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Keystone species are thought to play a critical role in determining the structure 
and function of microbial communities. As they are important candidates for 
microbiome-targeted interventions, the identification and characterization of 
keystones is a pressing research goal. Both empirical as well as computational 
approaches to identify keystones have been proposed, and in particular correlation 
network analysis is frequently utilized to interrogate sequencing-based microbiome 
data. Here, we apply an established method for identifying putative keystone 
taxa in correlation networks. We  develop a robust workflow for network 
construction and systematically evaluate the effects of taxonomic resolution on 
network properties and the identification of keystone taxa. We are able to identify 
correlation network keystone species and genera, but could not detect taxa with 
high keystone potential at lower taxonomic resolution. Based on the correlation 
patterns observed, we hypothesize that the identified putative keystone taxa have 
a stabilizing effect that is exerted on correlated taxa. Correlation network analysis 
further revealed subcommunities present in the dataset that are remarkably similar 
to previously described patterns. The interrogation of available metatranscriptomes 
also revealed distinct transcriptional states present in all putative keystone taxa. 
These results suggest that keystone taxa may have stabilizing properties in a 
subset of community members rather than global effects. The work presented 
here contributes to the understanding of correlation network keystone taxa and 
sheds light on their potential ecological significance.
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1 Introduction

Microbiomes are characterized by diverse interspecific and microbe-environment 
interactions. The net outcome of microbial activities and interactions produces the observed 
community structure and function, and interactions are thought to be crucial for maintaining 
community stability and conferring resistance and resilience in the face of disturbance. 
Borrowing a concept from macro-ecology (Paine, 1969), the idea of keystone species has 
intrigued many microbiologists as a potential ecological mechanism that facilitates community 
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stability and resilience. Microbial keystones, whether defined at a 
species level or a higher taxonomic grouping, are characterized as 
highly interconnected taxa that exert a strong influence on the entire 
community, shaping the microbiome irrespective of their abundance 
(Hausmann et al., 2019). Loss of a keystone taxon from the community 
would be expected to disrupt the microbiome and cause major shifts 
in community composition and function. Their crucial role in 
maintaining community structure is what makes keystone taxa a 
particularly interesting target for human gut microbiome research.

The gut microbiome is essential for human physiological function 
and health by performing many important services including 
metabolizing complex food molecules (Hamaker and Tuncil, 2014), 
training the immune system (Zheng et  al., 2020), and providing 
colonization resistance against pathogens (Brugiroux et al., 2017). The 
composition of the gut microbial community is highly individualized 
(Lloyd-Price et  al., 2017) and in particular effected by diet and 
geographical location (Wilson et al., 2020). A so-called westernized 
diet, high in fat but low in fiber, has been linked to diseases such as 
type 2 diabetes (Sharma and Tripathi, 2019) and colorectal cancer 
(Arita and Inagaki-Ohara, 2019). Identifying keystone taxa in the 
healthy gut microbiome and understanding their role in the 
community could provide us with novel microbiome-targeted 
intervention strategies for altered community compositions related to 
diseases such as inflammatory bowel disease, cardiovascular disease, 
and obesity (Carding et al., 2015). Some species have been proposed 
as keystones in the human gut microbiome based on empirical 
evidence, such as Akkermansia muciniphila (Belzer et al., 2017) and 
Christensenella minuta (Mazier et al., 2021).

A. muciniphila was shown to facilitate the growth of butyrate 
producers by degrading host-derived mucosal sugars in a mucus-
dependent cross-feeding community (Belzer et al., 2017). C. minuta 
showed protective properties against diet-induced obesity in mouse 
models and modulated the intestinal microbiota in an in vitro model 
inoculated with fecal samples from obese individuals (Mazier et al., 
2021). However, the experimental identification of keystone taxa in 
the human gut microbiome is challenging as intervention studies are 
difficult to conduct and animal and in vitro models can have limited 
translatability for the human gut microbiome. Consequently, 
researchers have moved towards bioinformatics and data analysis to 
identify putative keystone taxa, utilizing methods such as presence-
absence analysis (Amit and Bashan, 2023), linear regression (Fisher 
and Mehta, 2014) and machine learning algorithms (Wang 
et al., 2024).

