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The diagnosis and treatment of bacterial infections in the medical and public 
health field in the 21st century remain significantly challenging. Artificial 
Intelligence (AI) has emerged as a powerful new tool in diagnosing and treating 
bacterial infections. AI is rapidly revolutionizing epidemiological studies of 
infectious diseases, providing effective early warning, prevention, and control of 
outbreaks. Machine learning models provide a highly flexible way to simulate and 
predict the complex mechanisms of pathogen-host interactions, which is crucial 
for a comprehensive understanding of the nature of diseases. Machine learning-
based pathogen identification technology and antimicrobial drug susceptibility 
testing break through the limitations of traditional methods, significantly shorten 
the time from sample collection to the determination of result, and greatly 
improve the speed and accuracy of laboratory testing. In addition, AI technology 
application in treating bacterial infections, particularly in the research and 
development of drugs and vaccines, and the application of innovative therapies 
such as bacteriophage, provides new strategies for improving therapy and 
curbing bacterial resistance. Although AI has a broad application prospect in 
diagnosing and treating bacterial infections, significant challenges remain in data 
quality and quantity, model interpretability, clinical integration, and patient privacy 
protection. To overcome these challenges and, realize widespread application in 
clinical practice, interdisciplinary cooperation, technology innovation, and policy 
support are essential components of the joint efforts required. In summary, with 
continuous advancements and in-depth application of AI technology, AI will 
enable doctors to more effectivelyaddress the challenge of bacterial infection, 
promoting the development of medical practice toward precision, efficiency, 
and personalization; optimizing the best nursing and treatment plans for patients; 
and providing strong support for public health safety.
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1 Introduction

Bacterial infections remain a major challenge in medical and public health in the 21st 
century, with millions of patient deaths annually. According to a study published in The 
Lancet on November 21, 2022, bacterial infections are one of the leading causes of global 
health loss and have become the second leading cause of death globally, after ischemic heart 
disease (GBD, 2019). Accurate and rapid identification of pathogens and their drug 
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susceptibility profiles is essential for selecting the right treatment and 
reducing mortality. However, most current bacterial identification 
and drug susceptibility testing require culture times of several days, 
which not only delays the initiation of treatment, but also increases 
the risk of the development of resistant bacteria due to the long-term 
use of broad-spectrum antibiotics. At the same time, surveillance 
and management of bacterial infections are essential to prevent their 
spread and safeguard public health. In this context, the medical 
community urgently seeks new tools and strategies to better cope 
with bacterial infections. The rise of artificial intelligence (AI) 
technology, offers a new way to deal with bacterial infection (Mintz 
and Brodie, 2019; Larentzakis and Lygeros, 2021; Ting Sim 
et al., 2023).

Recently AI, as a powerful computational tool, has shown great 
potential in the diagnosis and treatment of bacterial infections 
(Goodswen et  al., 2021; Jiang et  al., 2022). AI is a science and 
technology that simulates human intelligence through computers, 
capable of mimicking human cognitive abilities and decision-making 
processes. In medicine, the main focus should be on the following 
terms: machine learning (particularly deep learning), natural language 
processing, computer vision, knowledge graph, and robotics, etc. 
(Mintz and Brodie, 2019) (Figure  1). The rapid expansion of AI 
technology spans from enhancing epidemiological surveillance to 
accelerating pathogen identification and predicting bacteria sensitivity 
to antimicrobial agents, Furthermore, AI supports the research and 
development of new drugs, vaccines, and innovative therapies, thereby 
promoting the development advancement of personalized medicine. 
tThe wide application of AI is expected to fundamentally transform 
the management, diagnosis, and treatment of bacterial infection 
(Wong et al., 2023).

Based on a comprehensive analysis of the existing literature and 
the latest research results, this study aimed to explore how AI 
technology can improve the efficiency and accuracy of medical 
diagnosis, as well as the level of personalized treatment, while focusing 
on the challenges that may hinder its practical clinical application. 
This will primarily provide medical workers with a comprehensive 
understanding of the application of AI technology in the diagnosis 
and treatment of bacterial infectious diseases, jointly promote the 
application of AI in the fight against bacterial infections, provide 
patients with more accurate and efficient medical services, and 
contribute to the development of global public health.

2 Application of AI in epidemiological 
surveillance of bacterial infectious 
diseases

AI and big data technologies are rapidly transforming the 
epidemiology of infectious diseases, particularly in the research and 
management of public health emergencies (PHEs). The modelsof 
infectious disease dynamics (IDD) and dynamic Bayesian networks 
(DBN)have not only promoted the spread of disease forecast accuracy, 
but also strengthened the ability analysis outbreakevolution (Gao and 
Wang, 2022). Through cloud computing platforms, AI can process 
massive data in real time and effectively monitor infectious disease 
outbreaks. Despite the challenge of long model training time, its 
practicability makes it an indispensable tool for early epidemic 
warning (Li et al., 2023). In addition, the development and application 

of geographic information systems (GIS), with its advanced data 
overlay capabilities, has greatly optimized the integration of public 
health data and has gained widespread acceptance (Wells et al., 2021). 
Similarly, the ToxPi*GIS Toolkit enables the visualization and analysis 
of geospatial data in the ArcGIS environment, a visualization 
framework that integrates multiple data sources and generates 
intuitive graphic files with through Python scripts, ArcGIS Pro 
methods, and custom toolkits (Fleming et al., 2022). In addition, the 
cloud data storage and use of Internet search data, such as Google Flu 
Trends, show the potential of disease surveillance systems based on 
large data to enhance real-time monitoring (Pfeiffer and 
Stevens, 2015).

