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Bioinformatic analysis reveals the 
association between bacterial 
morphology and antibiotic 
resistance using light microscopy 
with deep learning
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Although it is well known that the morphology of Gram-negative rods changes 
on exposure to antibiotics, the morphology of antibiotic-resistant bacteria in 
the absence of antibiotics has not been widely investigated. Here, we  studied 
the morphologies of 10 antibiotic-resistant strains of Escherichia coli and used 
bioinformatics tools to classify the resistant cells under light microscopy in the 
absence of antibiotics. The antibiotic-resistant strains showed differences in 
morphology from the sensitive parental strain, and the differences were most 
prominent in the quinolone-and β-lactam-resistant bacteria. A cluster analysis 
revealed increased proportions of fatter or shorter cells in the antibiotic-resistant 
strains. A correlation analysis of morphological features and gene expression 
suggested that genes related to energy metabolism and antibiotic resistance were 
highly correlated with the morphological characteristics of the resistant strains. 
Our newly proposed deep learning method for single-cell classification achieved a 
high level of performance in classifying quinolone-and β-lactam-resistant strains.
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Introduction

The emergence of multidrug-resistant bacteria that survive in the presence of multiple 
types of antibiotics is a global problem, and the spread of these bacterial strains is becoming 
a threat to public health. Drug resistance is caused primarily by long-term overuse of 
antibacterial medications. The factors and molecular mechanisms responsible for drug 
resistance in microbes have been widely reported (Alekshun and Levy, 2007). Accordingly, it 
has long been known that bacterial cell morphology alters following exposure to antibiotics, 
with cells undergoing filamentation in response to this stress (Nishino and Nakazawa, 1972; 
Elliott et al., 1987). In recent years, the effects of antibiotics on bacterial morphology have been 
studied in terms of bacterial adaptation and survival in response to drug treatments (Monahan 
et al., 2014; Banerjee et al., 2021). However, the morphology of antibiotic-resistant bacteria in 
the absence of drugs is not well known.
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Laboratory-based evolution is a powerful tool for investigating 
the dynamics of acquiring drug resistance (Suzuki et  al., 2014; 
Furusawa et  al., 2018; Maeda et  al., 2020). Using this technique, 
bacterial cells are exposed to fixed concentrations of drugs, around 
which cell growth is partially or completely inhibited such that a 
selective advantage for resistant strains is maintained. Suzuki et al. 
(2014) performed laboratory-based evolution experiments using 
Escherichia coli under long-term treatment with various antibiotics 
to obtain resistant strains. Ten antibiotic-resistant strains were 
identified and transcriptome and genome sequencing analyses were 
performed to identify gene expression changes and fixed mutations. 
Because many gene expression changes were observed in the 
antibiotic-resistant strains, it was hypothesized that these changes 
may affect bacterial morphology (Suzuki et al., 2014). Using these 
resistant strains, our laboratory previously reported significant 
morphological differences between an enoxacin-resistant strain 
compared with the antibiotic-sensitive parental strain in the absence 
of the drug, with the changes in cell structure being accurately 
discernible using deep learning of electron microscopy images 
(Hayashi-Nishino et al., 2022).

The objectives of the present study were to elucidate the 
morphological characteristics of the 10 antibiotic-resistant E. coli 
strains using bioinformatics tools and identify the genetic influences 
on the morphology of the resistant strains. Light microscopy images 
were used because they are much easier and faster to obtain than 
electron microscopy images and suitable for analyzing large numbers 
of living bacterial cells. Moreover, we  aimed to discern antibiotic-
resistant strains from the antibiotic-sensitive parental strain in the 
absence of drugs using a newly proposed cell contour-based deep 
learning method.

Materials and methods

Bacterial strains and culture conditions

Ten laboratory-evolved antibiotic-resistant E. coli strains and their 
parental MDS42 strain (Table 1) (Suzuki et al., 2014) were used in the 
experiments. A single colony of each resistant strain was firstly obtained 
from the above original resistant strains described in the following 
section. Modified M9 medium (Mori et al., 2011) were prepared as 

described in the Supplementary methods. For morphological 
observations, bacterial strains were cultured as described previously 
(Hayashi-Nishino et  al., 2022). Briefly, the antibiotic-resistant and 
parental strains were precultured in M9 medium at 34°C for 23 h with 
shaking at 432 rpm in Nunc 96-well microplates (Thermo Fisher 
Scientific Inc.). The cells were then diluted to an optical density 
(OD)600 nm of 1 × 10−4 to 1 × 10−8 in 5.0 mL of fresh M9 medium in glass 
test tubes and further incubated with shaking at 150 rpm in a water bath 
(TAITEC Corp.) at 34°C until the cultures reached an OD600 nm in the 
range of 0.07–0.13, the same range used by Suzuki et al. (2014) for RNA 
isolation for gene expression analysis. The final OD600 nm values were 
determined from 200 μL aliquots of the culture transferred to a Nunc 
96-well microplate.

Single colony isolation and determination 
of minimum inhibitory concentrations

Serial dilutions of each antibiotic were made in 96-well microplates 
(Thermo Fisher Scientific Inc.) using modified M9 medium and stored 
at −80°C before use. The range of antibiotic concentrations used for 
minimum inhibitory concentrations (MICs) was based on two-fold 
dilution steps up and down from 1 μg/mL, as required depending on 
the antibiotic (Suzuki et  al., 2014). Single colony isolation and 
determination of MICs were performed as follows:

 1 Each resistant strain was cultured on modified M9 agar plates 
(Supplementary methods) (Mori et  al., 2011) at 34°C for 
two days.

 2 Three colonies were chosen and suspended in modified M9 
medium (Mori et  al., 2011) to yield an initial OD600  nm of 
3 × 10−5. This suspension was then inoculated into each well of 
freshly thawed MIC plates to a final volume of 200 μL. The 
plates were incubated at 34°C for 23 h with shaking 432 rpm 
on a multimode microplate reader (Infinite M200 PRO, 
TECAN Ltd.).