A popular approach to identify keystone taxa in microbiomes is 
to use sequencing-based microbial abundance profiles to construct 
and analyze correlation or co-occurrence networks (Faust and Raes, 
2012). The assumption is that positive or negative interspecific 
interactions, be they direct or indirect, lead to positive or negative 
correlations between the abundances of the respective taxa. It has been 
shown by Berry and Widder (2014) that in simulated communities 
certain network features, namely node degree, closeness centrality, 
betweenness centrality and transitivity, are indicative of a taxon’s 
keystone potential and can be used to identify keystone taxa with 85% 
accuracy.

Several studies have identified putative keystone taxa based on 
correlation network analysis (Fisher and Mehta, 2014; Goodrich et al., 
2014; Liu et al., 2019) and proposed them as targets for subsequent 
experimental studies. However, we still lack an understanding of what 

ecological features these keystones share or which functional niches 
they occupy that lead to their observed characteristics in correlation 
networks (Banerjee et al., 2018). We can speculate that a keystone 
taxon provides a conserved, specific function in the gut microbiome 
that is not provided by other taxa and is therefore crucial in 
maintaining community structure and function (Ze et  al., 2012; 
Cartmell et  al., 2018). Alternatively, keystone taxa might 
be functionally versatile and able to fill available ecological niches, 
thereby providing the needed functional redundancy and resilience to 
microbial communities (Weiss et al., 2023). One can also imagine a 
mixture of both functions, either provided by a single taxon or a 
keystone guild. Keystone taxa may be  part of the common core 
microbiome, the component found across a large proportion of 
communities, but are closer in concept to an ecological core 
microbiome, the component disproportionally important for shaping 
the community (Risely, 2020).

With this study, we aim to further our understanding of putative 
keystone taxa in the human gut microbiome. We establish a workflow 
to construct robust and statistically significant correlation networks 
with FastSpar (Watts et al., 2019) and identify correlation network 
keystones based on their network features, as proposed by Berry and 
Widder (2014). We  then utilize this workflow to interrogate the 
prokaryotic gut microbiota using publicly available metagenomes and 
metatranscriptomes from large human gut microbiome studies based 
in the USA. We find that detection of network keystones is highly 
sensitive to taxonomic resolution and are able to identify putative 
keystone taxa only at species and genus level. Correlation network 
analysis further suggests a community stabilizing effect of putative 
keystone taxa and reveals co-occurring subcommunities present 
across gut microbiomes.

2 Materials and methods

2.1 Processing of raw data

We analyzed metagenome and metatranscriptome reads from two 
publicly available datasets, a cohort of patients with inflammatory bowel 
disease as well as healthy control patients (Schirmer et al., 2018) and a 
cohort of adult men (Mehta et  al., 2018). The sequencing data is 
available on the Sequence Read Archive under BioProject PRJNA389280 
and BioProject PRJNA354235, respectively. The raw reads were 
preprocessed with trimmomatic (Bolger et al., 2014) (with settings 
leading: 3, trailing: 3, sliding window: 4:15, minlen: 50). We removed 
samples with fewer than one million reads from further analyses and, 
in the Schirmer dataset, used only samples from participants not 
diagnosed with IBD. We  then randomly selected one sample per 
participant to ensure statistical independence of the samples. The 
trimmed reads were processed using HUMAnN 3.0.0 (Beghini et al., 
2021). In further analyses we only considered reads mapped to reference 
genomes and discarded unmapped reads (leading to a total of 
123,109,687 metagenome reads and 115,784,680 metatranscriptome 
reads). Briefly, HUMAnN 3.0.0 first estimates community composition 
with MetaphlAn 3.0.7 (Beghini et al., 2021) and then maps reads to a 
community pangenome with bowtie2 (Langmead and Salzberg, 2012). 
This results in both taxonomic as well as functional profiles of the 
metagenome and metatranscriptome reads. We used the setting rel_
ab_w_read_stats in MetaphlAn 3.0.7 to estimate both relative 
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abundances and total reads mapped to a reference genome. In the 
functional profiles we further grouped reads mapped to gene families 
into Enzyme Commission numbers (ECs) using the HUMAnN 3.0.0 
function humann_regroup_table with - -groups uniref90_level4ec.