Although these advanced tools and methods are currently used 
primarily in viral epidemiology, their potential for disease surveillance, 
data presentation and analysis, and public health decision-making 
continues to evolve. This suggests that their contribution to bacterial 
epidemiology is also expected to increase. For example, machine 
learning models can predict in advance the risk of Clostridioides 
difficile infection among patients in large hospitals, allowing healthcare 
teams to implement preventive measures proactively before infection 
occurs (Oh et al., 2018; Tilton and Johnson, 2019). Real-time locator 
systems can be used for contact tracing in the emergency department, 
which is not only more efficient and timely than tracing methods 
relying on electronic medical records, but also significantly increases 
the number of potentially exposed individuals identified while 
optimizing the use of time and resources (Hellmich et al., 2017). Maia 
Lesosky et al. revealed the impact of inter-hospital patient flow on 
methicillin-resistant Staphylococcus aureus (MRSA) transmission 
through Monte Carlo simulation (Lesosky et al., 2011). Further studies 
explored cross-hospital pathogen transmission using a susceptible 
infection model, demonstrating the important value of AI and big data 
in curbing hospital-acquired infections (Ciccolini et al., 2014).

AI is paving new ways to predict and prevent bacterial infections. 
AI technology integrates and analyzes vast amounts of complex data 
to achieve early recognition and accurate prediction of bacterial 
infection outbreaks. This optimizes prevention and control measures, 
guides public health decisions, and supports the global fight against 
infectious diseases and the new solution.

3 AI has revolutionized the study of 
bacterial infection mechanism

Further study of the pathogenesis of bacterial infectious diseases 
is crucial to fully understand the nature of these diseases. This 
process not only involves the complex process of how bacteria 
colonize, invade, and spread in the host but also involves the host’s 
immune response and its interaction with pathogens. Among them, 
pathogen-host interaction is the key link, and animal models have 
been an indispensable tool in traditional research. They provide 
valuable data for observing the infection process of pathogens, host 
immune response, and disease development (Younes et al., 2020; 
Burkovski, 2022). While such approaches, although capable of 
providing accurate and rich biologic insights, are often costly, time-
consuming, and associated with ethical concerns. With the rapid 
development of AI technology, especially the emergence of machine 
learning models, researchers can simulate and understand the 
complex interactions between pathogens and hosts without animal 
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experiments. For example, the PHISTO tool promotes a deep 
understanding of infection mechanisms by synthesizing different 
databases and using text mining techniques, supplemented by graph 
theory analysis and BLAST search (Durmuş Tekir et al., 2013). A 
novel set of modular structural plasmids named pTBH (toolbox of 
Haemophilus) demonstrates coexistence and co-infection kinetics 
of fluorescently labeled strains by 3D microscopy combined with 
quantitative image analysis (Rapún-Araiz et al., 2023). Furthermore, 
AI models can effectively simulate the complex interactions between 
bacteria and hosts in different metabolic states (Dillard et al., 2023). 
Using advanced fluorescence microscopy detection and automated 
image analysis techniques, researchers have found that 
Staphylococcus aureus isolates from patients with bone/joint 
infection, bacteremia, and infective endocarditis show different 
infection characteristics in different host cell types (Rodrigues Lopes 
et al., 2022). These techniques not only provide a visual basis for 
understanding microbial behavior in specific host environments but 
also assist in the design of drugs and vaccines.

The application of machine learning models provides us with a 
highly flexible way to predict and simulate the complex mechanisms 
of pathogen-host interactions, which not only accelerates the research 
process but also reduces the research cost. Although AI models are not 
a complete replacement for all animal model studies, they provide new 
ways to explore uncharted territories.

4 AI application in the diagnosis of 
bacterial infections

In the traditional approach to diagnosing bacterial infectious 
diseases, laboratory technicians rely on microbiological and 
biochemical tests to identify pathogens. It includes bacterial culture, 
morphological observation, biochemical reaction tests, and 
serological techniques (Ernst et  al., 2006; Váradi et  al., 2017) 
(Table 1). In addition, molecular biology techniques are widely used 
for the identification of bacterial DNA sequences, of which the 
polymerase chain reaction (PCR) is a commonly used method 
(Wilson, 2015; Deusenbery et al., 2021). Although PCR technology 
is more advanced than traditional biochemical and microbiological 
methods, it requires a long time to complete the experimental 
process. Moreover, the integration and application of AI technology 
not only optimizes the traditional bacterial detection and 
management process, but also has the potential to bring about a 
complete revolution (Ho et al., 2019; Wang et al., 2020; Paquin et al., 
2022; Howard et al., 2024) (Figure 2).