 3 The OD600  nm of each well was measured with a microplate 
reader, and the well with the highest antibiotic concentration 
that had an OD600  nm > 0.03 was chosen for further MIC 
determination. A portion of the culture from the selected well 
was stored in modified M9 medium containing 15% glycerol at 

TABLE 1 List of the antibiotic-resistant bacterial strains used in this study.a

Antibiotic-resistant strains Antibiotic name Class Cellular target

CPZ Cefoperazone Cephalosporin, β-lactam (BL) Cell wall

CFIX Cefixime Cephalosporin, β-lactam (BL) Cell wall

AMK Amikacin Aminoglycoside (AG) Protein synthesis, 30S

NM Neomycin Aminoglycoside (AG) Protein synthesis, 30S

DOXY Doxycycline Tetracycline (TC) Protein synthesis, 30S

CP Chloramphenicol Protein synthesis, 50S

AZM Azithromycin Azalide, macrolide (ML) Protein synthesis, 50S

TP Trimethoprim Folic acid synthesis

ENX Enoxacin Quinolone (QN) DNA gyrase

CPFX Ciprofloxacin Quinolone (QN) DNA gyrase

aThe name of the antibiotic-resistant strains corresponds to the abbreviation of the antibiotics used in the bacterial evolution experiment reported previously (Suzuki et al., 2014).
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−80°C, and the remaining culture was used for 
MIC measurement.

 4 The remaining cell cultures were diluted in M9 medium to 
yield an initial OD600 nm of 3 × 10−5 and inoculated into each 
well of freshly thawed MIC plates to a final volume of 
200 μL. The plates were incubated at 34°C for 23 h with 
shaking on a multimode microplate reader. The OD600 nm of 
each well was measured, and the lowest antibiotic 
concentration that reduced the growth to an OD600 nm < 0.03 
was defined as the MIC.

 5 The MICs of the parental and the original resistant strains 
(Suzuki et al., 2014) were determined as described above. The 
relative MIC log2 values were calculated by comparing the MIC 
values of the original resistant strain to those of the parental 
strain, and by comparing the MIC values of colonies isolated 
from the original resistant strain to those of the parental strain. 
The colony with the MIC log2 value closest to that of the 
original resistant strain was selected and used for 
further experiments.

Image acquisition

Bacterial cell cultures were centrifuged, and the resulting cell pellets 
were resuspended in phosphate buffered saline (PBS, Sigma-Aldrich) and 
washed twice. The cell pellets were suspended in 20 μL of PBS and the 
suspensions were further diluted to a ratio of 1:10 in PBS. Then, 1.2 μL of 
the cell suspension were mounted on a glass slide and covered with a 
22 × 22 mm cover slip (Matsunami, Japan). A phase contrast microscope 
with a 100× objective lens (Leica Microsystems) was used for 
observations. Microscopy images were captured using a Leica ICC50 W 
camera with LAS EZ imaging software (v. 3.4) at a resolution of 96 pixels/
inch. Single images were obtained at a resolution of 2,592 pixels × 1,944 
pixels in xy. The exposure time was 123 ms, with a gain value of 1.0×, a 
gamma value of 0.60, and a brightness value of 1.0. The images were 
saved as tiff files.

Microscopy image data were obtained from each antibiotic-
resistant strain, which comprised four lines and the parental strain as 
one set of data and collected three datasets from bacteria cultured on 
different dates in each set. Approximately 20 images of each bacterial 
specimen were taken and used for analysis.

Segmentation and feature extraction from 
cells

As a preprocessing step, denoising of each image was carried out 
using a Gaussian filter (σ = 4). Cellular segmentation was then 
performed using Omnipose v. 0.4.41 (Cutler et al., 2022) pretrained for 
bacterial phase contrast images. Postprocessing involved removing 
small regions (<96 pixels) to exclude cases of segmentation failures 
and remnants of dead bacteria, and to fill holes as much as possible.

After segmentation, the following 10 morphological parameters 
from each region were measured: Area, perimeter (Perim), Major, 
Minor, circularity (Circ), maximum Feret’s diameter (MaxFeret), 
minimum Feret’s diameter (MinFeret), aspect ratio (AR), roundness 
(Round), and solidity (Solid) (see Table  2 for definitions these 
features). The upper and lower 1% of the measured parameters were 
considered outliers and removed from the analysis.

Histogram intersection

Histogram intersections (Swain and Ballard, 1991) were used to 
examine the similarity between the parental strain and each resistant 
strain, or between resistant strains, and to examine reproducibility 
over three experiments. In each histogram, the range of values was 
divided into 100 parts, or 100 bins, and normalized so that the sum of 
all bins was equal to 1. The histogram intersection between two 
histograms h1  and h2  is then calculated as follows:

 
d h h h i h i

i
1 2

1

100

1 2, ,� � � � � � �� �
�
�min

Cluster analysis

A k-means clustering method was adopted to group bacterial 
cells into clusters according to the 10 abovementioned morphological 

1 https://github.com/kevinjohncutler/omnipose

TABLE 2 Morphological parameters measured in each bacterial strain.a

Parameter Abbreviation Unit Definition

Area – μm2 Area

Perimeter Perim μm The length of the outside boundary

Major – μm Primary axis of the best fitting ellipse

Minor – μm Secondary axis of the best fitting ellipse

Circularity Circ – 4π × Area/(Perimeter)2 (A value of 1.0 indicates a perfect circle)

Maximum Feret’s diameter MaxFeret μm The longest distance between any two points along the boundary

Minimum Feret’s diameter MinFeret μm The shortest distance between any two points along the boundary