2.2 Principal coordinate analysis of 
community profiles

In order to visualize community similarity and overlap between 
the two analyzed datasets, we computed the robust Aitchison distance 
between samples with the function vegandist in the R package vegan 
(Oksanen et al., 2022), using the total estimated reads output from 
MetaphlAn 3.0.7 on species resolution. We then performed a principal 
coordinate analysis on these distances using the function cmdscale in 
the R package stats (Dalgaard, 2010).

2.3 Computation of correlation networks

We computed binary Jaccard similarities of community 
composition at species resolution between samples to estimate whether 
the communities were similar enough to compute correlation networks. 
Berry and Widder (2014) suggest an overall site similarity (Jaccard 
similarity) of at least 20% and we observed a mean Jaccard similarity of 
36%. We computed correlations between taxa using FastSpar (Watts 
et al., 2019) with the settings - -iterations 100 (corresponds to rounds 
of SparCC correlation estimations), - -exclude_iterations 20 (number 
of times highly correlated taxa pairs are discovered and excluded), - 
-threshold 0.1 (minimum threshold to exclude correlated taxa pairs) 
and  - -number 1000 (number of bootstraps). FastSpar is a C++ 
implementation of the correlation network analysis algorithm SparCC 
(Friedman and Alm, 2012). In short, these algorithms use 
log-transformed components to estimate linear Pearson correlations to 
account for the compositional nature of metagenomic data. In order to 
estimate the significance of observed correlations, FastSpar uses a 
permutation-based approach to generate a null distribution that 
observed correlations are then compared against. We used the total 
estimated reads output from MetaphlAn 3.0.7 (Beghini et al., 2021) as 
abundance estimates for each taxon. We  computed correlations 
between taxa at the taxonomic resolution of order, family, genus and 
species. To ensure robust results, we  subsampled our combined 
datasets. Specifically, we used FastSpar to compute correlation networks 
on a random subsample of 50 samples and repeated this process 1,000 
times. We then built a consensus network using only correlations with 
a p-value ≤0.05 in at least 200 iterations. The correlation strength in the 
consensus network was estimated as the mean correlation strength of 
significant correlations across all iterations. This workflow is visualized 
in Figure  1. We  calculated network features, namely modularity, 
cohesion, relative node degree, closeness centrality, betweenness 
centrality and transitivity, using the R package igraph (Csárdi et al., 
2023). Following the suggestion of Berry and Widder (2014) 
we  estimated each taxon’s potential to act as a keystone using the 
network features relative node degree, betweenness centrality and 
transitivity. We excluded closeness centrality from our calculations in 
order to reduce collinearity of features. As shown by Berry and Widder 
(2014), correlation network keystone taxa show a high relative node 
degree and transitivity as well as low betweenness centrality. 

We therefore computed the keystone potential (=KP) of each taxon as 
(relative node degree * transitivity)/betweenness centrality. We consider 
taxa a keystone if they show a particularly high KP as compared to all 
other prevalent taxa (taxa present in at least 20% of samples). Namely, 
we chose a cut-off of median + 5× median absolute deviation of KP 
(cut-off KP = 22) after visually examining the entire distribution. 
We furthermore grouped the prevalent taxa into clusters using the 
function cluster_fast_greedy with default settings in the R package 
igraph (Csárdi et al., 2023) on positive correlation networks, in which 
only correlations with a correlation strength >0 are considered. 
We  visualized correlation networks using Cytoscape version 3.8.0 
(Shannon et al., 2003).

2.4 Functional potential of keystone taxa

We investigated the functional potential of keystone taxa using the 
pathabundances output from HUMAnN 3.0.0 (Beghini et al., 2021). 