4.1 AI improves the efficiency and accuracy 
of pathogen identification

AI technology provides a new way to diagnose bacterial 
infections rapidly and accurately. For example, matrix-assisted 
laser desorption/ionization time-of-flight mass spectrometry 
(MALDI-TOF MS) combined with ClinProTools software 
provided a method for the rapid identification of two 
Staphylococcus aureus subspecies, which achieved 100% 
identification and classification accuracy through genetic analysis 
and a fast classifier model (Pérez-Sancho et al., 2018). Findaureus, 
an open-source application based on Python, demonstrated the 
ability to automatically locate bacteria in the tissue section using 
immune fluorescent tags. It overcomes the challenges of the 
manual threshold-setting process and optimizes the analysis of the 
condition of complex tissue cell efficiency (Mandal et al., 2024). 
PhenoMatrix (PM) Colorimetric Detection Module (CDM) digital 

FIGURE 1

The relationship between machine learning (particularly deep learning), natural language processing, computer vision, knowledge graph, robotics, and 
artificial intelligence.

TABLE 1 Advantages and limitations of the traditional bacterial 
identification methods.

Method Advantages Limitations

Bacterial culture 

(Baron, 2019)

 ✓ The cost is low

 ✓ Effective for 

various bacteria

 ✓ Easy to operate

 • Long 

time consumption

 • Some bacteria 

cannot develop

 • Susceptible 

to contamination

 • It is not suitable for 

highly specific tests

Morphological 

observation (Periasamy, 

2014)

 ✓ No special equipment

 ✓ Intuitive is strong

 ✓ Accumulation of 

experience

 • Subjectivity is strong

 • Limited information

 • The lack of specificity

 • Need to develop

Biochemical reaction 

tests (Ohkusu, 2000)

 ✓ Cost-effective

 ✓ Easy to operate

 • Limited specificity

 • Does not apply to all 

bacteria

Serological technique 

(Eldin et al., 2019)

 ✓ High specificity

 ✓ Quick results

 ✓ Quantifiable analysis

 • Greatly influenced by 

sampling time

 • There were false 

positive and false 

negative results

 • A variety of pathogens 

have cross-reacted
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FIGURE 2

Artificial intelligence facilitates the diagnosis of bacterial infectious diseases.

imaging software uses the automated Walk Away Specimen 
Processor to detect Group B Streptococcus (with high sensitivity 
similar to that of molecular testing methods, increasing laboratory 
productivity and reducing the potential for human error (Baker 
et al., 2020). In addition, DNA microarray technology, using a 
machine learning decision-making algorithm (DendrisChips), 
identifies 11 types of bacteria associated with respiratory tract 
infections within 4 h. This technology combines PCR 
amplification of bacterial 16S rDNA and specific oligonucleotide 
hybridization on DendrisChips®, which are read with a laser 
scanner, thereby achieving quick and accurate detection and 
differentiation with over 95% accuracy (Senescau et al., 2018). 
Using neural networks to analyze response patterns, a researcher 
has designed a sensor capable of identifying 16 different bacterial 
species and their Gram-staining properties with >90% accuracy. 
The sensor is stable for up to 6 months after preparation and 
requires one-thirtieth the amount of dye and sample as traditional 
solution-based sensors, compared to conventional techniques 
(Laliwala et al., 2022). Thus, this method provides an innovative 
diagnostic tool that promises clinical applications in resource-
limited settings.

In diagnosing diseases that pose a serious threat to human health, 
such as tuberculosis, although conventional microscopy methods are 
effective, they are slow and of limited sensitivity. The introduction of 
AI, specifically Metasystems’ automated antifungal bacilli (AFB) 
smear microscopy scanning and deep learning-based image analysis 

module (Neon Metafer), has greatly improved the speed and accuracy 
of antifungal bacilli (AFB) smear-negative slide recognition speed and 
accuracy (Desruisseaux et al., 2024). A deep neural network (DNN) 
classifier combined with an automated slide scanning system reduces 
analysis time from several minutes to approximately 10 s per slide 
(Horvath et al., 2020). Further, a novel diagnostic system combining 
T-SPOT with DL-based computed tomography image analysis can 
significantly improve the classification accuracy of nontuberculous 
mycobacterial lung disease and pulmonary tuberculosis (Ying et al., 
2022). AI tools, such as artificial neural networks, are becoming 
important in providing rapid and effective pathogen detection 
methods (Dande and Samant, 2018). AI technology brings 
unprecedented accuracy and speed to pathogen detection through 
efficient learning and analysis capabilities. It will not only promote the 
automation of pathogen detection but also substantially decrease error 
rates caused by human operation, thereby improving the reliability of 
the diagnostic process.