Aspect ratio AR – Major/minor

Roundness Round – The inverse of aspect ratio

Solidity Solid – Area/convex area

aTen parameters were measured in each strain of bacteria.
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features so that the cells in each cluster had similar morphological 
characteristics. The morphological features were standardized so that 
the mean and the standard deviation for each feature were 0 and 1, 
respectively, in advance of clustering. A principal component analysis 
(PCA) of each cluster was conducted, and the results were represented 
as a biplot depicting both the distribution of samples from each 
bacterial strain as an ellipse (a normal distribution) and the loading 
of each feature as an arrow. The biplots can be interpreted as follows: 
(1) distributions that are close to each other have similar features; (2) 
features that point in similar directions are highly correlated; and (3) 
a distribution that is on the same side as a given feature highly 
contributes to it. Furthermore, to display the representative shape of 
each cluster of cells, a sequence of contour points representing a cell 
was evenly interpolated so that the number of points was the same 
for all contours and then the mean and standard deviation of the 
coordinates of the points were calculated for each cluster.

Weighted gene correlation network 
analysis

A network coexpression analysis was performed using the WGCNA 
R package v.1.72–1 (R v.4.3.0) (Langfelder and Horvath, 2008) to 
determine correlations between gene expression (Suzuki et al., 2014) and 
the morphological features of cells cultured as described above and 
observed in this study. The transcriptome data of resistant strains 
obtained by Suzuki et al. (2014) were utilized for the WGCNA. The 
dataset included 2,829 genes with expression levels exceeding a 
log-transformed threshold of 300 to account for background noise, as 
described in Suzuki et al. (2014). During data cleaning, the gene rrsG, 
which exhibited the same expression levels across all strains, was 
eliminated. First, a coexpression network was constructed wherein the 
nodes corresponded to gene expression profiles and the edges between 
genes were determined by the absolute value of the correlation 
coefficient, with soft-thresholding between the nodes as follows:

 
a s s cor x xij ij ij i j� � � �²

,,

where xi  is the i -th gene expression profile and β is the soft-
thresholding parameter. A scale-free topology analysis was applied to 
choose an appropriate soft-thresholding power. Then, modules were 
identified as clusters of highly interconnected genes by hierarchical 
clustering with an average linkage method and the Dynamic Tree Cut 
method on the basis of interconnectedness defined by the topological 
overlap measure with a minimum cluster size of 30, a deep split of 2, 
and no respect of dendrogram. Those modules that were closely related 
with each other were merged according to a correlation threshold of 
0.25. The gene expression profiles of each module were summarized by 
an eigengene that was defined as the first principal component of the 
expression matrix. Finally, the modules (genes) most correlated with 
each morphological feature were identified for further analysis.

Gene ontology annotation and enrichment 
analysis

Genes found using the WGCNA were annotated according to the 
EcoCyc (Keseler et al., 2021) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) databases (Kanehisa et  al., 2016). Then, gene 
ontology (GO)-term annotation and enrichment analyses were 
performed using the PANTHER classification system (v.18.02), 
operated by the GO Consortium, which provides the largest free 
biological databases for a variety of species (Ashburner et al., 2000; 
Thomas et al., 2022; Aleksander et al., 2023). The parameters used 
were as follows: analysis type: PANTHER Overrepresentation Test 
(Released 20231017); annotation version: GO database DOI: 10.5281/
zenodo.7942786 (Released 20230105); reference list: Escherichia coli 
(all genes in database); test type: Fisher’s exact. Multiple testing was 
corrected by calculating the false discovery rate (FDR) and FDR 
p < 0.05 was considered statistically significant.

Deep neural networks for cell classification

For classification of single cells between the parental strain and 
each resistant strain, we developed a deep neural network, taking a 
sequence of cell contour points as the input. Cell regions were 
segmented from microscopy images by Omnipose as described above. 
A sequence of the coordinates of the contour points was then extracted 
from the segmented region of each single-cell and aligned so that the 
major axis was horizontal. The number of contour points differs 
among single cells depending on their sizes and shapes and should 
be the same as the input to the contour-based classifier models. An 
aligned sequence of the coordinates of contour points, therefore, was 
linearly interpolated on an equally spaced grid. The number of 
contour points was set to 128 in the following experiments.

The Residual Network (ResNet) architecture (He et  al., 2016) 
incorporates shortcut connections to allow deeper networks without 
the degradation of training accuracy and is widely adopted as a 
backbone for state-of-the-art neural networks. Circular convolution 
(Peng et al., 2020) was proposed to extract effective features from 
object boundaries and mainly applied for instance segmentation and 
object detection. We integrated circular convolution layers into the 
ResNet architecture to learn the discriminative features of bacterial 
cell morphology in an end-to-end fashion. A circular convolution 
layer was created using the coordinates/features of neighboring points 
as the input, and the convolution operation with a one-dimensional 
kernel was performed, sliding all the way around a cell contour, to 
produce outputs representing the morphological properties of the 
bacterial cells.

Classifier models were trained from scratch for 100 epochs 
using a stochastic gradient descent algorithm (LeCun et al., 2012) 
with a weight decay of 0.0001, a momentum of 0.9, and a batch size 
of 128. The initial learning rate was set to 0.0001 and decreased 
following the cosine schedule (Loshchilov and Hutter, 2016). Data 
augmentation was conducted by adding a Gaussian noise with a 
sigma value of 0.01 to the coordinates of the contour points, 
smoothing by the Savitzky–Golay filter (Savitzky and Golay, 1964) 
with a window length of 5 and a polynomial order of 2, and 
randomly shifting the starting point.

