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Contribution of microglia/
macrophage to the pathogenesis 
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nervous system
Qianye Zhang , Wei Sun , Mingxiao Zheng  and Ning Zhang *

Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China

The infection of the central nervous system (CNS) with neurotropic viruses induces 
neuroinflammation and an immune response, which is associated with the 
development of neuroinflammatory and neurodegenerative diseases, including 
multiple sclerosis (MS). The activation of both innate and adaptive immune 
responses, involving microglia, macrophages, and T and B cells, while required 
for efficient viral control within the CNS, is also associated with neuropathology. 
Under pathological events, such as CNS viral infection, microglia/macrophage 
undergo a reactive response, leading to the infiltration of immune cells from the 
periphery into the brain, disrupting CNS homeostasis and contributing to the 
pathogenesis of disease. The Theiler’s murine encephalomyelitis virus (TMEV)-
induced demyelination disease (TMEV-IDD), which serves as a mouse model 
of MS. This murine model made significant contributions to our understanding 
of the pathophysiology of MS following subsequent to infection. Microglia/
macrophages could be  activated into two different states, classic activated 
state (M1 state) and alternative activated state (M2 state) during TMEV infection. 
M1 possesses the capacity to initiate inflammatory response and secretes 
pro-inflammatory cytokines, and M2-liked microglia/macrophages are anti-
inflammatory characterized by the secretion of anti-inflammatory cytokines. 
This review aims to discuss the roles of microglia/macrophages M1/M2-liked 
polarization during TMEV infection, and explore the potential therapeutic effect 
of balancing M1/M2-liked polarization of microglia/macrophages on MS.
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1 Introduction

Theiler’s murine encephalomyelitis virus (TMEV) belongs to the genus cardiovirus of the 
picornaviridae family (Gerhauser et al., 2019). The pathogenesis of TMEV involves a complex 
interaction between viral infection and the host immune response, particularly the activation 
of glial cells and the immune response to the central nervous system (CNS) (DePaula-Silva 
et al., 2021). Microglia and macrophagesare highly engaged in the neuroinflammatory process 
during viral encephalitis and are key contributors to the initiation of the innate and adaptive 
immune response (Bosco et al., 2020; Filgueira et al., 2021). TMEV-induced demyelinating 
disease (TMEV-IDD) represents a well-established animal model for demyelinating diseases 
in humans, especially resembling significant characteristics of the progressive forms of MS 
(Pike et al., 2022). This review will focus on the role of microglia and infiltrating peripheral 
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macrophages TMEV-IDD model, highlighting the contribution of 
M1/M2-liked phenotypic changes in microglia /macrophages to 
disease progression during TMEV infection.

2 Overview of TMEV

TMEV can be  classified into two subgroups, based on 
neurovirulence: highly neurovirulent (George Davis 7–GDVII) and 
low neurovirulent (Theiler’s original—TO). The strains of GDVII and 
FA are contained within the GDVII subgroup. Among the strains in 
the TO subgroup are the DA, BeAn 8,386 (BeAn), TO4, Yale, WW, 
and 4,727 (Jarousse et al., 1998; Pavelko et al., 2012; Brinkmeyer-
Langford et  al., 2017; Sato et  al., 2017). The highly neurovirulent 
strains can cause fatal encephalomyelitis in mice or mice die within 
1–2 weeks of infection (Jarousse et  al., 1998; Pavelko et  al., 2012; 
Brinkmeyer-Langford et al., 2017; Sato et al., 2017). In contrast, the 
low neurovirulent strains cause different diseases depending on the 
mouse strain (DePaula-Silva et  al., 2017). The intracerebral (i.c.) 
infection of Swiss Jim Lambert (SJL) mice with low neurovirulent 
strains, such as DA or BeAn, causes encephalitis during the acute stage 
of infection and demyelinating disease during the chronic stage of 
infection develops a MS-like disease termed TMEV-induced 
demyelinating disease (TMEV-IDD) (Daniels et  al., 1952; Lipton, 
1975; Libbey et al., 2008; Tsunoda and Fujinami, 2010), while the 
C57BL/6J mouse strain, when i.c. infected with TMEV, develops acute 
seizures that progress to epilepsy (Libbey et al., 2008). The difference 
between the mouse strains seems to be partially explained by the 
strong antiviral innate immune response, for example type I interferon 
(IFN) in C57BL/6J mice (Rodriguez et al., 1995).