4.2 AI optimizes antimicrobial susceptibility 
testing

Identifying pathogens and performing Antimicrobial 
Susceptibility Testing (AST) in today’s clinical laboratories often relies 
on culturing and isolating pathogens. Standard AST methods (CLSI, 
2023 such as disk diffusion, microbroth dilution, and AGAR dilution 
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methods, typically require 2–3 days or longer from sample collection 
to obtaining culture and drug susceptibility results (Abu-Aqil et al., 
2023). To effectively control infections and prevent them from rapidly 
deteriorating or spreading to other parts of the body, clinicians often 
choose broad-spectrum antimicrobials for empirical treatment, given 
that many infectious diseases are often difficult to diagnose by 
symptoms in the early stages. However, this practice may increase the 
risk of drug-resistant strains arising due to inappropriate drug 
selection; therefore, there is an urgent need for rapid and accurate AST 
technologies to guide diagnosis and treatment.

With the rapid advancement of technology, AI has become an 
important tool in bacterial AST, providing various efficient and rapid 
methods to perform drug susceptibility testing. For example, Raman 
spectroscopy based on image stitching technology enables single-cell 
level detection, which can automatically, efficiently, and rapidly identify 
drug-resistant bacteria (Nakar et al., 2022; Dou et al., 2023). Combining 
machine learning and infrared spectroscopy enables rapid and definitive 
identification of urinary tract infection bacteria and their drug 
resistance, dramatically reducing the time from sample collection to 
results. This approach decreases the time of identification and 
sensitization of Escherichia coli, Proteus mirabilis, and Pseudomonas 
aeruginosa from 48 h to approximately 40 min (Ciccolini et al., 2014; 
Tilton and Johnson, 2019; Younes et  al., 2020; Burkovski, 2022). 
Similarly, the SlipChip microfluidic device uses electrophoresis 
technology to extract and enrich bacteria directly from positive blood 
cultures. This device enables parallel inoculation of bacteria into 
nanoscale droplets of broth, facilitating simultaneous multiple 
AST. Results can be reported to clinicians within 3–8 h, ensuring reliable 
AST results and enabling earlier reporting and targeted antimicrobial 
treatment (Yi et al., 2019).

Automation technology has also demonstrated high efficiency 
in detecting certain special drug-resistant bacteria, such as 
MALDI-TOF MS, for the detection of MRSA and carbapenem-
resistant Klebsiella pneumoniae (CRKP) (Wieser et  al., 2012; 
Zhang et al., 2023). However, the novel ML-based MALDI-TOF 
MS method enables rapid identification of MRSA and CRKP from 
labeled blood cultures within 1 h (Yu et  al., 2023a,b). Recent 
studies have shown that using computer science to analyze a large 
number of MALDI-TOF MS data can provide a comprehensive 
understanding of western blot mapping between resistant and 
sensitive isolates (Wang et al., 2021). WASPLab automation system 
can significantly shorten the vancomycin resistant enterococcus 
(VRE) recognition time (Cherkaoui et al., 2019). In addition, the 
automated plate evaluation system (APAS Independence) has 
significantly improved the productivity of high-throughput 
laboratories through its highly sensitive digital image analysis 
technology to accurately classify MRSA and sensitive 
Staphylococcus aureus (MSSA) cultures as negative or positive 
without human intervention (Gammel et al., 2021).

In conclusion, the application of AI technologies to antimicrobial 
susceptibility testing enables the rapid and accurate identification of 
drug-resistant bacteria, thereby dramatically shortening the time 
from sample collection to result confirmation, and can 
be accomplished without human intervention. These technologies 
provide laboratories with a rapid and automated means of drug 
resistance monitoring, which significantly improves diagnostic 
efficiency and helps clinicians make rational antimicrobial treatment 
decisions as early as possible (Table 2).

4.3 AI can improve bacterial genome 
sequencing

Genome sequencing technologies (including whole genome 
sequencing and next-generation sequencing) have significantly 
accelerated not only the identification of infectious agents, but also the 
tracking of transmission pathways in healthcare settings and the 
analysis of the impact of complex microbial communities on human 
health (d’Humières et  al., 2021; Deusenbery et  al., 2021). It also 
provides a powerful tool for monitoring and responding to 
antimicrobial resistance (AMR) globally (Waddington et al., 2022; 
Sherry et al., 2023).

TABLE 2 Artificial intelligence in the bacteria identification and drug 
sensitivity analysis.

Technology Application References

MALDI-TOF 

MS + ClinProTools 

software

Rapidly identified 

Staphylococcus aureus 

subspecies

Pérez-Sancho et al. 

(2018)

Findaureus Automatic localization of 

bacteria in 

immunofluorescently 

labeled tissue sections

Mandal et al. (2024)

PM + CDM + WASP High sensitivity to identify 

group B streptococcus

Baker et al. (2020)

Machine learning-based 

DNA micro-matrix 

technology

More than 95% accuracy 

in identifying respiratory 

bacteria

Senescau et al. (2018)

Neural network-based 

sensors

90% accuracy in bacterial 

identification

Laliwala et al. (2022)

AFB + Neon Metafer Significantly improved the 

speed and accuracy of 

identification of acid-

fighting bacilli (AFB) on 

smear-negative slides

Desruisseaux et al. 