Experiments were conducted using threefold cross-validation—
because the microscopic image acquisition procedures were repeated 
three times, two of three datasets were used as a training set and the 
remaining dataset served as a test set. The classification performance 

2 http://www.pantherdb.org
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of our proposed method was evaluated by the mean and standard 
deviation of the area under the receiver operating characteristic curve 
(AUC), sensitivity, and specificity over three datasets. Sensitivity, 
specificity, and accuracy were defined as follows:

 
Sensitivity

TP

TP FP
�

�  
(1)

 
Specificity

TN

TN FN
�

�  
(2)

 
Accuracy

TP TN

TP FP TN FN
�

�
� � �  

(3)

where TP denotes true positives (correctly classified resistant 
cells), FP denotes false positives (parental cells that were classified as 
resistant cells), TN denotes true negatives (correctly classified parental 
cells), and FN denotes false negatives (resistant cells that were 
classified as parental cells), respectively. We  also conducted 
experiments to discriminate patches extracted from the microscopy 
images to compare our proposed approach with the original ResNet 
model with respect to its performance in classifying the parental strain 
and each resistant strain. A patch (224 × 224 pixels) was extracted 
from the center of a cell region and discarded if the area overlapping 
with another patch, which was evaluated by the intersection over 
union, was greater than 0.5 (50 percent). The intersection over union 
(IoU) is defined as follows:

 
IoU �

�
�
A B
A B

where A and B are the areas of two patches, the denominator 
represents the area of union, and the numerator represents the area of 
intersection, respectively. Data augmentation was conducted by 
randomly flipping and rotating patches.

Results

Morphological variations exhibited by 
antibiotic-resistant Escherichia coli strains

Single colonies were isolated from 10 strains of antibiotic-resistant 
E. coli, as listed in Table 1, for microscopy-based observation of cell 
morphology. Most isolates, comprised of four lines from each resistant 
strain, exhibited resistance in accordance with the original strain 
(Suzuki et al., 2014) (Supplementary Figure S1). These isolates were 
then cultured in the absence of antibiotics and observed under phase 
contrast light microscopy.

The resistant strains showed a variety of morphologies that 
differed from the structure of the rod-shaped, sensitive, parental strain 
(Figure 1). For example, CPZ-, CFIX-, and CP-resistant cells appeared 
shorter or smaller than the parental cells, whereas the ENX-and 

CPFX-resistant cells exhibited rounder or fatter morphology 
compared to the parental cells, in agreement with our previous study 
(Hayashi-Nishino et al., 2022). On the contrary, some of the TP-and 
AMK-resistant cells showed slightly elongated morphology, although 
this varied among the four lines. The majority of the antibiotic-
resistant strains showed different cell morphologies from the parental 
strain; however, the NM-, DOXY-, and AZM-resistant strains were 
difficult to evaluate qualitatively. We  therefore proceeded with a 
quantitative evaluation of the morphologies of the resistant and 
parental strains.

Quantitative differences in cell morphology 
between the parental and 
antibiotic-resistant strains

A morphometric analysis was performed to evaluate the 
quantitative differences in cell morphology between the antibiotic-
resistant and parental strains. We obtained microscopy image data 
from each resistant strain and the parental strain as one set of data and 
collected three datasets from bacteria cultured on different dates in 
each set to evaluate data variance caused by differences in the 
experiment. Then, single cells were extracted from the microscopy 
images using Omnipose, a CNN-based image segmentation tool 
applicable to various bacterial species and morphologies (Cutler et al., 
2022). Examples of segmented resistant and parental cells are provided 
in Supplementary Figure S2. Several thousands of cells were 
segmented from each bacterial strain in a single dataset. These 
segmented cells were collected from the three datasets and used for 
analysis (Supplementary Table S1). Then, 10 morphological 
parameters (Area, Perim, Major, Minor, Circ, MaxFeret, MinFeret, 
AR, Round, and Solid) were measured from the extracted contours of 
the cells.

We included the four lines of each resistant strain without dividing 
them to find common morphological characteristics in the resistant 
strain and identify differences from the parental strain. Quantitative 
differences in each morphological feature between the parental and 
resistant strains were examined by comparing the mean values 
obtained from the three datasets (Supplementary Figure S3). As a 
result, the parameters of most features in the resistant strains showed 
significant differences (p < 0.001) from the parental strain in all 
datasets. The mean values for many features differed slightly among 
the resistant strains, although the Solid values showed greater 
similarity. Standard deviations were relatively large for the majority of 
features, possibly reflecting variations in cell shape and size in the cell 
population, a different experiment date, and differences between lines. 
To further evaluate the variations in features between resistant strains, 
the ratio of change from the parental strain was calculated using 
median values. Decreases in Area, Perim, Major, and MaxFeret were 
observed in most resistant strains, while the changes in both Minor 
and MinFeret were slightly different between the resistant strains 
(Figure 2). In addition, the majority of the resistant strains showed 
increases in both Circ and Round, and a decrease in AR, but the 
AZM-and TP-resistant strains showed an opposite tendency from 
other resistant strains. For Solid, a small change ratio was seen in all 
resistant strains. These results suggested that most of the drug-
resistant strains tested displayed morphological differences from the 
parental strain.
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Comparison of cell morphology between 
parental and antibiotic-resistant strains

Quantitative differences in each morphological feature between 
the parental and resistant strains were further examined using 
histogram intersections to consider the variability in cell populations.

First, the similarities between three datasets in terms of the 
morphological parameters in each bacterial strain were examined to 
evaluate the reproducibility of the data between the datasets. The 
overall mean similarity was about 0.9, ranging from 0.83 to 0.93 
between parameters and from 0.88 to 0.92 between bacterial strains, 
suggesting that the data variation was quite low between the datasets 
(Supplementary Table S2). Thus, we included the three datasets in the 
histogram intersection and asked whether the similarity of each 
feature between the parental and resistant strains was lower than the 
similarity between datasets (<0.83). In Figure  3A, histograms 
displaying the values obtained for each feature of the resistant strains 
are overlayed with the corresponding histogram for the parental 
strain. The histograms for Area, Perim, Major, and MaxFeret in the 
majority of the resistant strains were shifted slightly to the left of the 
parental strain, suggesting that these features were smaller in the 
resistant strains. In contrast, the histograms for Solid in the majority 
of the resistant strains were shifted slightly to the right of the parental 
strain. Surprisingly, the shapes and distributions of the histograms for 
Minor and MinFeret differed largely among the resistant strains, with 
some being broader than those of the parental strain. To a certain 
extent, these features affected the distributions of the Circ, AR, and 
Round histograms. While the histogram distributions and shapes 
differed from those of the parental strain for the majority of the 
resistant strains, the AZM-and TP-resistant strains showed striking 
overlaps with the parental strain for most features except Minor 
and MinFeret.