The TMEV model is an important tool for the study of 
neuroinflammatory and neurodegenerative diseases, providing a key 
platform for investigating the pathophysiological mechanisms of the 
diseases and developing potential therapeutic strategies. The following 
sections will focus primarily on the TMEV-IDD model by describing 
the roles of microglia and macrophages.

3 MS

MS is a cell-mediated chronic progressive neuroinflammatory and 
neurodegenerative autoimmune disease of the CNS characterized by 
inflammatory demyelination, axonal damage and progressive 
neurological dysfunction (DePaula-Silva, 2024). MS shows clear 
geographic variations, with higher rates in Europe and North America 
and lower rates in sub-Saharan Africa and East Asia, but its overall 
prevalence is increasing globally (Walton et al., 2020). MS usually 
develops between the age of 20 and 50 and is more frequently 
diagnosed in women (Rolak, 2003). As an autoimmune disease, the 
host immune system attacks its own myelin proteins. In individuals 
with MS, due to the myelin destruction, the saltatory conduction is 
impaired resulting in inefficient (Zhang et  al., 2022). Signs and 
symptoms of the disease include cognitive and motor impairment, 
vertigo, loss of vision, weakness and dementia (Magyari, 2016; 
Psenicka et al., 2021). The pathogenesis of MS is not yet clear, but 
genetic and environmental factors may be strongly associated with the 
development of the disease (Davis et al., 2013). The experimental 
autoimmune encephalomyelitis (EAE) animal model and TMEV-IDD 

animal model are the most commonly used animal models for 
studying MS. The choice of the most precise model is predominantly 
influenced by the particular research and/or experimental question to 
be  addressed. The main stages in the pathogenesis of EAE and 
TMEV-IDD are shown in Table 1, and schematic representation of 
mouse models of EAE and the TMEV-IDD are given in Figure 1.

Recent research has revealed several promising strategies to 
improve the process of MS. For example, Bernardo-Faura et al. found 
that TAK1 inhibitors, in combination with existing MS drugs, 
significantly improved MS in an animal model of the disease, based 
on network-based modelling (Bernardo-Faura et al., 2021). Similarly, 
Kerstetter et al. discovered that the blockade of chemokine receptors, 
such as CXCR2, promotes the regeneration of myelin sheaths and 
enhances functional recovery in MS models (Kerstetter et al., 2009). 
Furthermore, mTOR inhibitors like rapamycin have demonstrated 
efficacy in reducing disease severity in MS models by balancing the 
immune response and promoting oligodendrocyte survival (Vakrakou 
et al., 2022). Another crucial pathway, the Keap1/Nrf2/ARE pathway, 
is essential for the regulation of oxidative stress and inflammation in 
MS (Michaličková et al., 2020), offering potential therapeutic targets 
for future interventions.

3.1 TMEV-IDD, an animal model of 
progressive MS

TMEV-IDD, which is a model for progressive forms of MS (Pike 
et al., 2022). TMEV-IDD in SJL/J mice is characterized by an acute 
phase, that occurs first week post-infection, which have high viral 
replication in neurons, and a chronic phase, which begins within 
1 month after TMEV inoculation, marked by persistent infection in 
glial cells and chronic demyelination (Tsunoda and Fujinami, 2010). 
During the chronic phase of the disease, SJL/J mice infected with 
TMEV exhibit progressive weakness in their hind limbs, leading to 
severe spastic paralysis with no observed recovery, similar to what is 
observed in patients with the primary progressive multiple form of 
MS (Tsunoda and Fujinami, 2002; DePaula-Silva et al., 2017). In this 
disease model, the presence of demyelination in the CNS is associated 
with a prolonged inflammatory immune reaction caused by the 
persistence of the virus.