(2024)

DNN + an automated 

slide scanning system

Significantly reduced slide 

analysis time

Horvath et al. (2020)

T-SPOT + DL-based 

technology

Significantly improved the 

classification accuracy of 

NTM—PD and PTB

Ying et al. (2022)

Raman spectroscopy 

based on image stitching 

technology

Automatically, efficiently 

and rapidly identified 

drug-resistant bacteria

Dou et al. (2023) and 

Nakar et al. (2022)

SlipChip microfluidic 

device

Significant reduction in 

bacterial drug sensitivity 

test time

Yi et al. (2019)

A novel MALDI-TOF 

MS method based on ML

Rapidly identified MRSA 

and CRKP

Yu et al. (2023a,b)

WASPLab automation 

system

Significantly shorten the 

vancomycin-resistant 

enterococcus (VRE) 

recognition time

Cherkaoui et al. (2019)

APAS Independence Accurately distinguish 

MRSA and MSSA

Gammel et al. (2021)
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Current genetic testing techniques mainly match based on 
sequence similarity; however, these tools are often unsuccessful in 
identifying new species without closely related genomes or related 
sequences in reference databases. In response to this challenge, the 
machine learning-based PaPrBaG method provides a reliable and 
consistent prediction method that maintains its reliability even with 
low genome coverage (Deneke et al., 2017). In addition, machine 
learning combined with metagenomic sequencing can significantly 
improve the diagnostic accuracy of diseases that are difficult to 
diagnose, such as tuberculous meningitis (Ramachandran et al., 2022).

Another challenge for genetic testing technologies is how to 
rapidly and accurately interpret high-dimensional genomic data as 
the cost of second-generation sequencing technology decreases and 
throughput increases. Machine learning techniques have shown their 
potential in processing large genomic data by analyzing and 
predicting the health impact of Shiga toxin-producing Escherichia 
coli infections, providing new methods and perspectives for 
microbial risk assessment (Njage et al., 2019). In addition, Bayesian 
neural networks using a nonparametric Bayesian algorithm excelled 
in accelerating the analysis of genetic association studies and 
efficiently and accurately identifying variant strains of infection 
(Beam et al., 2014).

Combining machine-learning models with genomics technology 
has shown excellent performance in predicting pathogen resistance, 
which is significantly better than existing methods. Some researchers 
have used machine learning to construct a knowledge map of 
antimicrobial resistance in Escherichia coli, which realizes the 
automatic discovery of knowledge of antimicrobial resistance in 
Escherichia coli and reveals unknown drug resistance genes (Youn 
et  al., 2022). Based on the XGBoost and convolutional neural 
network approaches, the researchers not only accurately predicted 
the minimum inhibitory concentrations of Klebsiella pneumoniae 
clinical isolates against 20 antimicrobial drugs, but also successfully 
identified strains with high drug resistance or high virulence 
(Nguyen et al., 2018; Liu et al., 2021; Lu et al., 2022). Similarly, some 
researchers have innovated a decision tree method called Treesist-TB 
for identifying mutant strains and predicting drug resistance, which 
has a recognition ability beyond the existing TB-Profiler tools 
(Deelder et al., 2022), This technique not only demonstrates the value 
of decision trees in the tuberculosis field but also provides a reference 
template to identify other drug-resistant pathogens.

AI has shown great potential in genome sequencing technology. 
In response to the challenges of identifying new species and 
interpreting high-dimensional data, machine learning has surpassed 
the limitations of traditional genetic detection techniques and 
deepened our understanding of the microscopic world of pathogens. 
Furthermore, machine learning excels in predicting antimicrobial 
drug resistance, outperforming traditional methods, and 
strengthening global antibiotic resistance (AMR) monitoring efforts.

5 Application of AI in the treatment of 
bacterial infections

The challenges in the treatment of bacterial infections are 
diverse, and one of the most serious is the increasing resistance to 
antimicrobial agents. The importance of Antimicrobialresistance was 
formally declared at the United Nations General Assembly 

High-level Meeting on antimicrobial Resistance in 2016, and 
countries were called on to commit to developing their national 
action plans on antimicrobial resistance. Nearly 5 million people 
died globally due to resistant pathogens in 2019 (Antimicrobial 
Resistance Collaborators, 2022). Current projections suggest that by 
2050, 10 million people globally could be burdened by antimicrobial 
drug resistance each year (Walsh et al., 2023). Over time, bacteria 
have acquired resistance to antimicrobial drugs through natural 
selection and genetic variation, thereby undermining the 
effectiveness of traditional treatments. In addition, the high diversity 
of bacteria and the complexity of bacterial-host interactions further 
increase the difficulty of treatment, making the development of 
vaccines and novel drugs difficult. Hence, developing new 
antimicrobial strategies and therapeutic approaches are urgently 
needed to address these issues (Stracy et al., 2022).