FIGURE 1

Workflow for the construction of robust and significant correlation 
networks. The dataset is subsampled 1,000 times and correlation 
networks are constructed from subsamples using FastSpar. 
Correlations identified as significant in ≥200 iterations are used to 
construct a consensus network. The mean correlation strength of all 
significant correlations is used as the correlation strength for the 
consensus network. Igraph is used to calculate relative node degree, 
transitivity and betweenness centrality.
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In short, pathway abundances are computed on community level as 
well as for individual taxa based on the abundances of the individual 
component reactions constituting an entire pathway. The pathway 
definitions used are based on MetaCyc (Caspi et al., 2016).

2.5 Transcriptional stability and 
transcriptional states of keystone taxa

In order to estimate functional stability of taxa we  computed 
pairwise Sorenson similarities on the presence and absence of gene 
families using the function betadiver in the R package vegan (Oksanen 
et al., 2022). We performed k-means clustering to further analyze the 
functional profiles of the keystone taxa and identify different 
transcriptional states. For this analysis we opted to use the functional 
resolution of ECs provided by HUMAnN 3.0.0 (Beghini et al., 2021) 
(function humann_regroup_table with - - groups uniref90_level4ec) 
and normalized copies per million to the total transcription attributed 
to each taxon per sample. We use the function fviz_nbclust in the R 
package factoextra (Kassambara and Mundt, 2020) to choose the 
optimal number of clusters (with a k.max—maximum number of 
clusters—of 10) by computing the average silhouette width for each 
number of clusters and choosing the highest score. For this number 
of clusters, we then performed k-means clustering using the function 
kmeans in the R packages stats (Dalgaard, 2010). However, if 
we observed clusters containing only 1 or 2 samples, we excluded 
these samples from the analysis and repeated the process. In order to 
gain some insights into which ECs are particularly important for 
distinguishing the observed transcriptional states, we  performed 
random forest analyses. A random forest analysis is a classifying 
algorithm based on decision trees that calculates importance metrics 
for the features used to cluster a dataset. In order to estimate the 
significance of these importance metrics we  used the function 
rfPermute in the R package rfPermute (Archer, 2023). This function 
computes a null distribution of importance metrics by permuting the 
response variable and calculates p-values for the observed 
importances. We  used the mean decrease in accuracy as the 
importance metric for our analysis.

3 Results

3.1 Establishing a workflow to build 
significant and robust correlation networks

In this study, we established a workflow that results in correlation 
networks based on both highly significant as well as robust 
correlations (Figure  1). A major concern when constructing 
correlation networks is the inherent compositionality of community 
abundance profiles derived from sequencing data, which can lead to 
spurious correlations. We utilized FastSpar (Watts et al., 2019), a C++ 
implementation of the well-established tool SparCC (Friedman and 
Alm, 2012), which identifies significant correlations and excludes 
spurious correlations based on a bootstrapping algorithm. 
We constructed correlation networks with FastSpar on subsamples 
from two publicly available datasets (Mehta et al., 2018; Schirmer 
et  al., 2018) that we  combined for our analysis. Subsequently 
we constructed a consensus network based only on correlations that 

were identified as significant in at least 20% of the individually 
constructed networks. This workflow ensures that correlations kept 
in the consensus network are representative of both the entire dataset 
as well as subsamples. We used this procedure to identify taxa that 
robustly exhibit correlation network keystone features in the gut 
microbiomes studied.