Toll Like Receptors (TLR) recognize pathogens through pathogen-
associated molecular patterns (PAMPs), triggering the innate immune 
response and inducing pro-inflammatory chemokines and cytokines 
to recruit immune cells. Viral infections lead to the induction of type 
I  IFN and IFN-γ cytokines. Activation of the type I  IFN pathway 
increases levels of IFN-α and IFN-β and the type II IFN-γ. Activation 
of the type I IFN pathway leads to increased levels of expression of 
interferon-stimulated genes (ISGs), which can exert an antiviral effect 
(Biron, 2001; Olson and Miller, 2004; Olson, 2014; Bolívar et al., 2018).

In the acute phase, neurons within the hippocampus and cerebral 
cortex are predominantly infected (Gerhauser et al., 2019). Elevated 
levels of CD4+ and CD8+ T cells, monocytes, and a small number of B 
cells and plasma cells have been detected in the grey matter of the 
brain, indicative of CNS inflammation (encephalitis) (Frischer et al., 
2009; Michel et al., 2015; DePaula-Silva et al., 2017; Faissner et al., 
2019). Following the initial acute phase, a reduction in viral load 
occurs. However, the immune response is insufficient to fully eradicate 
the viral infection, resulting in progression to the chronic phase. 
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During this chronic phase, inflammatory cells persist in the white 
matter while demyelination in the spinal cord and axonal damage are 
also observed (Martinat et  al., 1999; Kummerfeld et  al., 2012). 
Meanwhile, TMEV-infected SJL/J mice exibit a notable decrease in the 
quantity of neuronal progenitor cells and early postmitotic neurons in 
hippocampus at the chronic phase. Deficits in hippocampal 
neurogenesis observed following TMEV-infected SJL/J mice have 
mirrored the learning and memory impairments (Jafari et al., 2012). 
Unlike the acute phase, TMEV is not localized in neurons but instead 
remains present in oligodendrocytes, astrocytes, and microglia/
macrophages, as evidenced by immunohistochemistry and in situ 
hybridization techniques (Clatch et al., 1990; Girard et al., 2002; Misra 
et  al., 2008). Therefore, while TMEV persistence is important to 
induce demyelination, the trigger mechanism for demyelination is 
inflammation and the induction of autoimmunity.

4 Profile of microglia and 
macrophages

Microglia are the innate immune cells in the CNS, accounting for 
approximately 10–15% of all brain cells (Onose et al., 2022). They 
originate from myeloid lineage in the yolk sac and infiltrate into the 

CNS during embryonic development (Ginhoux et  al., 2010). In 
contrast, peripheral macrophages/monocytes are derived from adult 
bone marrow hematopoietic stem cells, under pathological conditions, 
monocytes can infiltrate the CNS and differentiate into macrophages. 
Both microglia and macrophages can drive neuroinflammation and 
promote the development of MS (Zaslona et al., 2012; Jiang et al., 2022).

In vitro experiments have demonstrated that microglia can sustain 
a persistent infection with TMEV, enabling them to induce a 
pro-inflammatory state in distal, uninfected cells through the 
secretion of viral RNA-laden exosomes. These exosomes subsequently 
activate microglia, enhancing their ability to process viral and myelin 
epitopes and to prime memory CD4+ Th1 cells. Intriguingly, direct 
infection of microglia with TMEV proves almost as effective as high 
levels of IFN-γ stimulation in imparting antigen-presenting cell (APC) 
functionality (Olson et al., 2001; Luong and Olson, 2021). Highly 
purified macrophages, isolated from mice infected with TMEV, exhibit 
exceptionally potent APC capabilities, akin to those of microglia, 
particularly in the context of chronically induced demyelinating 
disease (Chastain et al., 2011).

Microglia exhibit many functional and phenotypic similarities to 
peripheral macrophage due to their common myeloid lineage, 
including the presence of similar surface molecules, which makes it 
difficult to distinguish the two populations of cells in the CNS during 

TABLE 1 Characteristics of EAE and TMEV-IDD models of MS.