In this context, AI technology accurately simulates the complex 
interactions between pathogen, host, and drugs, revealing microbial 
infection features and optimizing drug and vaccine design (Figure 3). 
In addition, AI application in the field of phage therapy brings new 
hope for the fight against bacterial resistance.

5.1 AI revolutionizes drug discovery and 
development

In drug research and development, the application of AI is 
breaking the boundaries of traditional research, providing new 
strategies to overcome the problem of drug resistance. For example, 
by combining high-throughput biophysical analysis and machine 
learning, a framework was established to identify and predict bioactive 
targets of antimicrobial drugs, which successfully revealed the 
relationship between phenotype, target, and chemotype, providing an 
effective way to identify candidate therapeutic drugs (Santa Maria 
et al., 2017). Meanwhile, combining fragment-based drug design with 
quantitative structure–activity relationship modeling demonstrates 
the potential of artificial neural networks in the drug discovery 
process (Kleandrova and Speck-Planche, 2020). Using data-driven 
techniques, the study of bacterial minimal inhibitory concentration 
data using machine learning and matched molecular pair analysis has 
revealed key chemical features that affect bacterial biological activity, 
thus promising to expand the chemical space of broad-spectrum 
antimicrobial agents (Gurvic et al., 2022). In a study, a support vector 
machine learning approach was applied to analyze genomics, 
metabolomics, and transcriptomics data of Pseudomonas aeruginosa. 
This approach successfully identified a key molecular mechanism that 
distinguishes between pathogenic and non-pathogenic strains of 
Pseudomonas aeruginosa, which not only provides high-value targets 
for the development of novel antimicrobial therapeutics but also 
highlights the importance of dynamically integrating 
multidimensional data in modern drug discovery and development 
(Larsen et al., 2014).

Furthermore, significant breakthroughs have been made in the 
application of AI in specific disease areas, such as anti-tuberculosis 
drug development. The machine learning and artificial neural network 
method can be used to successfully find LeuRS for Mycobacterium 
tuberculosis and MetRS double targets of inhibitors (Volynets et al., 
2022), and small-molecule inhibitors of the enzymes required for 
M. tuberculosis topoisomerase I  have been successfully identified 
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(Ekins et al., 2017), providing a new strategy to overcome multidrug 
resistance in tuberculosis. In addition, combining public Mtb data 
with machine learning not only greatly improves the efficiency of drug 
discovery, but also accumulates valuable data resources for future anti-
tuberculosis research and new drug development (Lane et al., 2022).

These advanced technologies not only accelerate the research and 
development process of new drugs, but also enhance the possibility of 
discovering potential therapeutic options, fundamentally changing 
how researchers understand and operate complex biological systems, 
and heralding a new era of smarter and more precise development in 
the pharmaceutical field.

5.2 AI brings breakthroughs in vaccine 
development

Currently rapid progress has been made in vaccine research and 
development against viral diseases. In particular, the speed and 
efficiency of response to emerging virus epidemics have been greatly 
improved, such as the application of computer-aided design of 
COVID-19 vaccine candidates in the global pandemic of 
COVID-19 in early 2020 (Abbasi et al., 2022). In contrast, bacteria 
in the field of vaccine research and development are faced with 
more complicated challenges. The high variability of bacteria, 
rapidly evolving drug resistance, and complexity of interactions 

between bacteria and their hosts all challenge the development of 
effective vaccines against bacterial infectious diseases. To address 
these challenges, leveraging emerging tools such as artificial 
intelligence, computer-aided design, and advanced immunological 
evaluation techniques has become pivotal to accelerating the 
development of safe and effective vaccines.

In the process of vaccine design, scientists are challenged not only 
to identify the key antigens that can trigger lasting immune memory, 
but also to ensure that the vaccine can elicit broad protective immune 
responses, including humoral and cellular immune responses, to 
achieve effective protection in the long term. Recently, reverse 
vaccinology (RV) technology has been widely used in vaccine research 
and development. As a calculation method, RV is mainly applied to 
bacterial pathogens. Bexsero, a Neisseria meningitidis B vaccine 
designed by RV, has been registered and widely used in many countries 
(Heinson et  al., 2015). In addition, a key component of vaccine 
development—antigen identification—is strongly supported by 
computational tools such as deep learning, reverse vaccinology and 
immunoinformatics. In-depth analysis of vaccine targets derived from 
pathogen protein-coding genomes has led to the successful 
development of a multi-epitope subunit vaccine with potentially 
potent protection. Although the safety and immunogenicity of the 
vaccine need to be further verified (Rawal et al., 2021), this approach 
not only accelerates the vaccine design process and reduces the 
reliance on traditional trial methods, but also has important 

FIGURE 3

AI technology can model complex interactions between pathogens, hosts, and drugs.
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implications for addressing the threat of drug-resistant bacteria. 
Research shows that a new type of machine learning model, compared 
with traditional methods, achieves higher precision and sensitivity in 
predicting aspects of mycobacterium tuberculosis (Khanna and 
Rana, 2019).