3.2 Community structure and species 
properties

In order to evaluate keystone taxa in the healthy human gut 
microbiome, we leveraged two large studies of healthy human adults, 
which included 580 paired metagenome and metatranscriptome 
samples from 131 individuals (Mehta et al., 2018; Schirmer et al., 
2018). We  first computed community composition profiles using 
HUMAnN 3.0.0 (Beghini et al., 2021). We then estimated whether the 
community compositions of the two datasets were similar enough to 
be combined by performing an ordination analysis and computing the 
similarity between communities on a species level. This revealed that 
while samples from the two datasets are somewhat separated, they still 
exhibit a strong overlap (Supplementary Figure S1A). To ensure 
statistical independence between samples we randomly selected one 
sample per participant, resulting in an even larger overlap between the 
two datasets (Supplementary Figure S1B). To further confirm the 
validity of combining datasets, we investigated the site similarity of the 
included samples by computing the overall Jaccard similarity between 
the communities (presence and absence of species), as suggested by 
Berry and Widder (2014). Overall, the studied communities exhibit a 
similarity of 36%, exceeding the suggested lower limit of 20%. These 
results confirmed the suitability of combining the datasets for 
computing correlation networks and estimating keystone potential. To 
gain a better understanding of the data used for this study, we analyzed 
relative abundance, prevalence and transcriptional contribution of 
prevalent species (Supplementary Figure S1C). We observed a large 
variance in relative abundance across samples, both within and 
between species. As expected, several species of Bacteroides, such as 
Bacteroides vulgatus [85% sample prevalence, 9% mean relative 
abundance (sd 10%)], Bacteroides uniformis [93% sample prevalence, 
8% mean relative abundance (sd 7%)] and Bacteroides stercoris [51% 
sample prevalence, 4% mean relative abundance (sd 9%)], as well as 
Faecalibacterium prausnitzii [99% sample prevalence, 7% mean 
relative abundance (sd 5%)] and Prevotella copri [20% sample 
prevalence, 5% mean relative abundance (sd 14%)] are highly 
abundant in the dataset. More abundant species also tend to contribute 
more strongly to metatranscriptomes. This could reflect actual 
contribution to transcription, but may also be  a result of better 
annotation quality in reference genomes from highly abundant 
species. While many highly abundant species are also highly prevalent 
across the dataset, there are multiple exceptions. Most notable and 
well known is the low prevalence of P. copri, a species that has 
previously been observed to be abundant in certain gut microbiomes 
while mostly absent in many others, particularly in cohorts from 
Europe and North America (Tett et  al., 2019). In order to avoid 
spurious correlations and ensure high sensitivity (Berry and Widder, 
2014) we focused our analysis on taxa exhibiting a prevalence of at 
least 20% across all studied samples and constructed correlation 
networks as described above.
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3.3 Correlation networks reveal a loss of 
structure and keystone potential at lower 
taxonomic resolution

Previous work has shown that closely related taxa can form 
networks to utilize complex substrates in the human gut (Rakoff-
Nahoum et al., 2014), but stable interactions between distantly related 
taxa have been also observed (Rao et al., 2021). It is, however, poorly 
understood how taxonomic resolution affects correlation analysis and 
specifically the identification of putative keystones. We  therefore 
computed correlation networks at different taxonomic resolutions 
(order, family, genus and species) and investigated their structure. 
Overall, networks showed reduced modularity with increased 
taxonomic resolution (genus and species), while cohesion decreased 
from species- to order-level networks (Figure 2A). Modularity measures 
the extent to which a given network is divided into modules, with a 
higher modularity indicating greater divisions within the network. In 
contrast, the cohesion of a network estimates the minimum number of 
nodes that need to be removed to result in a weakly connected network, 
and a higher cohesion therefore indicates a more tightly connected 
network. Constructing correlation networks at low taxonomic 
resolution produced weakly connected networks while networks 
constructed at genus- and species-level are more cohesive and less 
modular. This observation is further confirmed by the observed 
distributions of network features, namely relative node degree (ND), 
transitivity (T) and betweenness centrality (BC). The relative degree of 
a node (=a taxon) is the number of edges a node has (correlations to 
another node) relative to the size of the network (total number of 
nodes). Transitivity indicates whether all nodes correlated with a given 
node are in turn correlated. The betweenness centrality of a node 
estimates how many shortest paths between two nodes (smallest 
number of edges connecting two nodes within a network) go through 
this given node. Correlation network keystones are characterized by 
high node degree, high transitivity and low betweenness centrality 
(Berry and Widder, 2014). The probability density functions of these 
network features, particularly transitivity and betweenness centrality, 
are flatter at lower taxonomic resolution (Figure 2B). In the node degree 
distribution, we observe a slight flattening as well as a general shift 
towards a higher degree at lower taxonomic resolution. Flatter 
probability density functions, and therefore a more equal distribution 
of network features across all taxa, suggest that any one taxon is less 
likely to exhibit a high keystone potential. We confirm this by computing 
the keystone potential (=KP), using the formula KP = (ND*T)/BC, and 
comparing it across taxonomic resolutions (Figure 2C). As expected, 
we observe very low KP at family and order level, indicating that such 
broad taxonomic groups are unlikely to exhibit structuring effects on 
the overall community (Supplementary Table S1). In contrast, we see 
both genera and species with a high potential to act as correlation 
network keystones. Interestingly, the pattern of KP is not consistent 
from genus to species, with some taxa exhibiting a higher potential at 
genus level and seemingly losing it at species level and vice versa. 
We  also observe that degree and betweenness centrality tend to 
be positively correlated in both genera and species and consequently 
taxa with a high keystone potential show a surprisingly low degree, but 
high transitivity (Figure 2D; Supplementary Figure S2). In summary, 
these results suggest that correlation network keystones are solely found 
within genera or species, and we thus focused our downstream analyses 
on these two taxonomic levels.

