutrophic 
lagoon. Heavy eutrophication increased the relative abundance of phyllosphere 
microorganisms potentially involved in anaerobic metabolic processes, while 
reducing those responsible for beneficial functions like denitrification. The main 
factor affecting microbial diversity was organic carbon in seawater and sediment, 
with high organic carbon levels leading to decreased microbial diversity. The 
co-occurrence network analysis revealed that heavy eutrophication notably 
reduced the complexity and internal connections of the phyllosphere microbial 
community in comparison to the sediment and seawater microbial communities. 
Furthermore, ternary analysis demonstrated that heavy eutrophication 
diminished the external connections of the phyllosphere microbial community 
with the sediment and seawater microbial communities.

Conclusion: The pronounced decrease in biodiversity and complexity of the 
phyllosphere microbial community under eutrophic conditions can lead to 
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greater microbial functional loss, exacerbating seagrass decline. This study 
emphasizes the significance of phyllosphere microbial communities compared 
to sediment microbial communities in the conservation and restoration of 
seagrass meadows under eutrophic conditions.
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co-occurrence network, eutrophication

1 Introduction

Seagrasses are considered one of the most important coastal 
habitats due to their support for a wide range of keystone marine 
species from different trophic levels. However, they are facing decline 
as a result of natural causes and human-induced activities (Bujang 
et al., 2018; Ramesh et al., 2019). Human activities, such as untreated 
sewage discharge and fertilizer runoff, which are rich in nutrients, 
contribute to the loss of seagrass (Bujang et al., 2006; Ugarelli et al., 
2017), emphasizing the need to understand mechanisms affecting 
seagrass health under human influence to prevent further decline. 
Microbial communities are essential for maintaining a healthy 
ecosystem by playing important roles in several ecological processes, 
such as the oxidation of organic carbon, denitrification, nitrification, 
and sulfur oxidation and reduction (Nealson, 1997; Cardinale et al., 
2012). Seagrass-associated microbial communities, found around the 
rhizosphere and phyllosphere, interact closely with seagrass, 
contributing to its growth (Ugarelli et  al., 2017). For instance, 
rhizosphere microorganisms can provide inorganic nutrients to 
seagrass by degrading seagrass-derived organic matters (Evrard et al., 
2005) and fixing nitrogen gas, especially in oligotrophic seagrass beds 
where nitrogen is limited (Patriquin and Knowles, 1972).

The phyllosphere refers to the above-ground surface of a plant 
leaves, serving as habitat for microorganisms (Vogel et  al., 2021). 
Recent studies have revealed that the phyllosphere of seagrasses hosts 
rich and diverse microbial communities (Ugarelli et al., 2018; Vogel 
et  al., 2021). These communities are often dominated by various 
groups capable of diverse metabolic functions, ranging from aerobic 
respiration to nitrogen fixation and fermentation (Agawin et al., 2016; 
Crump et al., 2018; Chen et al., 2022), thus supporting or inhibiting 
the health and growth of their hosts (Ugarelli et al., 2017; Crump et al., 
2018). Though both sediment/rhizosphere and phylloshpere microbial 
communities are essential for the health and growth of seagrass, 
sediment/rhizosphere microbial communities have received 
enormous and widespread attention. Martin et  al. (2020) have 
suggested that rhizosphere microorganisms could be  treated as 
indicators of seagrass health. However, the microbial communities on 
seagrass leaves have been much less studied.

The physicochemical environments within a seagrass meadow 
ecosystem vary significantly among sediment, seagrass leaves, and 
seawater. Consequently, environmental changes are likely to have 
distinct effects on microbial communities in these different habitats. 
Previous investigations of seagrass-associated microbial communities 
have solely focused on the communities themselves (Liu et al., 2018; 
Zhang et al., 2020; Vogel et al., 2021), while minimal information is 
available about the differences in the impact of environmental changes 

on microbial communities across different habitats within seagrass 
ecosystems. Recent studies that simultaneously examined microbial 
communities associated with different habitats within a seagrass 
ecosystem found distinct differences among them due to 
environmental variations (Ugarelli et al., 2018; Rabbani et al., 2021; 
Banister et  al., 2022). For instance, phyllosphere microbial 
communities were influenced by environmental factors such as 
temperature, water depth, salinity, and light (Vogel et al., 2020, 2021). 
In comparison, root and rhizosphere microbial communities in the 
seagrass meadow near a volcanic CO2 vent were more significantly 
affected by pH (Banister et al., 2022).

Human activities inducing eutrophication can affect the health of 
seagrass through various mechanisms such as light reduction, 
ammonium toxicity, water-column nitrate inhibition, and algal 
blooms (Burkholder et al., 2007; Dolbeth et al., 2011). Consequently, 
the health condition of seagrasses affects the community structure and 
function of microorganisms within seagrass meadows (Liu et al., 2018; 
Martin et  al., 2020; Wang et  al., 2020). For instance, the relative 
abundances of potential pathogen groups in seagrass meadow 
sediment near nutrient sources were significantly higher than in 
sediment further from these sources (Liu et al., 2018). However, the 
effects of eutrophication on the seagrass phyllosphere microbial 
community are largely unknown, leading to a knowledge gap about 
the distinct effects of eutrophication on sediment, phylloshpere, and 
seawater microbial community structures.

The Xincun (XC) and Lian (LA) bays are adjacent lagoons located 
in the southeastern part of Hainan Island, China (18°23′ to 18°26′, 
109°58′ to 110°03′) (Figure 1). Both are natural, nearly closed lagoons 
with extensive, contiguous seagrass meadows distributed inside, 
serving as important fishing ports and mariculture areas in Hainan 
province. However, factors such as enclosed aquaculture, increased 
fishing activities and land-based wastewater pollution have degraded 
the ecological environment of both lagoons. Moreover, large amounts 
of bait are released from fish farms, which release organic matter and 
consume oxygen in the water, resulting in severe eutrophication of the 
water bodies. Additionally, weak water exchange between the lagoons 
exacerbates the eutrophication problem. This eutrophication poses a 
severe threat to the growth of seagrass populations in the lagoons (Li 
et  al., 2022). To prevent further environmental degradation, fish 
farming has been banned in the LA lagoon, whereas it remains active 
in the XC lagoon. Extensive seagrass mortality has been observed 
along the southeast coast of the XC lagoon, with most of the seagrass 
leaves fallen off and in a state of decay.