The application of machine learning technology not only 
optimizes the vaccine development process and improves efficiency 
by reducing the reliance on traditional experiments and animal 
testing, but also provides strong scientific and technological support 
to cope with evolving epidemics of bacterial infections.

5.3 AI drives innovative applications of 
phage therapy

Phage therapy has attracted much attention from the scientific 
community for its potential advantages in combating drug-
resistant bacterial infections (Viertel et  al., 2014; Kulshrestha 
et  al., 2024). However, accurate prediction of the complex 
interactions between phages and their target pathogens and hosts 
remains challenging (Cisek et al., 2017), and AI models become 
an important tool to overcome this challenge. For example, a 
machine learning-based local K-mer strategy is used to accurately 
predict phage-bacteria interactions (Qiu et  al., 2024). 
Simultaneously, machine learning can assist in the design of 
clinical phage therapy, particularly for urinary tract infections 
caused by multidrug-resistant E. coli (Keith et  al., 2024). In 
addition, a tool called HostPhinder predicted phage host genus 
and species with 81 and 74% accuracy, respectively, demonstrating 
the technology’s ability to pinpoint therapeutic targets (Villarroel 
et al., 2016).

Consequently, the application of phages, either alone or in 
combination with antimicrobial agents, can be a viable alternative to 
treat infections with resistant pathogens (Tagliaferri et al., 2019). The 
rapid development of AI technology enhances the potential of phage 
therapy by accurately predicting complex interactions between 
pathogens and phages, thereby contributing to the design of 
personalized treatment. This not only accelerates the development of 
phage therapy but also enhances its treatment success.

5.4 AI-assisted clinical decision support 
systems

The timing of effective antimicrobials is a key determinant of 
morbidity and mortality in the management of infectious diseases, 
specifically in the case of septic shock (Evans et  al., 2021). Early 
identification can not only reduce the poor prognosis caused by 
delayed treatment, but also help avoid unnecessary medical 
intervention and reduce treatment costs, thus significantly improving 
the survival rate and quality of life of patients.

Under the background of increasing emphasis on individualized 
treatment and precision medicine, AI progress not only promotes 
medical innovation, but also may overturn the existing diagnosis and 
treatment mode. In bacterial infectious disease diagnosis and 
treatment, AI and ML are used to simplify the clinicians’ work process, 
improve the quality of decision-making, and promote the development 

of personalized treatment options (Langford et al., 2024). For example, 
ML models have been successfully applied to diagnose respiratory 
syncytial virus infection and pertussis in children by combining 
clinical symptoms with laboratory test results (Mc Cord-De Iaco et al., 
2023). Based on statistically significant clinical indicators such as sex 
and age, LightGBM and other ML models have a good effect on 
predicting the etiology of classical Fever of Unknown Origin in 
patients (Yan et al., 2021). In addition, ML models can rapidly predict 
the risk of MRSA infection in patients with community-acquired 
pneumonia and facilitate the implementation of targeted antimicrobial 
treatment (Rhodes et  al., 2023). Clinical decision trees generated 
based on recursive methods are valuable for determining the 
likelihood of infection with extended-spectrum beta-lactamase strains 
in patients with bacteremia (Goodman et al., 2016). A system for early 
warning of antimicrobial drug allergies, K-CDSTM, effectively warns 
of antimicrobial drug allergies and prevents patients from being 
prescribed antimicrobial drugs that may trigger allergic reactions 
(Han et  al., 2024). The ontology-driven clinical decision support 
system uses big data to assist the treatment decision-making of 
infectious diseases and constructs a bridge between patients and 
medical workers (Shen et al., 2018). In the development of predictive 
disease models, tools such as multiple infectious disease diagnostic 
models are significantly more accurate than traditional prediction 
techniques based on large amounts of training data (Wang et  al., 
2022). In a 3-month case–control study using a computerized clinical 
decision support system in an experimental group, time was reduced 
by approximately 1 h and antimicrobial costs were saved by 
approximately US $84,000 (McGregor et al., 2006).

In summary, machine learning models have been successfully 
used to improve diagnostic accuracy and predict disease risk in 
clinical decision-making, showing better accuracy and efficiency than 
traditional approaches (Figure 4). AI and ML technologies are leading 
the wave of medical innovation and have the potential to change the 
traditional methods of diagnosis and treatment.

6 AI helps personalized medical 
development

Through deep study and the analysis of the complex algorithm, 
AI can process and interpret patients with huge amounts of data, 
including genetic information, living habits and historical health 
records, etc. This not only enables accurate diagnosis of the disease, 
but also facilitates personalized treatment plans for each patient. For 
example, in cancer treatment, AI can help doctors choose the most 
appropriate combination of drugs for patients, reduce side effects, 
and improve cure rates. Similarly, AI can also predict efficacy and 
possible complications and provide tailored health management 
plans for patients (Bilgin et al., 2024; Elemento, 2024).