3.4 Few taxa have a relatively high keystone 
potential

We next analyzed the distribution of keystone potential in genera 
and species to better understand the network properties of correlation 
network keystones. Both on genus as well as on species level the 
distribution of keystone potential is strongly skewed to the right and 
only few taxa show a particularly high KP when compared to all other 
taxa (Figures 3A,B, respectively). This aligns well with our understanding 
of keystones and is to be expected based on the probability density 
functions of the network features used to compute KP (Figure 2B). 
Specifically, 8.8% of prevalent genera and 3.6% of prevalent species show 
a KP above 22 (see materials and methods section) and are therefore 
considered putative keystones in our analysis. On genus level 
Methanobrevibacter (KP = 92), Agathobaculum (KP = 39), Bilophila 
(KP = 30) and Holdemania (KP = 30) (Table  1) have a notably high 
potential to act as correlation network keystones. We also observe a 
group of unclassified Bacillota (KP = 41) with high KP, but as this group 
of species is likely not phylogenetically coherent, we did not include it in 
further analyses. On species level, Firmicutes bacterium CAG 83 
(unclassified Bacillota, KP = 169), Eisenbergiella tayi (KP = 126), 
Veillonella atypica (KP = 52) and Ruminococcus lactaris (KP = 27) are 
putative keystones (Table  1). With the exception of the genera 
Methanobrevibacter and Bilophila, which belong to the phylum 
Euryarchaeota and Thermodesulfobacteriota, respectively, all of these taxa 
are Bacillota. When we compare the KP of each species with its respective 
KP on genus level, there is no clear pattern (Figure 3C). This suggests 
that certain genera may act as a keystone towards other genera but lose 
this potential on species level, and vice versa. We  observe this for 
Agathobaculum, Bilophila, Holdemania and Methanobrevibacter. These 
four genera show a high KP, but the respective species exhibit low KP 
(Figure 2C). This is a particularly surprising observation considering 
that only one species belonging to each of these genera is present in the 
datasets, namely Agathobaculum butyriciproducens, Bilophila 
wadsworthia, Holdemania filiformis and Methanobrevibacter smithii. 
These keystone genera are effectively keystone species that seem to have 
stronger network keystone properties when considering intergenic 
correlations. The correlations might be diluted on a species level and 
intergenic correlations may be distributed amongst multiple species with 
differing abundance patterns. Conversely, particular species have a high 
KP that is diluted when observed on genus level, as can be seen for 
V. atypica and E. tayi. The species within one genus may rarely co-occur, 
resulting in opposing correlation patterns and leading to a low KP on 
genus level. Ultimately, only few taxa in species and genus correlation 
networks exhibit a high potential to act as keystones, while the vast 
majority of taxa do not show the characteristics of putative keystones.

3.5 Correlation patterns indicate that 
keystone taxa may facilitate community 
stability

It has been suggested that in a highly diverse and functionally 
redundant system, such as the human gut microbiome, stability is 
facilitated by a high number of negative interactions, preventing the 
formation of positive feedback loops (Coyte et al., 2015). However, 
we  observe that more than 50% of correlations in the analyzed 
networks are positive (Figure 4A). This is even more pronounced in 
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FIGURE 2

Distribution of correlation network features and keystone potential. (A) Correlation networks constructed on order, family, genus and species level. 
Network nodes (black circles) indicate taxa, network edges connecting the circles indicate positive (gray) and negative (red) correlations between taxa. 