MS animal 
models

EAE TMEV-IDD

Mouse species SJL/J mice C57BL/6 J mice SJL/J mice

Induction methods Immunization of SJL/J mice with 

PLP139–151

Immunization of C57BL/6 J mice with MOG35–55 Infection with TMEV of strain BeAn into SJL/J mice.

Pathogenic 

mechanism

Peripheral T cells are activated by viruses or another infectious antigens (similarity to 

some CNS antigens), these T cells are capable of producing inflammatory cytokines and 

have the potential to differentiate on activation into Th1 or Th17 cells or cells producing 

both. Activated T cells can cross the blood–brain barrier (BBB) by upregulating 

integrins, such as VLA-4. By penetrating the BBB, other immune cells including B cells 

and mononuclear/macrophages migrate to the CNS under the attraction of chemokine 

release. There, they encounter the homologous antigens, which are presented by resident 

or immigrant antigen presenting cells, such as, macrophages/microglia, dendritic cells 

or astrocytes. On encountering the antigen, these autoreactive T cells are reactivated, 

producing the cytokines, which activate neighboring immune cells or neural cells and 

attract further inflammatory cells into the CNS. Among them, activated macrophages 

are thought to indirectly or directly damage the CNS, promotes the demyelinating 

process.

CNS damage is initially mediated by antiviral responses, 

characterized by the recruitment of immune cells 

(primarily antiviral T cells) into the CNS. On the contrary, 

the chronic progression of the disease is mainly mediated 

by the activation of microglia, infiltration of macrophaes 

and mature B cells, which they release pro-inflammatory 

cytokines, leading to subsequent loss of myelin.

Type of 

corresponding 

MS

Relapsing–remitting MS Primary progressive MS, secondary 

progressive MS

Primary progressive MS

Clinical 

significance

Study of neuroinflmmation and immune system activation and testing therapeutical 

agents.

Study of axonal damage and inflammatory-induced 

demyelination. Research on the new treatments targeting 

adhesion molecules, axonal degeneration.

Differences Axonal damage occurs secondarily to severe inflammatory demyelination, where lesions develop from the periphery (myelin) to the inside (axon; 

outside-in model). Conversely, in TMEV infection, axonal damage precedes demyelination (inside-out model). Axonal degeneration triggers the 

recruitment of T cells and macrophages into the CNS, subsequently leading to demyelination.

Reference Whitham et al. (1991), McRae et al. 

(1995), Miyagawa et al. (2010), and 

Alhazzani et al. (2021)

Mendel et al. (1995), Bullard et al. (2007), Berard 

et al. (2010), Constantinescu et al. (2011), and 

Montilla et al. (2023)

Kim et al. (2005), Tsunoda and Fujinami (2010), Sato et al. 

(2011), Gilli et al. (2016), and Pike et al. (2022)
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an immune response to TMEV, such as CD 11b. However, microglia 
can be distinguished from macrophage by their lower expression level 
of CD45 (Aloisi, 2001). In addition, DePaula-Silva et al. studied the 
functional distinctions and commonalities in the gene expression 
profiles of microglial and macrophage immune responses during 
neurotropic viral infection. Among these genes, 43 were found to 
be expressed exclusively by infiltrating macrophages, 43 were uniquely 
expressed by reactive microglia, and 50 were identified as being 
commonly expressed in both infiltrating macrophages and reactive 
microglia. They suggested the identified and validated genes that are 
uniquely expressed at the cell surface of microglia or macrophages, 
which can be used to distinguish between these two cell populations 
(DePaula-Silva et al., 2019).