The histogram intersection was calculated to examine the mean 
similarity values between the parental and resistant strains (Figure 3A, 
insets). For some features, these values were < 0.8, with the values for 
MinFeret and Minor being particularly low (Figure 3B), suggesting 
that these features were related to the large differences in the shapes of 
the histograms for the parental and resistant strains (Figure 3A). The 
CPZ-, CFIX-, CP-, and CPFX-resistant strains, and the ENX-resistant 
strain in particular, exhibited the lowest similarity to the parental 
strain (Figure  3C). Conversely, the AZM-and TP-resistant strains 
showed particularly high similarity to the parental strain.

Clustering of the antibiotic-resistant strains 
according to morphological features

The findings described above suggested that the resistant strains 
had different degrees of morphological similarity to the parental 
strain. Thus, we considered what morphological tendencies seen in 
the resistant strains differed from those seen in the parental strain, 
although the histogram distributions suggested that all resistant 
strains showed variation in cell shape but many of the cells resembled 
the parental strain (Figure 3A). Therefore, we attempted to extract 
morphological characteristics that were shared by the resistant strains. 
This was done by dividing the cell shapes into different clusters using 
the k-means clustering method.

First, k-means clustering was conducted for all feature data 
obtained from the bacterial cells, with the number of clusters set to six. 
To determine the number of clusters, observations from the 
microscopy images and the results of the histogram analysis were used 
to group the bacterial cells into different types with respect to shape 
and size. A PCA was then applied to each cluster to reveal the 
characteristics of the clustered cell features. Furthermore, the average 

FIGURE 1

Light microscopy of antibiotic-resistant strains. Representative images of antibiotic-resistant Escherichia coli strains and the sensitive parental strain 
(P) from one of three datasets (Dataset 1) are shown. Four lines were isolated from each resistant strain, and the numbers at the top indicate the line of 
the resistant strain. The scale bar shown in the image of the parental strain applies to all panels. AMK, Amikacin; AZM, Azithromycin; CFIX, Cefixime; CP, 
Chloramphenicol; CPFX, Ciprofloxacin; CPZ, Cefoperazone; DOXY, Doxycycline; ENX, Enoxacin; NM, Neomycin; TP, Trimethoprim.
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shape of the cells in each cluster was visualized by calculating the 
mean and standard deviation of the contour point coordinates.

The results of the clustering analysis are presented in Figure 4 
and the numbers of cells in each cluster are provided in 
Supplementary Table S3. The proportion of the bacterial strain in 
each cluster is visualized using a pie chart. The parental strain was 
classified in most clusters; however, it was largely excluded from 
Cluster-4, and surprisingly, the proportions of QN-, BL-, and 

CP-resistant strains was larger in this cluster. Notably, the proportions 
of the TP-, ML-, and tetracycline (TC)-resistant strains in Cluster-4 
was very small, suggesting that there might be  a peculiar 
morphological characteristic shared by the QN-, BL-, and 
CP-resistant strains causing them to be  clustered together. In 
addition, clusters containing the most parental strain included less 
of the QN-, BL-, and CP-resistant strains. However, the presence of 
both the TP-and ML-resistant strains coincided with that of the 

FIGURE 2

Changes in morphology between the parental and antibiotic-resistant strains. The change ratios of the median values for each morphological feature 
of the indicated drug-resistant strain against the parental strain are shown. The vertical axis represents the percentage change [%]. Values from the 
three replicate datasets obtained during the experiment are included. The y-axis of the black square box in the Solid graph has been enlarged and is 
displayed on the right-hand side of the graph. AMK, Amikacin; AZM, Azithromycin; CFIX, Cefixime; CP, Chloramphenicol; CPFX, Ciprofloxacin; CPZ, 
Cefoperazone; DOXY, Doxycycline; ENX, Enoxacin; NM, Neomycin; TP, Trimethoprim; AR, aspect ratio; Circ, circularity; MaxFeret, maximum Feret’s 
diameter; MinFeret, minimum Feret’s diameter; Perim, perimeter; Round, roundness; Solid, solidity.
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FIGURE 3

Comparisons between the morphological features of parental and antibiotic-resistant strains using histogram intersections. (A) Histograms for each 
morphological feature measured in the antibiotic-resistant strains are shown in color and outlined in white. The histograms of the parental strain are 
overlayed in dark gray with black outlines. The numbers provided in the insets indicate the mean similarity values between the parental and resistant 
strain calculated from the histogram intersections. The horizontal axis indicates the unit value of the measured parameter, and the vertical axis 

(Continued)
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parental strain, implying that their morphological characteristics 
were similar. All clusters contained the aminoglycoside 
(AG)-resistant strain in similar proportions. The results of the PCA 
suggested that the Minor and MinFeret features in Cluster-4 were 
most strongly correlated with the first principal component, while 
Round was correlated with the second principal component, which 
was in agreement with the morphological characteristics found in 
this cluster. The average shapes of the cells differed in each cluster, 
suggesting that the various cell morphologies of the different 
bacterial strains were classified into distinct clusters. For example, 
the average shapes of the cells in Cluster-2, -4, and -6 were rod-like, 
with different widths or lengths. Cells were fattest in Cluster-4. Cells 
in Cluster-1, -3, and -5 were elongated and slightly concave around 
the center. The PCA showed the correlation with Solid was strongest 
in these three clusters, suggesting that they might contain cells at the 
onset of division.