(Continued)
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Nodes without edges did not show significant correlations in ≥200 subsamples (see materials and methods section). The network layout was 
computed in Cytoscape (Shannon et al., 2003) using the layout option “Prefuse Force Directed Layout.” In this layout nodes (taxa) with a higher 
number of significant correlations between them are placed closer together. (B) Density functions of relative node degree (relative to total network 
size), transitivity and betweenness centrality of taxa within a correlation network, colored by taxonomic resolution. (C) Keystone potential of taxa 
present in ≥20% of analyzed samples. The keystone potential of each taxon is indicated as a colored square, with white indicating very low keystone 
potential and dark gray indicating high keystone potential. (D) Relationship between mean degree and transitivity of network nodes. Circle size 
represents keystone potential and red (grey) circle color indicates low (high) betweenness centrality.

FIGURE 2 (Continued)

FIGURE 3

Density functions of keystone potential on (A) genus and (B) species level. Inserts show the taxa with the highest keystone potential. Horizontal lines 
indicate the keystone potential cut-off for taxa considered a keystone. The cut-off is set at median  +  5× median absolute deviation. (C) Keystone 
potential on species level versus keystone potential on genus level, shown on a logarithmic scale. The diagonal line indicates a 1:1 linear relationship. 
Colors indicate the phylum of each taxon.
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species that belong to the same genus, where almost 75% of observed 
within-genus correlations are positive (Figure 4B). Putative keystone 
genera show a contrasting pattern, with around 60% negative 
correlations (Figure 4C) and genera that are strongly correlated with 
a keystone exhibit weaker within-genus correlations (Figure  4D). 
These results suggest that single-species keystone genera might 
provide community stability by counteracting positive feedback loops 
within other genera and dampening correlations. We also observe that 
larger genera exhibit weaker positive correlations within a respective 
genus (Supplementary Figure S3A) which may be a result of functional 
redundancy in these more closely related taxa. On both genus as well 
as species level we observe that taxa correlated with a keystone taxon 
(first neighbors of keystones) are in general correlated to more taxa 
than those not correlated to a keystone. First neighbors of keystones 
also tend to have weaker correlations (Supplementary Figures S3B,C, 
respectively). These observations further point towards a potential 
stabilizing effect of putative keystone taxa.

3.6 Correlation patterns reveal 
co-occurring clusters of taxa

To gain a better understanding of the community assembly 
characteristics of putative keystone taxa, we  investigated the 
co-occurrence patterns of all prevalent species and genera. 

We  constructed positive correlation networks, considering only 
correlations with a correlation strength >0, and performed a clustering 
analysis on these networks. This analysis revealed four distinct clusters 
of species that are highly positively correlated with each other and that 
show fewer positive correlations to species of other clusters (Figure 5A). 
Each keystone species is a member of a different species cluster, 
indicating that keystone species are not highly correlated with each 
other. In contrast, keystone genera do not fall into separate clusters in 
the genus network, despite the presence of again four clusters 
(Figure 5B). Specifically, Bilophila and Holdemania are part of one 
cluster while Agathobaculum and Methanobrevibacter are located in 
another. The remaining two clusters are a cluster including Bacteroides, 
a highly diverse and abundant genus, and a cluster including Prevotella, 
a genus with, as previously mentioned, distinct abundance patterns. It 
should further be noted that high abundance is not a necessity for a 
correlation network keystone (Supplementary Figure S1C). In fact, 
amongst all prevalent taxa (at least 20% prevalence), keystones exhibit 
medium to low mean relative abundance. Examining the distribution 
of all network clusters across samples, we  observe a gradient of 
community compositions both on species and genus level 
(Supplementary Figure S4). At both taxonomic resolutions there are 
two dominant clusters that generally comprise the majority of the 
community. However, all four respective clusters co-occur in most 
samples and the composition ranges from heavily dominated by one 
cluster to almost equal contribution of each cluster. This observation is 

TABLE 1 Characteristics of identified correlation network keystone taxa.