In this study, we investigated the microbial community structure 
in sediment, seagrass leaves, and seawater habitats in the XC and LA 
lagoons, with the aim of exploring variations in the impact of 

https://doi.org/10.3389/fmicb.2024.1449545
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Deng et al. 10.3389/fmicb.2024.1449545

Frontiers in Microbiology 03 frontiersin.org

eutrophication on phyllosphere microbial diversity, composition, and 
potential functions compared to sediment and seawater microbial 
communities within seagrass ecosystems. We also aimed to assess the 
complexity of the microbial community in each habitat through 
co-occurrence network analysis, and to examine the interactions of 
microbial communities from the three habitats under various 
eutrophication levels. We hypothesized that eutrophication may have 
greater effects on the diversity and complexity of phyllosphere 
microbial community than sediment microbial community, as 
phyllosphere microbial communities are more exposed to eutrophic 
substances in seawater compared to sediment microbial communities. 
Those, in turn, weaken the ability of the phyllosphere microbial 
community to help seagrass cope with environmental changes. This 
work will helps us understand the microbial mechanisms by which 
eutrophication affects seagrass health and enhances our recognition 
of the importance of phyllosphere microbial communities.

2 Materials and methods

2.1 Study area description and sampling

In the XC lagoon, seagrass is mainly distributed in the southern and 
eastern parts, forming continuous patches, while sporadic distribution 
is observed in other areas. In the LA lagoon, seagrass is primarily found 
in the western and southern regions, where it is extensively distributed. 
In the present study, two sampling sites in the lagoons of XC and LA 
were chosen, respectively (Figure 1). The sites XC1 and XC2 located in 
southern and northeastern areas of the XC lagoon, and LA1 and LA2 
are in the northwestern area of the LA lagoon. The site2 (XC2 or LA2) 
was observed more polluted than their counterpart site1 (XC1 or LA1) 
in each lagoon, respectively. At each site, 100 g of sediment was collected 
from the surface of seagrass meadow in June 2022. Additionally, leaves 

of Enhalus acoroides, one of the dominant seagrass species in the two 
bays (Zhang et al., 2020), were collected near the sediment sampling 
location. Furthermore, 500 mL of seawater above 0.2 m of the seagrass 
leaves was collected. The microbes in seawater were filtered on a 
0.22 μm-pore size polycarbonate filter (Millipore Corp., Merck KGaA, 
Germany). All samples were taken in triplicate. The sediment, seagrass 
leaves, and the polycarbonate filters were immediately flash-frozen in 
liquid nitrogen upon collection and subsequently stored at −80°C.

2.2 Physicochemical analysis

The seawater temperature, salinity, and pH were determined in situ 
using a thermometer, a portable refractometer, and a pH meter 
(WP-81, TPS, Banksia Scientific Co., Brisbane, Australia) respectively. 
Seawater NH4

+, NO3
−, and NO2

− concentrations were measured 
according to methods described by Deng et al. (2021) with a four-
channel continuous Flow Technicon AA3 Auto-Analyzer (Bran-Lube 
GmbH, Norderstedt, Germany); the concentration of labile phosphate 
(LP) was determined using the phosphomolybdenum blue 
spectrophotometric method with a UV–visible spectrophotometer 
Evolution™ 350 (Thermo Scientific, Waltham, United States) (He and 
Honeycutt, 2005); chemical oxygen demand (COD) and dissolved 
oxygen (DO) were measured using alkaline potassium permanganate 
method (Rho et  al., 2018) and iodometric titration method, 
respectively, with a titrator; chlorophyll a (Chla) was determined using 
spectrophotometry method (Aminot and Rey, 2000). For sediment 
chemical parameters, organic carbon (OC) and total nitrogen (TN) 
contents were analyzed using a TOC analyser coupled with a nitrogen 
analyser (Vario TOC Cube, Elementar Analysensysteme, 
Langenselbold, Germany) after acidification to remove carbonates 
(Zheng et al., 2023); total phosphorus (TP) content was measured 
using spectrophotometer method with a UV–visible spectrophotometer 

FIGURE 1

Map of sampling sites in Xincun and Lian lagoons in Hainan Island, South China Sea.
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Evolution™ 350 (Thermo Scientific, Waltham, United States) (Aspila 
et al., 1976); sulfide content was determined using iodometric titration 
method (Pawlak and Pawlak, 1999) with a titrator. All soil data were 
expressed based on their oven-dry weight (105°C).

2.3 DNA extraction and sequencing

DNA of microbes in sediment was extracted from about 0.5 g (wet 
weight) of sediments using Fast DNA® SPIN Kit for Soil Kits (MP 
Biomedicals, California, United States) according to the manufacturer’s 
specifications. Microbial DNA on polycarbonate filters was extracted 
using the phenol-chloroform-isoamyl alcohol method (Nercessian 
et al., 2005). The microbes attached to seagrass leaves were rinsed off 
with 1% sterile NaCl solution, and then the microbial DNA was 
extracted using Fast DNA® SPIN Kit for Soil Kits (MP Biomedicals, 
Irvine, United States). The purity and quality of the DNA was tested 
using Thermo Scientific NanoDrop  2000c (Thermo Scientific, 
Waltham, United States). The DNA was stored at −20°C for further 
analysis. Prokaryotic V3–V4 hypervariable regions in 16S rRNA genes 
were amplified using universal primers 515F 
(5′-GTGYCAGCMGCCGCGGTAA-3′) and 806R 
(5′-GGACTACNVGGGTWTCTAAT-3′) (Pichler et al., 2018). The 
amplicon library was sequenced using the Illumina Nova 6000 
platform to obtain paired-end sequences (Guangdong Magigene 
Biotechnology Co., Ltd. Guangzhou, China).