The proportions of the six clusters for each bacterial strain were 
also examined (Supplementary Figure S4). The results revealed large 
proportions of the parental strain were made up of Cluster-1 and 
Cluster-6 cells, and a similar tendency was seen in both the TP-and 
ML-resistant strains. However, the other resistant strains contained 
smaller proportions of these two clusters. Interestingly, although very 
small proportions of the parental strain, TP-, and ML-resistant strains 
were comprised of Cluster-4 and -5, larger proportions of the other 
resistant strains, particularly the QN-, CP-, and BL-resistant strains 
were composed of these clusters. The proportion of Cluster-2 cells in 
most of the resistant strains was slightly larger than in the 
parental strain.

Genes correlated with morphological 
characteristics in the antibiotic-resistant 
strains

The results of the cluster analysis revealed an increased proportion 
of fatter or shorter cells in the resistant strains and suggested that they 
contained a subpopulation of cells with morphological characteristics 
different to those of the parental strain. Therefore, we investigated the 
genes associated with the morphological characteristics of the 
resistant strains.

A WGCNA (Langfelder and Horvath, 2008) was performed to 
determine the correlation between gene expression (Suzuki et al., 2014) 
and the morphological features analyzed in this study. As a result, six 
groups (modules) of genes were found, each of which was most highly 
correlated with the corresponding morphological feature (Figure 5A). 
Intermediate results and details of the WGCNA are presented in 
Supplementary Figure S5 and Supplementary Table S4. A list of genes 
contained in the six modules is given in Supplementary Table S5.

GO enrichment analysis (Ashburner et al., 2000; Thomas et al., 
2022; Aleksander et al., 2023) for the term biological processes in the 

six modules was performed to determine the tendencies that affected 
resistant strain morphology. Among the significantly enriched GO 
terms (FDR < 0.05), the top 10 GO terms with the highest gene ratios 
are shown in Figure 5B. The observed tendencies in the GO enrichment 
results suggested that the genes highly correlated with some 
morphological features were related to cellular energy metabolism. For 
example, the GO terms in the module “greenyellow,” which was most 
highly correlated with Major, MaxFeret, and AR, suggested enrichment 
in energy metabolism, particularly ATP synthesis. Similarly, the GO 
terms in the module “pink,” which was most highly correlated to Perim, 
suggested enrichment in cellular processes related to energy reserve 
metabolism of sugars. Additionally, the GO terms in the module 
“midnightblue,” which was most highly correlated with Solid, suggested 
enrichment in the regulation of phosphate metabolism and the cellular 
events associated with cell division. The GO enrichment results from 
the other two modules, “gray” and “magenta,” which were most highly 
correlated to Area and Circ and Round, respectively, suggested 
enrichment in specialized cellular processes, such as an adaptive 
metabolic network to efficiently utilize available nutrients and respond 
to environmental changes, and ion transport and metabolism, which 
is essential for specific enzymatic functions and important for bacterial 
survival and adaptation. Although no GO term was enriched in the 
module “lightgreen,” which was most highly correlated with Min and 
MinFeret, we focused on this module because it contained genes that 
are important for antibiotic resistance. In fact, several genes encoding 
drug efflux pumps or transporters appeared in the module; the acrA 
and acrB genes encode proteins that comprise the AcrAB-TolC drug 
efflux system, known to be a major cause of both intrinsic and acquired 
resistance to many compounds, including antimicrobials (Okusu et al., 
1996), the mdtG gene encodes a multidrug efflux pump thought to 
be  involved in resistance to fosfomycin (Nishino and Yamaguchi, 
2001), and the mdlA and mdlB genes encode proteins annotated as 
putative multidrug resistance-like exporters (Saier et  al., 2016). In 
addition, acrR, soxS, soxR, and rob, which are thought to play roles in 
the regulation of expression of these transporter genes (Ma et al., 1996; 
Seo et al., 2015; Blanco et al., 2016) appeared in the same module 
(Table 3).

Overall, these results strongly suggested that the morphological 
features of the resistant strains were correlated with changes in the 
expression of genes involved in cellular energy metabolism and 
multidrug resistance.

Single-cell classification between the 
parental and resistant strains

Recently, deep learning approaches have been applied to 
microscopy images of bacterial cells and cutting edge algorithms have 
been developed for automatic cell segmentation, tracking, and 
antimicrobial susceptibility testing (Lugagne et al., 2020; Cutler et al., 

indicates the frequency [%]. (B,C) Mean similarity between the parental and antibiotic-resistant strains for each morphological parameter (B) and 
between the parental strain and each antibiotic-resistant strain (C) calculated using the histogram intersections. The error bars indicate standard 
deviation. AMK, Amikacin; AZM, Azithromycin; CFIX, Cefixime; CP, Chloramphenicol; CPFX, Ciprofloxacin; CPZ, Cefoperazone; DOXY, Doxycycline; 
ENX, Enoxacin; NM, Neomycin; TP, Trimethoprim; AR, aspect ratio; Circ, circularity; MaxFeret, maximum Feret’s diameter; MinFeret, minimum Feret’s 
diameter; Perim, perimeter; Round, roundness; Solid, solidity.
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FIGURE 4

The results of k-means clustering and principal component analysis (PCA) of each cluster. Upper left panel for each cluster: The pie charts indicate the 
proportion of the cluster occupied by each bacterial strain. Upper right panel for each cluster: The average shape of the cells in the cluster is shown; 
the solid line represents the mean and the dotted lines represent the standard deviation. The vertical and horizontal axes are in μm. Bottom panel for 
each cluster: The results of the PCA for each cluster are shown. The ellipse contains approximately 68% of the cells from each strain. The arrows 
represent the loadings of each feature. P, the parental strain; BL, β-lactam-, AG, aminoglycoside-, TC, tetracycline-, CP, chloramphenicol-, ML, 
macrolide-, TP, trimethoprim-, QN, quinolone-resistant strains; MaxFeret, maximum Feret’s diameter; MinFeret, minimum Feret’s diameter.
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2022). However, to the best of our knowledge, no computational 
methods for identifying drug-resistant bacteria without using drugs 
have been investigated to date. As the parental and drug-resistant 

strains presented different cell morphologies even in the absence of 
drugs, we investigated whether the resistant strains were discernible 
from the parental strain using deep learning approaches.