4.1 The role of microglia and infiltrating 
macrophage in demyelination following 
TMEV CNS infection

The role of microglia/macrophages in TMEV-IDD is partially 
related to the ability of virus to persist in these cells. During the 
acute period, the numbers of activated microglia were increased in 

the brains of SJL/J mice after TMEV infection, which inhibited the 
survival of neural progenitor cells and impeded neuronal 
differentiation, ultimately leading to hippocampal neuropathy 
(Ekdahl et  al., 2003; Monje et  al., 2003; Jafari et  al., 2012). 
Moreover, during demyelination, microglia/macrophages are 
found near the lesion site, which contain TMEV virus antigens. 
Microglia/macrophages are capable of efficiently engulfing viral 
particles through phagocytosis. Although studies have 
demonstrated persistent infection of microglia/macrophages by 
TMEV in SJL mice, these cells exhibit low permissiveness for viral 
replication, and produced few viral particles during TMEV 
infection (Rodriguez et al., 1983; Clatch et al., 1990; Lipton et al., 
1995; Rossi et al., 1997; Trottier et al., 2001). Microglia are capable 
of detecting a viral infection or cell-associated damage signals 
through pattern recognition receptors (PRRs) and damage-
associated molecular patterns (DAMPs), respectively, leading to 
their activation. Reactive inflammatory microglia trigger the 
expression of Type-I IFN (IFN-I), and NF-κB, thus up-regulating 
the expression of inflammatory mediators including IL-6, IL-12, 
tumor necrosis factor (TNF)α, CCL2, CCL3, and CCL5 (Olson 
et al., 2001; Olson and Miller, 2009; Kim, 2021; Luong and Olson, 
2021). In addition, excessive or continuous activation of microglia/

FIGURE 1

Schematic representation of mouse models of EAE and the TMEV-IDD.
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macrophages leads to local tissue damage/immunopathology in 
CNS (DePaula-Silva et al., 2017). Activated microglia increase the 
expression of MHC-I and MHC-II, and costimulatory molecules, 
enhancing their ability to present antigens to T cells (Schetters 
et  al., 2017; Moseman et  al., 2020; Goddery et  al., 2021). 
Presentation of viral antigens to Th1 CD4+ T cells results in the 
secretion of chemokines by these T cells, thereby enhancing the 
recruitment of peripheral macrophages. The excess of CNS 
inflammation causes bystander myelin damage. In TMEV-infected 
mice, macrophages and microglia have the ability to uptake myelin 
antigens, then presenting them to autoreactive myelin-specific 
CD4+ T cells (DePaula-Silva et al., 2017).

Microglia and macrophage activation is an initial occurrence in 
MS/TMEV and persists throughout the course of the disease (Gentile 
et al., 2016; Bell et al., 2020). Sustained expression of M1-liked related 
genes in microglia/macrophage leads to persistent inflammation and 
hindered myelin regeneration (Herder et al., 2015). Furthermore, 
M1-liked microglia are known to secrete proteolytic enzymes, 
including matrix metalloproteinases (MMPs), which contribute to 
the degradation of myelin basic protein (MBP) and subsequent direct 
damage to myelin (Liuzzi et al., 1995; Ulrich et al., 2006). Hansmann 
et  al. indicates that deficiency in MMP12 is linked to decreased 
activation of M1-liked microglia during the TMEV demyelinating 
phase, suggesting a significant involvement of MMP12  in the 
activation and polarization of microglia (Hansmann et al., 2019). 
Additionally, TMEV can trigger the activation of NLRP3 
inflammasome through the Toll-like receptor (TLR) signaling 
pathway. NLRP3 inflammasome, function as signaling platforms for 
caspase-1-driven activation of IL-1-type cytokines (IL-1β and IL-18), 
which contributed to the neuroinflammatory response in the CNS 
(Tsunoda and Fujinami, 2010; Gerhauser et al., 2012; Jeong et al., 
2022). Activation of the NLRP3 inflammasome and the downstream 
PGE2 promote the pathogenesis of TMEV-induced demyelinating 
disease by enhancing the production of IL-17 (Kim et al., 2017). 
Moreover, NLRP3 polarizes microglia/macrophage toward a 
pro-inflammatory M1-liked phenotype, promote microglia/
macrophage-mediated neuroinflammation and contribute to 
neuroprogression (Wang et al., 2020; Yang et al., 2022). As discussed 
previously, M1-liked microglia/macrophage have detrimental effects 
in the course of MS/TMEV (Mikita et al., 2011; Guo et al., 2022). 
Nevertheless, it does not mean that pro-inflammatory mediators such 
as M1-liked microglia /macrophage and Th1 cells only contribute 
adversely to the pathogenesis of MS/EAE. Differentiation of 
appropriate numbers of M1-liked microglia have been shown to 
promote neurogenesis and oligogenesis, whereas excessive activation 
has been found to be inhibitory (Butovsky et al., 2006a,b). In contrast, 
M2-liked microglia/macrophage are regulatory/anti-inflammatory 
and secrete regulatory cytokines such as IL-10 and TGF-β, promoting 
tissue repair and resolving inflammation within the CNS by 
downregulating M1 and Th1 immune responses (Laskin, 2009; 
Herder et  al., 2015). Park HJ et  al. demonstrated the important 
contribution of M2-liked microglia/macrophage in the clearance of 
debris and support of neuronal survival by releasing neurotrophic 
factors and participating in phagocytosis (Oñate et al., 2016; Park 
et al., 2016).