2.4 Sequences processing

The obtained raw paired-end sequences were analyzed using the 
QIIME version 1.9.1 pipeline (Caporaso et al., 2010). Briefly, the raw 
sequences were merged into full-length amplicon sequences using 
Usearch fastq_mergepairs (V10, http://www.drive5.com/usearch/) 
(Edgar and Flyvbjerg, 2015). The above-processed clean sequences 
were clustered into operational taxonomic units (OTUs) with a cut-off 
0.03 using the UPARSE 11 pipeline (Edgar, 2013), and chimera 
checking was performed using the UCHIME algorithm (Edgar et al., 
2011). The Ribosomal Database Project (RDP) classifier was used to 
assign OTUs to taxonomic groups based on the SILVA database 
(Quast et al., 2012) with a minimum confidence of 0.8. To obtain a 
final OTU matrix that contains the valid read counts of each OTU in 
each sample, the OTUs that were assigned to chloroplasts or 
mitochondria, as well as those were not assigned to any kingdom, 
were discarded.

2.5 Microbial community analysis

The number of prokaryotic sequences varied from 41,399 to 
103,425 (average 76,668) per sample. To normalize the data, the 
sequences were rarefied and subsampled to the minimum number in 
all samples (Zhang et  al., 2016). We  were interested in assessing 
whether significant differences existed in α-diversity of the microbial 
communities between different habitats (sediment, phyllosphere, and 
seawater), lagoons (XC Bay vs. LA Bay) and levels of eutrophication 
(heavy pollution-site2 vs. less pollution-site1). For this purpose, 
we calculated the ACE, Chao1, Shannon2 (log base 2), and Simpson 

diversity indices based on the OTUs matrices. Two-way ANOVAs was 
performed to identify the main and interactive effects of the lagoons 
and sampling sites (eutrophication) on the α-diversity of the microbial 
communities, after which post hoc Tukey’s HSD test was applied to test 
the pairwise group differences. The normality of each index was 
determined using the Shapiro–Wilk test (Chao, p > 0.05; ACE, p > 0.05; 
Shannon, p > 0.05; Simpson, p > 0.05) (Royston, 1992).

To visualize the community dissimilarity between sites, principal 
coordinate analysis (PCoA) were applied based on Bray–Curtis 
dissimilarities of the OTU matrices using vegan package (Dixon, 
2003) in R. A one-way permutational multivariate ANOVA 
(PERMANOVA) (Anderson, 2005) was applied to identify the 
differences of microbial community among the three habitats and 
among the four sampling sites of each habitat based on Bray–Curtis 
dissimilarities of the OTU matrices. The overall compositional 
differences between the lagoons and sites of each habitat were tested 
using two-way PERMANOVA. The permutation test of multivariate 
homogeneity of group dispersions was applied to evaluate the effect of 
group dispersion on the PERMANOVA results (Anderson, 2006). The 
linear discriminant analysis effect size (LEfSe), based on the relative 
abundance of OTUs at the genus level, was applied to identify the 
groups that display significant differences in relative abundance 
between XC and LA lagoons, and between site1 and site2 within each 
habitat (Segata et al., 2011). The bacterial functions were predicted by 
FAPROTAX based on the OTU matrices (Louca et al., 2016).

2.6 Correlation analysis

The correlations between microbial community compositions and 
physicochemical parameters were examined using Mantel test, with 
dissimilarity matrices of microbial communities based on Bray–Curtis 
distances between samples. Pearson tests were run to determine the 
correlations between the physicochemical parameters and 
α-diversities. The analyses were performed and the results were 
visualized by using the packages linkET (Huang, 2021) and dplyr 
(Wickham et al., 2021) in R. The Hmisc package in R was used to 
examine the Pearson correlations between OTUs and environmental 
variables (Harrell and Harrell, 2019). Only the top 100 OTUs in total 
relative abundance across all samples from each habitat are used for 
analysis. The interactive platform gephi was used to visualize networks 
(Bastian et al., 2009) with only correlations with absolute value of 
r > 0.6 and p < 0.05 were retained as valid co-occurrence events.

To access the complexity of the microbial community within the 
seagrass ecosystems, a co-occurrence network consisting of all 
samples at each site was constructed. To avoid potential spurious 
correlations, the top 500 dominant OTUs in each site were selected. 
The correlation among microbial OTUs was accessed based on 
Pearson’s correlation, and correlation coefficients >0.8 with a 
corresponding of p-value <0.01 were retained to generate the network. 
All networks were constructed using ggClusterNet package in R (Wen 
et al., 2022), and visualized in Fruchterman–Reingold layout using the 
interactive Gephi platform.1 To describe the topology and compare 
the complexity of each network, we  calculated a set of metrics, 

1 https://gephi.org
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including nodes, edges, average degree, network diameter, average 
path length, graph density, modularity, and average clustering 
coefficient, in Gephi. A higher number of nodes and edges, average 
degree, average clustering coefficient, and graph density, along with 
lower average path lengths, indicating greater potential complexity 
within networks (Wang et al., 2023).

3 Results

3.1 Physicochemical parameters

In seawater, the temperature (29.5–33.3°C), salinity (33.3–34.0), 
and pH (7.85–7.89) showed slight variations among the sites XC1, 
XC2, LA1, and LA2 (Table 1). The COD and the concentration of Chla 
and LP were several micrograms per liter at the four sites, with higher 
levels observed at site2 (XC2 or LA2) than at site1 (XC1 or LA1) in 
each lagoon. DO was lower at site2 compared to site1 in each lagoon. 
The TIN concentrations were high (7.87–12.18 μM) across all sites, 
with the concentrations of NH4

+, NO3
−, and NO2

− were higher at XC1 
than at XC2, but lower at LA1 than at LA2. The higher COD and LP 
content but lower inorganic nitrogen content at XC2 compared to XC1 
might be because the higher concentrations of organic carbon and 
phosphorus nutrients stimulated the assimilation of inorganic 
nitrogen by heterotrophic microorganisms, thereby decreasing its 
concentration (Deng et al., 2021). In sediment, the content of all tested 
nutrients, including OC, sulfide, TP, and TN, especially the sulfide, 
were higher at site2 than at site1 in each lagoon (Table 1). These results 
indicate that the site2 (XC2 or LA2) was more eutrophic than site1 
(XC1 or LA1) in each lagoon, and the XC lagoon was relative more 
eutrophic than the LA lagoon.