FIGURE 5

Weighted gene correlation network analysis (WGCNA). (A) Gene modules that were most highly correlated with the morphological features analyzed in 
this study are shown. The number of genes found in each module is shown in parentheses. AR, aspect ratio; Circ, circularity; MaxFeret, maximum 
Feret’s diameter; MinFeret, minimum Feret’s diameter; Perim, perimeter; Round, roundness; Solid, solidity. (B) The results of the gene ontology (GO) 
enrichment analyses for each of the six gene modules are shown in the bubble charts. The horizontal axis of each chart represents the gene ratio, the 
size of the bubbles represents the number of genes, and the color of the bubbles represents the false discovery rate (FDR)-adjusted p-value.
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We proposed a neural network based on the ResNet architecture 
and built by replacing all of the two-dimensional convolutions with 
circular convolutions (Figure 6A). In our preliminary experiments, 
we employed the original ResNet models for patch classification and 
found that the classification performance worsened between the 
training and test phases (Supplementary Figure S6; 
Supplementary Table S6). These results suggested that the image-
based models were substantially affected by the inconsistency in the 
characteristics seen in the microscopy images between the training 
and test phases. In the present study, we used cell regions from which 
the coordinates of contour points were extracted and interpolated as 
inputs to the ResNet architecture (Figure 6A; Supplementary Table S7) 
and demonstrated that our contour-based models achieved higher 
classification performance without suffering from such inconsistency 
(Figure 6B). As shown by the results of the AUC obtained from the 
test sets, our classifier models achieved high performance for ENX-, 
CPFX-, CPZ-, CP-, and AMK-resistant strains (Figure  6C). In 
addition, the sensitivity, specificity, and accuracy results, defined as 
Equations 1–3 respectively (see Materials and Methods), showed that 
the classification performance of our models was higher for specificity 
than sensitivity in all resistant strains, suggesting that there were fewer 
false positives than false negatives (Figure  6C). Our classification 
models showed high performance for sensitivity in the ENX-and 
CPZ-resistant strains. One of the reasons for the lower performance 
for sensitivity compared with specificity was that many resistant cells 
were of a similar shape to the parental cells, which may have made it 
more difficult for classifier models to learn the differences in shape 
between resistant and parental cells, therefore increasing the false 
negatives in the test phases.

Discussion

Previous studies on bacterial drug resistance have generally 
focused on changes in the resistance potential caused by specific gene 
mutations in drug-resistant cells. Similarly, morphological changes 
associated with particular genes have been described (Hirota et al., 
1968; Wachi et al., 1987). In recent years, the analysis of transcriptional 
data has revealed that the expression patterns of many genes are 
altered in laboratory-evolved antibiotic-resistant cells, and it is 
becoming possible to predict drug-resistant bacteria from gene 
expression profiles (Suzuki et al., 2014; Maeda et al., 2020). Because 
the expression patterns of multiple genes are altered in antibiotic-
resistant strains, it is plausible that these changes may have a complex 
effect on the morphology of bacterial cells. Studies on the relationship 
between antibiotic resistance and bacterial morphology have included 
observations of bacterial cells treated with drugs, and a recent study 
suggested that changes in bacterial cell shape are important for 
adaptation to antibiotics and drug resistance (Ojkic et  al., 2022). 
However, the morphology of resistant bacteria in the absence of 
antibiotics is not well known.

In this study, we showed that the antibiotic-resistant E. coli strains 
that evolved in the laboratory maintained their morphological changes 
even in the absence of drugs. The strains that evolved more prominent 
changes in their cell morphology showed higher resistance to the 
corresponding drug (Supplementary Figure S1), but the relationship 
between the degree of morphological change and the minimum 
inhibitory concentration values require further investigation.

TABLE 3 List of genes in the module “lightgreen”.a

Gene Description

yaaY DUF2575 domain-containing protein YaaY

lpxC UDP-3-O-acyl-N-acetylglucosamine deacetylase

dgt dGTP triphosphohydrolase

panE 2-dehydropantoate 2-reductase

ybaO DNA-binding transcriptional activator DecR

mdlA ABC transporter family protein MdlA

mdlB ABC transporter family protein MdlB

acrB Multidrug efflux pump RND permease AcrB

acrA Multidrug efflux pump membrane fusion lipoprotein AcrA

acrR DNA-binding transcriptional repressor AcrR

rnk Nucleoside diphosphate kinase regulator

lipA Lipoyl synthase

fur DNA-binding transcriptional dual regulator Fur

fldA Flavodoxin 1

seqA Negative modulator of initiation of replication

ssuA Aliphatic sulfonate ABC transporter periplasmic binding protein

pqiA Intermembrane transport protein PqiA

pqiB Intermembrane transport protein PqiB

ymbA Intermembrane transport lipoprotein PqiC

mdtG Efflux pump MdtG

ribA GTP cyclohydrolase 2

nhoA Arylamine N-acetyltransferase

fumC Fumarase C

zwf NADP+-dependent glucose-6-phosphate dehydrogenase

nfo Endonuclease IV

yeiI Putative sugar kinase YeiI

ypeB PF12843 family protein YpeB

ligA DNA ligase

fldB Flavodoxin 2

ygfZ Folate-binding protein YgfZ

yggX Putative Fe2+-trafficking protein

mltC Membrane-bound lytic murein transglycosylase C

kdsC 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase KdsC

yicM Purine ribonucleoside exporter

yieP DNA-binding transcriptional dual regulator YieP

frvX Peptidase M42 family protein FrvX

sodA Superoxide dismutase (Mn)