It has been revealed that an imbalance of M1-liked cells in the 
spinal cord of infected mice (Miron et al., 2013; Colombo et al., 

2014; Hansmann et  al., 2019). In addition, TMEV preferentially 
infects activated myeloid cells that exhibit pro-inflammatory 
functions M1-like, which expressed CD16/32 and IFN-γ, in vitro 
(Jelachich and Lipton, 1999). It is also tempting to speculate that 
prolonged M1-liked polarization contributes to viral persistence in 
susceptible mouse strains by creating an environment conducive to 
the virus. With disease progression an accumulation of 
neuroprotective M2-liked cells was found. Despite mounting 
M2-liked polarization and the expression of regeneration promoting 
factors, such as Tgfb1, CNS recovery restricted and only insufficient 
remyelination attempts by oligodendrocytes and Schwann cells were 
found in the spinal cord during the late chronic TME phase (Herder 
et al., 2015). M2-liked microglia/macrophages were not reverse the 
long-term damage to the CNS caused by M1-liked microglia/
macrophages in TMEV-IDD.

5 Drugs targeting microglia/
macrophages

Various pharmacological interventions aimed at altering the 
behavior of microglia have demonstrated potential in the treatment of 
TMEV infection and MS by modulating immune responses, reducing 
inflammation, and promoting remyelination. Qie et al. discovered that 
candesartan, an AT1 receptor blocker (ARB), effectively regulated the 
neuroinflammatory response, reversed neurotoxic effects, and 
induced a shift in microglia from the M1-liked to M2-liked phenotype, 
at least in part through the inhibition of the TLR4/NF-κB signaling 
pathway (Qie et al., 2020). Edetomidine, an agonist of the alpha2 
adrenoceptor, induces M2-liked microglia polarization through the 
inhibition of ERK1/2 signaling (Qiu et al., 2020). Shen et al. have 
engineered neutrophil-derived nanovesicles (NNV) to modulate 
neuroinflammation by enhancing the clearance of myelin debris in 
microglia (Shen et al., 2022). Additionally, Zheng et al. have developed 
a formulation called resveratrol-containing RAW-Exo (RSV&Exo) 
that targets microglia to mitigate neurodegeneration (Zheng et al., 
2023). Mecha et al. found that the administration of the endogenous 
cannabinoid 2-AG selectively targets microglia, improving their 
capacity to clear myelin and promoting the differentiation of 
oligodendrocyte progenitor cells, thereby enhancing myelin 
regeneration (Mecha et al., 2019). In a MS animal model of EAE, 
lipoic acid was reported to reduce microglia/macrophages activation 
and the occurrence of MS disease (Kamma et al., 2022). It seems the 
mechanisms underlying microglia/macrophages polarization are 
complex, and combining different mechanisms together may have a 
helpful effect in the therapy of MS. Relationship between the 
pathogenesis of MS and microglia/macrophages polarization remains 
to be studied.
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