3.2 α-diversity of microbial community

The α-diversity indices, including ACE, Chao1, and Shannon, 
showed a successive and significant decrease in microbial diversity 
from sediment to seagrass leaves to seawater (Supplementary Figure S1). 
The Simpson index also showed that microbial diversity in sediment 
and on seagrass leaves was significantly higher than in seawater 
(Supplementary Figure S1). For each habitat, the ACE (p < 0.001), 
Shannon (p < 0.005), and Simpson (p < 0.005) indices indicated that 
sediment microbial diversity in the XC lagoon was higher than in the 
LA lagoon. However, all α-diversity indexes (ACE, p < 0.01; Chao1, 
p < 0.01; Shannon, p < 0.05; Simpson, p < 0.05) suggested that the 
phyllosphere microbial diversity in the XC lagoon was lower than 
those in the LA lagoon (Figure  2 and Supplementary Table S1). 
Moreover, the α-diversity indices (Chao1, p < 0.01; Shannon, p < 0.05; 
Simpson, p < 0.05) mostly indicated that seawater microbial diversity 
was higher at the less eutrophic site compared to the highly eutrophic 
site in both lagoons (Figure 2 and Supplementary Table S1).

3.3 Community composition of prokaryotic 
16S rRNA gene among the habitats

PCoA showed a clear distinction of microbial community 
composition among the sediment, seagrass leaves, and seawater 
habitats (Figure 3A). The average microbial relative abundance at 
levels from phylum to family in the three habitats is shown in Figure 4. 
Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria 
were the three most dominant class in Proteobacteria, with 
Deltaproteobacteria being abundant only in sediment (9.3%), and 
Alphaproteobacteria having the highest relative abundance on seagrass 
leaves (57.0%) and in seawater (46.5%). Gammaproteobacteria was 
most abundant on seagrass leaves (14.7%) compared to sediment 
(8.8%) and seawater (4.6%). Vibrionales within Gammaproteobacteria 
was most abundant on seagrass leaves. The Deltaproteobacteria in 
sediment was mainly composed of Desulfobacterales. The relative 
abundance of the class Bacteroidia gradually decreased from sediment 
(15.9%) to seagrass leaves (12.7%) to seawater (5.4%). Within the 
phylum Actinobacteria, the class Actinobacteria (mainly Micrococcales) 
was detected only abundant in seawater (14.5%), while Acidimicrobiia 
was detected with the relative abundance ranging from 1 to 2.9% in all 
three habitats. Campylobacteria (phylum Epsilonbacteraeota) was the 
most abundant class in sediment (27.0%) and had a minor proportion 
on seagrass leaves (1.3%). The phyla Chloroflexi (5.0%) and 
Acidobacteria (2.3%) were exclusively abundant in sediment. 
Armatimonadetes was exclusively abundant in seawater (2.3%).

3.4 Comparison of prokaryotic community 
structure among sites in each habitat

PCoA analyses indicated that microbial community structure 
differed significantly among the four sampling sites (Figures 3B–D). 
Further two-way PERMANOVA analyses (Supplementary Table S2) 
showed that lagoons (XC vs. LA) played a major role in determining 
sediment microbial composition (F = 9.2, p = 0.001) compared to 
sampling sites (site1 vs. site2) (F = 3.8, p = 0.022; Figure  3B). In 
contrast, both lagoon (F = 13.9, p = 0.001) and sampling sites (F = 11.4, 

TABLE 1 Physicochemical parameters of the seawater and sediment at 
sampling sites.

Habitats Parameters Sampling sites

XC1 XC2 LA1 LA2

Seawater

Temperature (°C) 31.1 32.2 33.3 29.5

Salinity (‰) 33.4 33.3 34.0 33.6

pH 7.89 7.86 7.86 7.85

Chla (mg L−1) 1.40 1.81 1.40 2.08

DO (mg L−1) 6.32 6.17 7.18 6.42

COD (mg L−1) 1.26 3.89 1.98 2.63

NH4
+ (μM) 2.861 2.385 1.910 2.236

NO3
− (μM) 9.272 7.016 5.923 8.179

NO2
− (μM) 0.050 0.035 0.038 0.108

TIN (μM) 12.182 9.437 7.871 10.523

LP (μM) 0.233 0.378 0.061 0.474

Sediment

OC (%) 1.35 2.03 2.64 3.15

Sulfide (μmol g−1) 0.161 0.844 0.371 0.697

TP (μmol g−1) 12.258 16.419 7.258 12.774

TN (μmol g−1) 30.643 32.571 29.143 32.000

DO, dissolved oxygen; COD, chemical oxygen demand; TIN, total inorganic nitrogen; LP, 
labile phosphorus; OC, organic carbon content; TP, total phosphorus; TN, total nitrogen.
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p = 0.001; Figure 3D) played similar roles in determining seawater 
microbial composition. The combined effect of lagoons and sampling 
sites was also statistically significant for both sediment (F = 4.3, 
p = 0.009) and phyllosphere (F = 5.9, p = 0.002) microbial community. 
For seagrass leaves, microbial composition was significantly affected 
by lagoons (F = 6.3, p = 0.001) but not by sampling sites (F = 1.3, 
p = 0.213; Figure 3C).

LEfSe results showed significant differences in the relative 
abundance of microbial groups (including class and order) between 
the XC and LA lagoons: 17 groups in sediment, 20 groups in the 
phyllosphere, and 10 groups in seawater (Figures 5A,C,E). However, 
there were only 4 groups in sediment, 0 groups in the phyllosphere, 
and 7 groups in seawater showing significant differences between 
highly and less eutrophic sites (Figures 5B,D,F). On seagrass leaves, 
Campylobacterales, Bacteroidales, Oceanospirillales, and Vibrionales 
were enriched in XC, whereas Microtrichales, Bacteroidia, and 
Clostridiales were enriched in LA (Figure 5C).