In the field of bacterial infections, a novel method called 
CombiANT can rapidly quantify antimicrobial synergy through a 
single test and automated image analysis, enabling personalized 
clinical synergy testing to improve the anti-infection combination 
therapy (Fatsis-Kavalopoulos et  al., 2020). Kuo-Wei Hsu et  al. 
developed an automated portable antimicrobial susceptibility 
testing system for four common urinary tract infection bacterial 
strains, taking only 4.5–9 h to complete the test, which holds 
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promise for future application in personalized medicine practice 
(Hsu et al., 2021). Connor Rees et al. showed an overall success rate 
of > 90% for correct diagnoses in the list of 10 differential diagnoses 
generated by ChatGP-3 (Hirosawa et al., 2023). In the future, more 
research is expected to focus on evaluating more complex cases and 
promote the development of fully trained artificial intelligence 
chatbots to improve the accuracy and completeness of diagnosis 
and further personalize patient treatment.

7 Challenges of AI in the medical field

Although the application of AI in the field of bacterial infections 
has great potential and prospects, it also faces numerous challenges. 
The first is the problem of data quantity and data quality. The 
collection, sorting and sharing of case data related to bacterial 
infectious diseases are restricted by privacy protection and 
standardization, which limits the training efficiency and application 
scope of AI models (Cath, 2018; Baowaly et al., 2019; Hummel and 

Braun, 2020). Second, deep-learning algorithms often lack the ability 
to provide a convincing explanation for their predictions—the 
so-called “black box” problem—which can affect prediction accuracy 
and public trust in AI systems (Schwartz et al., 2024). In addition, 
most healthcare AI research to date has been done in non-clinical 
Settings, with few instances of successful integration of AI into clinical 
care and most cases are still in the experimental stage (Alami et al., 
2020). Therefore, generalizing the results of the study may 
be challenging. Moreover, complex and variable bacterial infection 
mechanisms and rapid mutation of bacterial genes make it more 
difficult to accurately predict pathogen behavior and drug sensitivity. 
Furthermore, the establishment of AI models requires interdisciplinary 
fields, including microbiology, biochemistry, genetics, mathematics 
and computer science, etc. (Figure 5), This requires a high level of 
knowledge and skills from the researchers and developers, posing a 
significant challenge for research teams with limited resources.

Currently in the field of artificial intelligence, a perfect legal 
system and authoritative standards have not been established. With 
the continuous progress of technology and the expansion of 

FIGURE 4

The AI-assisted clinical decision support system can quickly collect the patient’s history of present disease, past history, personal history, family history, 
travel history, and antibiotic use history. Simultaneously, the system can integrate relevant auxiliary examination (including imaging examination and 
laboratory examination) and analysis of the genetic information of hosts and pathogens to provide the best treatment, becoming a bridge of effective 
communication between doctors and patients.
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FIGURE 5

The successful application of AI models in medicine relies on multidisciplinary collaboration.

application fields, formulating and updating relevant regulations is 
essential,which will be a dynamic development process (Rees and 
Müller, 2022).

8 Conclusion

The rise of AI technology has opened up a new way to deal with 
bacterial infections. With the help of advanced technologies such as 
machine learning and deep learning, AI has been applied in many key 
areas, from rapid pathogen detection and antimicrobial susceptibility 
analysis to the interpretation of complex genomic data and the 
development of personalized treatment options. Through highly 
optimized algorithms, AI technology not only greatly improves the 
speed and accuracy of pathogen identification, but also accurately 
predicts the susceptibility of pathogens to specific antibiotics based on 
historical data, thus providing strong scientific decision support for 
doctors. Similarly, in the field of epidemiological surveillance, AI 
technology has strengthened the real-time monitoring and early 

warning ability of the spread of bacterial infectious diseases by analyzing 
and processing a large amount of epidemiological dataand providing a 
powerful analytical tool and basis for public health decision-making.

Although AI has a broad application prospect in the treatment of 
bacterial infectious diseases, there remain important issues to 
be solved, such as how to ensure the transparency and interpretability 
of AI decision-making and how to accelerate the diagnosis and 
treatment while strictly controlling the ethics and patient safety. To 
overcome these challenges and achieve its wide application in clinical 
practice, interdisciplinary cooperation, technological innovation and 
policy support are needed.

Prospectively, AI technology will bring a profound transformation 
in the field of diagnosis and treatment of bacterial infections. With the 
continuous strengthening and maturity of AI in pathogen 
identification, drug susceptibility testing and genomic analysis, it will 
become the right hand of clinicians. With the assistance of AI, medical 
workers will can better cope with the challenges brought by bacterial 
infections, continue to promote the development of medical practice 
in the direction of more precision, efficiency, and personalization, and 
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ultimately achieve the goal of providing optimal care and treatment 
for patients.
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