kdgT 2-dehydro-3-deoxy-D-gluconate:H+ symporter

fpr Flavodoxin/ferredoxin-NADP+ reductase

soxS DNA-binding transcriptional dual regulator SoxS

soxR DNA-binding transcriptional dual regulator SoxR

ryjA Small RNA RyjA

yjjW Putative glycyl-radical enzyme activating enzyme YjjW

yjjI DUF3029 domain-containing protein YjjI

rob DNA-binding transcriptional dual regulator Rob
aGenes appearing in the module “lightgreen,” which was most highly correlated with the 
parameters Minor and MinFeret are listed in ascending order of the gene annotation number 
(Blattner et al., 1997).
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Previous reports have indicated that there is a relationship between 
cells with smaller morphological features, such as persister cells, and 
drug tolerance (Shah et al., 2006; Lewis, 2010). A relationship between 
the morphological characteristics of the drug-resistant E. coli strains 
and the genes involved in cellular energy metabolism, cell division, and 
antibiotic resistance is suggested. The drug-resistant E. coli strains have 
a slower growth rate than the parental strain under antibiotic-free 

conditions (Suzuki et al., 2014), and this growth characteristic was 
observed in the present study (Supplementary Figure S7). We observed 
a similar morphology in resistant strains across different antibiotic 
mechanisms (QN, BL, CP), suggesting a potential common bacterial 
survival response. We  identified genes highly correlated with 
morphological features that exhibited significant expression changes in 
drug-resistant E. coli strains (Supplementary Table S8). Notably, ompF 

FIGURE 6

Single-cell classification of parental and antibiotic-resistant cells using deep neural networks. (A) The classification workflow. The insets show enlarged 
views of the contours of the cell region extracted from microscopy images of the parental and resistant (ENX) strains. The corresponding cell contours 
aligned horizontally and evenly interpolated to 128 points are shown as these formed the input data. A cartoon of the deep learning architecture shows 
a circular convolution (circ-conv) integrated into the ResNet architecture. For the circ-conv layer, r represents the radius or neighborhood size, 
resulting in a kernel size of 2r + 1, followed by the number of channels and optionally a stride. The circ-conv layers are followed by batch 
normalization and rectified linear unit functions. The curved arrows depict a shortcut connection, and the dashed lines indicate the increase in the 
number of channels. The term fc stands for a fully-connected layer. Threefold cross-validation was conducted for evaluation of the classifier models. 
(B) The receiver operating characteristic (ROC) curve for the contour classification. Each curve shows an average of the ROC curves obtained from the 
threefold cross-validation. The vertical and horizontal axes represent the values of sensitivity and 1 − specificity, respectively. (C) Performance of the 
network in classifying resistant strains. The classification results (mean values) from the test sets in the threefold cross-validation are presented as bar 
graphs with standard deviations. The resistant strains are listed in descending order of the area under the curve (AUC). Sens., sensitivity (correctly 
classified resistant cells); Spec., specificity (correctly classified parental cells). Accu., accuracy (collectly classified parental and resistant cells); AMK, 
Amikacin; AZM, Azithromycin; CFIX, Cefixime; CP, Chloramphenicol; CPFX, Ciprofloxacin; CPZ, Cefoperazone; DOXY, Doxycycline; ENX, Enoxacin; 
NM, Neomycin; TP, Trimethoprim; AR, aspect ratio; Circ, circularity; MaxFeret, maximum Feret’s diameter; MinFeret, minimum Feret’s diameter; Perim, 
perimeter; Round, roundness; Solid, solidity.
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was present in strains resistant to QN, BL, and CP. Given that ompF 
significantly contributes to drug resistance in laboratory-evolved E. coli 
(Suzuki et al., 2014; Maeda et al., 2020), it is possible that this gene is 
also associated with both cell morphology and survival response 
observed in strains resistant to these antibiotics. Considering that some 
of the genes that regulate persister formation also appeared in the 
group of genes that were correlated with some of the morphological 
features measured in this study (Supplementary Table S5), it is possible 
that changes in the expression of genes that play a role in cellular 
functions such as those described in this study may have a complex 
effect on the morphology of drug-resistant strains under long-term 
antibiotic stress, and this morphology may be  maintained in 
subpopulations even after removal of the stress. The resistant strains 
used in the present study were obtained through long-term exposure 
to the corresponding antibiotics, and when the morphological changes 
took place is currently unknown; moreover, the mechanism by which 
subpopulations with revised cell morphologies are generated from 
single colonies of drug-resistant strains is unclear. They may 
be generated through uneven division of cells that are similar in shape 
to the parental strain, or possibly cells with distinct morphology are 
preferable and therefore maintained as the subpopulation.

It should be noted, however, that the interpretation of the results 
is limited by the sole use of experimentally-evolved strains and 
morphological information obtained from light microscopy images; 
the internal structures of most of these resistant cells have yet to 
be studied. Future investigations are required to clarify whether the 
acquisition of drug resistance is generally associated with changes in 
cell morphology and what genes are responsible, using various drug-
resistant bacterial strains obtained under other environmental 
conditions such as clinical isolates.

Finally, our proposed single-cell classification demonstrated a 
high level of performance in characterizing some of the drug-resistant 
strains. The classification results generally coincided with the findings 
from the morphological analysis in that the accuracy in discrimination 
between the parental and resistant strains reflected both the 
similarities in cell shape and the minimum inhibitory concentration 
values. A future challenge will be to develop an algorithm that enables 
the classification of cells in a heterogenous population.
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