3.5 Correlation between microbial 
community and physicochemical 
parameters

Pearson correlation analysis showed that seawater and 
phyllosphere microbial α-diversity exhibited various correlations with 
seawater physicochemical parameters (Figures  6A,B). For the 
seawater microbial community, seawater salinity and DO were 
positively correlated with diversity, while COD, Chla and LP were 

negatively correlated with diversity, and nitrogen nutrients showed 
no obvious correlation with diversity (Figure  6A). For the 
phyllosphere microbial community, seawater salinity and DO were 
also strongly correlated with diversity, but the correlations of COD, 
Chla, and LP with diversity were weakened; however, nitrogen 
nutrients became have some weak correlations with diversity: NO2

− 
was positively correlated, and NO3

− and NH4
+ were negatively 

correlated (Figure  6B). Regarding sediment physicochemical 
parameters, OC had a negative correlation, while TP and TN showed 
a positive correlation with sediment microbial diversity. These 
correlations were reversed for phyllosphere microbial diversity, where 
OC showed a positive correlation, and TP and TN showed negative 
correlations (Figures 6C,D). Sulfide showed no obvious correlation 
with either sediment or phyllosphere microbial diversity 
(Figures 6C,D).

Beside seagrass salinity and DO being significantly linked with 
phyllosphere microbial composition, the physicochemical 
parameters generally showed no significant correlation with 
microbial compositions (Figure 6). The co-occurrence network 
showed that microbial taxa (OTUs) were generally connected with 
only one or two physicochemical parameters, except that 
many OTUs of phyllosphere Rhodobacterales connected 
with two or more seawater physicochemical parameters 
(Supplementary Figure S2). Notably, among the seawater 
physicochemical parameters, NO2

− had the highest number of 
links with seawater and phyllosphere microbial taxa. For sediment 
physicochemical parameters, OC had the highest number of links 
with phyllosphere microbial taxa.

FIGURE 2

The values of α-diversity index ACE, Chao1, Shannon, and Simpson of sediment, phyllosphere, and seawater microbial communities are shown as bar 
plot. The bar color represents different sites.
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3.6 Microbial community analysis by using 
co-occurrence networks and ternary plot

The topological features of the network varied considerably 
between the two lagoons and between the highly and less eutrophic 
sites (Figure 7A and Supplementary Table S3). Compared to the highly 
eutrophic site in each lagoon, microbial community at the less 
eutrophic site had a more complex network with higher edges, a 
higher average degree, density and average clustering coefficient, and 
a lower average path length and diameter. Five dominant ecological 
clusters were identified across the four sites (Figure 7A). Members in 
Cluster 1 and Cluster 2 accounted for the highest relative abundance 
in sediment (> 67%), Cluster 3 and Cluster 4 were dominated by taxa 
from seagrass leaves (>72%), and Cluster 5 was dominated by taxa 
from seawater (>73%) (Figure 7B). Among these clusters, Cluster 1 
and Cluster 2 had the highest average degree, and Cluster 5 had the 
lowest average degree (Supplementary Table S4).

While the average degree of the sediment clusters (Clusters 1 and 
2), seawater cluster (Cluster 5), and the phylloshpere Cluster 4 
remained relatively stable across the four sites, the average degree of 
the phylloshpere Cluster 3 decreased greatly from lagoon LA to XC 

(Figure 7 and Supplementary Table S4). In addition, the percentages 
of the number of links (edges) between Cluster 1 and Cluster 2 relative 
to the total edges within these clusters were not higher in the XC 
lagoon (15.2%–17.2%) compared to the LA lagoon (10.7%–15.2%), 
whereas those values between Clusters 3 and 4 were much lower 
(0.3%–1.2%) in XC than in LA (3.2%–3.3%) (Figure  7 and 
Supplementary Table S5). Additionally, the links between Cluster 3 
and Cluster 4 were much weaker at the highly eutrophic site (0.3%) 
compared to the less eutrophic site (1.2%) in XC, while those values 
were similar between the highly and less eutrophic sites in the LA 
(Supplementary Table S5).

Given the large variation in the relative abundance of each OTU 
among the three habitats and strict criteria (r > 0.8, p < 0.01) used for 
building co-occurrence networks, no connection was observed 
between clusters dominated by taxa from different habitats in the 
co-occurrence networks (Figure 7). Therefore, we also used a ternary 
plot to access the interconnections of microbial groups among the 
three habitats at each site (Figure 8). The results indicate that most 
genera were enriched in one of the three habitats (E_Sed, E_SG, and 
E_SW), with no or few genera sharing similar relative abundance 
across all three habitats (C_All) at each site. At site XC1, the majority 

FIGURE 3

Principal coordinate analysis (PCoA) revealed the differences of the prokaryotic community composition among the habitats of sediment (red), 
seagrass leaves (green), and seawater (blue) (A), and among the four sampling sites in sediment (B), on seagrass leaves (C), and in seawater (D), 
respectively.
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of genera were located near or on the axis SG-Sed, with the fewest 
genera near or on the Sed-SW axis (Figure 8A). Conversely, at site 
XC2, most genera were located near or on the Sed-SW axis 
(Figure 8B). Similarly, the total relative abundance of the connecters 
between seagrass leaves and sediment (Sed-SG) and between seagrass 
leaves and seawater (SW-SG) was higher at XC1 than at XC2 
(Supplementary Figure S3). However, those values did not differ 
obviously in the LA lagoon (Supplementary Figure S3).

3.7 Functional prediction of the microbial 
community

Only 2,735 out of 16,212 OTUs (16.9%) could be assigned to at 
least one function by using FAPROTAX. Chemoheterotrophy/aerobic 
chemoheterotrophy were the most abundant functions across all three 
habitats (Figure 9). Sulfate respiration was the second most abundant 
function in sediment; other functions related to sulfur metabolism 
were also more abundant in sediment than on seagrass leaves and in 
seawater. Functions related to nitrogen metabolism (including nitrate 

respiration, denitrification, nitrogen fixation), as well as methanol 
oxidation, methylotrophy, chitinolysis, cellulolysis, and ureolysis, were 
commonly most abundant on LA seagrass leaves. In contrast, nitrate 
reduction and fermentation were commonly most abundant on XC 
seagrass leaves. Additionally, functions related to photoautotrophy 
had a higher relative abundance on LA seagrass leaves compared to 
XC seagrass leaves.

4 Discussion

4.1 Differences of sediment, phyllosphere, 
and seawater microbial community 
structure within seagrass ecosystem

Previous investigations of microbial communities in coastal 
ecosystem have indicated that microbial diversity was much higher in 
sediment than in seawater, with distinct microbial composition 
observed between these two environments (Won et al., 2017; Cleary 
et al., 2018; Ul-Hasan et al., 2019). However, these studies did not 

FIGURE 4

Taxonomic composition of microbial communities from the (A) sediment (Sed), (B) seagrass leaves (SL), and (C) seawater (SW). The pie area represents 
the average relative abundance of taxa in each habitat. The unlabeled area in family level are marked as the others with relative abundance <2%.
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specifically focus on the phyllosphere microbial community. Our 
results regarding sediment and seawater microbial diversity in line 
with these findings and further identify that phyllosphere microbial 
diversity is significantly higher than in seawater and significantly 
lower than in sediment (Supplementary Figure S1). The microbial 
community composition also varied obviously among the three 
habitats (Figures 3A, 4). For example, the Desulfobacterales, which 
comprises anaerobic sulfate-reducing microorganisms (Burow et al., 
2014; Cúcio et al., 2016; Dyksma et al., 2018), and Sulfurovum, which 
primarily consists of sulfur-oxidizing chemoautotrophs (Inagaki et al., 
2004; Giovannelli et al., 2016; Xie et al., 2021), were most abundant in 
sediment (Figure 9).

High abundance of both sulfur reducers and oxidizers have been 
reported in the sediment of various seagrass ecosystem (Zhang et al., 
2020; Rabbani et  al., 2021; Mohapatra et  al., 2022). However, in 
non-seagrass coastal sediment, only sulfur reducers are typically 

found in high abundance (Cleary et al., 2018; Ul-Hasan et al., 2019; 
Chen et al., 2020). Previous studies have shown that high concentration 
of nutrients and organic matter stimulated the abundance of 
Campylobacterales in non-seagrass coastal sediment (Aires et al., 2019; 
Salem et al., 2019). Our co-occurrence network analysis also showed 
that the most abundant OUT of Campylobacterales positively 
connected with organic carbon content (OC) within sediment 
(Supplementary Figure S2C). These findings likely explain the high 
abundance of sulfur oxidizers in seagrass sediments: seagrass provides 
abundant organic matter to the sediments, and sulfur reducers can 
utilize organic matter as electron donors to produce reduced sulfide 
(Wu et  al., 2021), which in turn stimulates the growth of sulfur 
oxidizers. Since reduced sulfur compounds, especially hydrogen 
sulfide, are known phytotoxins in eutrophic sediment (Goodman 
et  al., 1995; Lamers et  al., 2012), their oxidation by the abundant 
Campylobacterales generated a positive feedback loop of the organic 

FIGURE 5

Relative abundance of sediment (A,B), phyllosphere (C,D), and seawater (E,F) prokaryotic taxa significantly differentiated between XC and LA (A,C,E) 
and between site1 and site2 (B,D,F), identified by linear discriminant analysis effect size (LEfSe). Only lineages with linear discriminate analysis (LDA) 
values >3.5 are displayed. The diameter of each small solid circle is proportional to abundance of the given taxon. The multiclass analysis strategy was 
all-against-all (more strict). Large circles indicate phylogenetic levels (from domain to genus) in reverse order. Classes and orders are labeled.
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matter provided by seagrass. This process helps mitigate the toxic 
effects of hydrogen sulfide and promotes seagrass adaptation in the 
two lagoons (Zhang et al., 2020).

Another function that notably differed among the three habitats 
was organic matter degradation. Taxa such as Clostridiales, 
Thalassobaculales, and Bacteroidales, which were predominantly 
abundant in sediment, play important roles in degrading recalcitrant 
organic matters, such as seagrass cell wall polysaccharides and humic-
rich organic matter generated through the biochemical 
transformations of dead seagrass (Riviere et al., 2009; van der Lelie 
et al., 2012; Vanwonterghem et al., 2014; Aires et al., 2019; Grevesse 
et al., 2022). In contrast, the order Rhodobacterales, which was the 
most abundant group in seawater and on seagrass leaves, is well-
known for its rapid response to low-molecular-weight organic matters 
(Taylor et  al., 2014; Varela et  al., 2020; Pontiller et  al., 2022). 

Micrococcales, known for its importance in degrading refractory 
organic matters such as cellulose, lignin, and polyaromatic 
hydrocarbons (Liu et al., 2020), was the second most abundant taxon 
in seawater (Figure 4). Thus, Micrococcales in eutrophic seawater of 
seagrass ecosystem is likely an important degrader of organic matter 
derived from dead seagrass biomass.

As seagrass is a key species in seagrass ecosystem, it is crucial to 
highlight the functions that enriched in the phyllosphere microbial 
community. Several important functions, such as denitrification, 
nitrogen fixation, urelysis, methylotrophy, chitinolysis, and cellulolysis, 
were observed to be enriched on seagrass leaves (Figure 9). This is 
reasonable because cellulose, methanol, and chitin are exudates 
released by seagrass leaves (Venkatachalam et al., 2015; Sanders-Smith 
et al., 2020), which can obtain inorganic nitrogen with the assistance 
of microbial nitrogen fixation (Agawin et  al., 2016) and the 

FIGURE 6

Correlations of microbial community compositions and α-diversity (based on OTUs) with geochemical parameters of (A) seawater and (C) sediment, 
and the correlations of phyllosphere microbial compositions and α-diversity with geochemical parameters of (B) seawater and (D) sediment. The color 
of lines indicates the p-value of the Mantel test; the width of color lines indicates the r-value. Asterisks indicate Pearson’s p  <  0.05 and the color bar is 
based on Pearson’s correlation coefficients. DO, dissolved oxygen; COD, chemical oxygen demand; TIN, total inorganic nitrogen; LP, labile 
phosphorus; OC, organic carbon; TP, total phosphorus; TN, total nitrogen.
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degradation of dissolved organic nitrogen (Tarquinio et al., 2018). 
While seagrass sediment is well-known as a hotspot for denitrification 
and nitrogen loss (Hemminga et al., 1991; Garcias-Bonet et al., 2018), 
phyllosphere denitrification has received comparatively less attention. 
Our findings suggest that denitrification on seagrass leaves may also 
serve as a potential pathway for nitrogen loss, thereby balancing 
coastal anthropogenic nitrogen inputs. Consequently, our results 
revealed that sediment, seagrass leaves, and seawater in seagrass 
ecosystem are occupied by distinct microbial groups dedicated to 
metabolizing various kinds of organic matters and nutrients. This 
diversity in microbial functions is essential for maintaining the health 
of seagrass ecosystems.

4.2 Differential impact of eutrophication on 
seagrass microbial communities compared 
to sediment and seawater microbial 
communities

High microbial diversity can enhance the stability and resilience 
of ecosystems, because microbial communities with high diversity are 
more likely to include species that can adapt to new environments 

when ecosystems are subjected to external disturbances (Girvan et al., 
2004). In the present work, sediment microbial diversity was higher 
in the relative more eutrophic XC lagoon than in the LA lagoon, while 
phylloshpere microbial diversity was higher in LA than in XC 
(Figure  2). This result indicates that the diversity of phyllosphere 
microbial communities is more susceptible to reduction due to 
eutrophication compared to the diversity of sediment microbial 
communities, potentially leading to the decay of seagrass leaves under 
eutrophic conditions. This inference can be  supported by the 
enrichment of representative Oceanospirillales and Vibrionales on 
seagrass leaves in the relative more eutrophic XC lagoon (Figures 4, 
5C). Because, the Oceanospirillales and Vibrionales were also observed 
a significant increase in abundance on seaweed due to environmental 
degradation (Aires et al., 2018), and Vibrionales is a representative 
microorganism that commonly associated with stress and diseased 
seaweeds, coral, and animals (Meron et al., 2011; Vezzulli et al., 2016; 
Aires et al., 2018).

We also found that the relative harsher environment in the XC 
lagoon reduced the relative abundance of phyllosphere functional 
taxa related to important functions, such as denitrification, while 
increasing the relative abundance of anaerobic functional taxa 
involved in processes like fermentation and nitrate reduction 

FIGURE 7

(A) Co-occurrence network of the sediment, phylloshpere, and seawater microbial community at each site. Only Pearson’s correlation coefficient 
(r  >  0.8 or r  <  0.8 significant at p  <  0.01) is shown. The nodes and edges are colored according to cluster. Node size is proportional to the average degree 
of each OTU, and edge thickness is proportional to the weight of each correlation. (B) Bar plot shows the composition of the clusters in class level and 
their total relative abundance in each habitat at each site.
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(Figure 9). This shift may accelerate seagrass leaf decay and reduce 
denitrification, exacerbating eutrophication. Additionally, the 
phyllosphere microbial diversity and compositions between the 
highly and less eutrophic sites were more similar (Figure  3C) 
compared to those of seawater microbial compositions (Figures 3D, 
5D). This indicates that seagrass leaf plays a pivotal role in shaping 
the microbial community and maintaining the stability of community 
structure by releasing exudates such as methanol, cellulose, and 
phenols (Papazian et al., 2019; Sanders-Smith et al., 2020) under 
different eutrophic conditions. Another possibility is that the 
phyllosphere microbial community at the less eutrophic site had been 
subjected to similar degree of impact by eutrophication as at the 
highly eutrophic site in each lagoon. The microbial-mediated plant 
communication theory is suitable to interpret this possibility: the 
secretion of signaling substances under certain conditions triggers 
the expression of plant microbiome-shape genes, thus establishing 
unique plant-associated microbial community; the influenced 
microbes might, in turn, regulate the plants themselves and other 
spatially proximate plants via released volatile organic compounds 
or quorum-sensing signaling molecules (Liu et  al., 2023; Lv 
et al., 2024).

Correlation analysis indicated that COD and OC were the 
primary factors influencing the seawater and sediment microbial 
diversity, respectively, and high levels of COD and OC were associated 
with reduced diversity (Figures 6A,C). This is because a high content 
of organic carbon can lead to strong selection for specialist 
hydrocarbon-degrading microorganisms, such as the Rhodobacterales 
in this study, resulting in the disappearance of certain groups of 
microorganisms (Nogales et  al., 2011). Unlike COD, which only 
influenced seawater microbial diversity, factors such as the salinity and 
DO, had similar influence on both seawater and phylloshpere 
microbial diversity (Figures 6A,B). However, this did not mean that 
organic carbon was not related to phylloshere microbial diversity. 
Because, the degradation of high levels of organic matter can reduce 
DO. The lack of an obvious correlation between seawater COD and 
phylloshere microbial diversity might be  because the phylloshere 
microbial community can be  more directly affected by seagrass-
derived organic carbon (Ugarelli et al., 2017).

Microbial composition was not correlated with almost all 
physicochemical parameters (Figure  6). However, in some 
environments such as terrestrial grasslands and starved seawater 
macrocosm, microbial composition was showed strong correlation 

FIGURE 8

Comparison of microbial composition from the habitats of sediment (Sed), seagrass leaves (SL), and seawater (SW) at (A) XC1, (B) XC2, (C) LA1, and 
(D) LA2 sites. Circle size represents the highest relative abundance of each genus among the three habitats at each site. If the difference in relative 
abundance of a genus was less than two-fold across the three habitats, it was noted as a core connector (C_All, gray circle). If the relative abundance 
of a genus in one habitat was at least two-fold higher than its abundance in the remaining two habitats, the genus was noted as an enriched (E.) genus 
(open circles) in that habitat. The remaining genera with higher relative abundance in two habitats compared to the other habitat were classified as 
“connector (C)” (closed color circles) between those two habitats. The relative abundance is the average relative abundance of the three parallels in 
each habitat of each site.
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with environmental factors (Zhang et  al., 2021; Cornell et  al., 
2023). Compared with those relative stable environments, the 
environmental factors in the XC and LA lagoons can be changed 
by various pathways, including human activities, seagrass, and tidal 
action, resulting in more complex and variable interactions 
between the microbial community and environmental factors. The 
fact that the majority of the top  100 abundant taxa have no 
correlation with any environmental factors 
(Supplementary Figure S2) also suggests that the factors influencing 
their relative abundance varied across different sites. Meanwhile, 
we still detected some taxa strongly correlated with environmental 
factors (Supplementary Figure S2), and some of those correlations 
are known reasonable. For example, Flavobacteriales, the well know 
degrader of high-molecular-weight organic matters (Bernardet, 
2015), were positively corelated with COD in seawater 
(Supplementary Figure S2A), and Desulfobacterales, a sulfur 
reducer, were positively correlated with sulfide in sediment 
(Supplementary Figure S2C). The most unexpected result is that 
seawater NO2

− had the most number of links with various seawater 
and phyllosphere taxa (Supplementary Figures S2A,B), despite its 
concentration being much lower than NO3

− and NH4
+ (Table 1). 

This work highlights the importance of paying attention to the 
influence of seawater NO2

− on seawater and phyllosphere 
microbial composition.

4.3 Significant effects of eutrophication on 
the complexity of phyllosphere microbial 
community

The various effects of eutrophication on sediment, phyllosphere, 
and seawater microbial diversity and composition might influence the 
microorganisms-mediated flow of energy and elements within the 
seagrass ecosystem (Konopka, 2009; Ren et  al., 2023), thereby 
impacting the health conditions of the seagrass ecosystem. In 
ecosystems, exchanges of energy and elements among different species 
can give rise to complex interactions (Montoya et al., 2006; Yuan et al., 
2021), often represented as networks (Pržulj and Malod-Dognin, 
2016). It is well-documented that there are links between network 
complexity and ecosystem functioning and stability (Landi et al., 2018; 
Yuan et al., 2021; Wang et al., 2023). The co-occurrence network of the 
integral microbial community from the three habitats at each sampling 
site revealed network complexity at the highly eutrophic site was lower 
than at the less eutrophic site in each lagoon and the difference in 
network properties between the highly and less eutrophic sites was 
greater in the more eutrophic XC lagoon than in the less eutrophic LA 
lagoon (Supplementary Table S3). Thus, although the microbial 
diversity and composition analysis, specifically in sediment and on 
seagrass leaves, did not find obvious differences between highly 
eutrophic and less eutrophic sites in each lagoon, the co-occurrence 

FIGURE 9

The functional composition of microbial community was predicted by using FAPROTAX. Heatmap represent the relative abundance of functional 
groups of prokaryotic communities.
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network analysis indicated that heavy eutrophication decreased the 
complexity of microbial communities and, consequently, the multi-
functionality of seagrass leaves (Cheng et al., 2021; Wang et al., 2023).

Moreover, the greater decrease in the connections among 
phylloshpere microorganisms (Figure 7 and Supplementary Table S4) 
indicates that phylloshpere microbial complexity may be  more 
susceptible to reduction than sediment and seawater microbial 
complexity under eutrophic conditions. In addition, there was a 
greater decrease in internal connections within the phyllosphere 
microbial community compared to the sediment microbial 
community under more eutrophic conditions (Figure  7 and 
Supplementary Table S5). The ternary plot also depicted a similar 
trend, showing that heavy eutrophication obviously decreased the 
interaction of phyllosphere microbial communities with sediment and 
seawater microbial communities, and this trend was more pronounced 
in the more eutrophic XC lagoon (Figure 8). As microorganisms can 
communicate with each other by releasing volatile organic compounds 
or quorum-sensing signaling molecules (Liu et al., 2023), the decrease 
in internal and external interactions of the phylloshpere microbial 
community might limit the response of seagrass leaves to 
environmental changes in sediment, seawater, and on seagrass leaves.

By examining the spatial network dynamics of sediment, 
phyllospere, and seawater microbial communities within seagrass 
ecosystem in response to eutrophication, this study provides important 
insights into the microbial mechanisms by which eutrophication 
threatens seagrass health. Although environmental changes are known 
to trigger complex interactive effects on seagrass-associated microbial 
community structure (Korlević et al., 2021; Vogel et al., 2021; Markovski 
et al., 2022), it is not clear whether eutrophication has different effects on 
the microbial community structures in the three habitats. This study 
documents that eutrophication significantly decreased the complexity 
and internal interactions of the phyllosphere microbial community more 
than those of the sediment microbial community, and also reduced the 
external interaction of the phyllosphere microbial community with 
sediment and seawater microbial communities. Microbial network 
complexity is closely associated with the functional structure of microbial 
communities and ecosystem functional processes (Yuan et al., 2021). 
Therefore, the phyllosphere microbial community is more susceptible to 
functional decline due to eutrophication, suggesting that seagrass decline 
is more likely to originate from the decline in the functions of the 
phyllosphere microbial communities rather than sediment microbial 
communities. Furthermore, since networked communities have strong 
linkages with ecosystem functioning, our work suggests that preserving 
seagrass phyllosphere microbial network structure should be prioritized 
over the sediment microbial network structure for future seagrass 
ecosystem conservation or restoration. In addition, similar to microbial 
biodiversity, which is dependent on both space and time, network 
features are also temporally dynamic (Yuan et al., 2021). Thus, future 
studies on microbial networks within seagrass ecosystem need to 
integrate the spatial dynamics along with their temporal dynamics for 
seagrass ecosystem conservation or restoration.

5 Conclusion

In summary, through the simultaneous investigation of 
sediment, phylloshpere, and seawater microbial communities 
within seagrass meadow ecosystems that suffered different degrees 

of eutrophication, we assessed the various effects of eutrophication 
on microbial communities from the three habitats. The results 
demonstrated that eutrophication had more pronounced effects 
on the decrease in biodiversity and complexity of the phyllosphere 
microbial community compared to those of sediment and seawater 
microbial communities. This can lead to greater functional loss in 
the phyllosphere microbial community, reducing their ability to 
effectively assist seagrass leaves in adapting to environmental 
changes (Cornell et  al., 2023). This work contributes to the 
understanding of the microbial mechanisms underlying the effects 
of eutrophication on the health of seagrass ecosystems 
and highlights the importance of focusing on microbial 
communities on seagrass leaves during seagrass meadow 
conservation and restoration. High-resolution spatial and time-
series monitoring of phyllosphere microbial communities may 
become a feasible approach to assist in seagrass conservation 
and restoration.
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