Agathobaculum butyriciproducens is a gram-positive, strictly anaerobic Bacillota. It is a known butyrate producer in the human gut microbiome (Ahn et al., 2016) and has 

previously been suggested to facilitate protection against Alzheimer’s disease (Go et al., 2021) as well as Parkinson’s disease (Lee et al., 2022) in mouse models. [83% sample 

prevalence; 0.31% mean relative abundance (sd 0.4%); 25% negative correlations]

Bilophila wadsworthia is a gram-negative, obligate anaerobe bacterium of the phylum Thermodesulfobacteriota (Baron et al., 1989). It has previously been described as an 

opportunistic pathogen that is able to metabolize taurine to H2S (Peck et al., 2019). In mouse models it has furthermore been suggested to aggravate symptoms caused by high 

fat diet (Natividad et al., 2018) as well as cause inflammation (Feng et al., 2017). Furthermore, higher relative abundances of B. wadsworthia have been observed in young 

colorectal cancer patients (Kharofa et al., 2023). [54% sample prevalence; 0.04% mean relative abundance (sd 0.07%); 75% negative correlations]

Eisenbergiella tayi is a strictly anaerobic Bacillota that has been described as gram-stain-variable (Amir et al., 2014; Bernard et al., 2017). It has furthermore been suggested as 

a potential pathogen, being found at generally sterile human body sites (Bernard et al., 2017). The genus Eisenbergiella has been found to correlate with the uptake of 

macronutrients in a study investigating the microbiome of stunted children (Surono et al., 2021) and increased relative abundances of E. tayi have been observed in the gut 

microbiome of multiple sclerosis patients (Zhou et al., 2022). [26% sample prevalence; 0.05% mean relative abundance (sd 0.3%); 11% negative correlations]

Firmicutes bacterium CAG 83 (unclassified Bacillota) has previously been described as a likely slow-growing member of the genus Oscillospira that is able to utilize host 

glycans and to produce butyrate (Gophna et al., 2017). It was found to be enriched in young colorectal cancer patients (Kharofa et al., 2023) as well as in patients suffering 

from asthma, after probiotic intervention (Liu et al., 2021). [69% sample prevalence; 0.34% mean relative abundance (sd 0.78%); 57% negative correlations]

Holdemania filiformis is a strictly anaerobic, gram-positive Bacillota. Its main fermentation end products from glucose are acetic acids and lactic acids (Willems et al., 1997). 

Higher relative abundance of H. filiformis has been observed in young colorectal cancer patients (Kharofa et al., 2023) and patients with alopecia areata (Moreno-Arrones 

et al., 2020), but also in metastatic melanoma patients that responded to treatment with immune checkpoint inhibitors (Frankel et al., 2017; Moreno-Arrones et al., 2020). 

[37% sample prevalence; 0.01% mean relative abundance (sd 0.03%); 50% negative correlations]

Methanobrevibacter smithii is a mesophilic, anaerobic archaeon in the phylum Euryarchaeota (Miller et al., 1982). It is the most prevalent methanogen in the human gastrointestinal 

tract (Dridi et al., 2009) and plays a pivotal role by consuming end products of bacterial fermentation to produce methane. In this context it has previously been described as a 

keystone taxon of the gut microbiome (Dridi et al., 2009; Horz and Conrads, 2010). [31% sample prevalence; 0.2% mean relative abundance (sd 0.74%); 75% negative correlations]

Ruminococcus lactaris is an obligately anaerobic, gram-positive Bacillota named for its rapid fermentation of lactose (Moore et al., 1976). It is a prominent member of the 

human gut microbiome and able to produce short-chain fatty acids as well as lactate (Peck et al., 2019). Metagenome analysis has furthermore suggested that it can produce 

various B vitamins (Magnúsdóttir et al., 2015). Elevated abundances of R. lactaris have been reported in the gut microbiome of children with tic disorders (Xi et al., 2021). 

[53% sample prevalence; 0.49% mean relative abundance (sd 1.3%); 70% negative correlations]

Veillonella atypica is a gram-negative, anaerobic Bacillota (Mays et al., 1982). It has been indicated as performance-enhancing in rodents through its lactate metabolism 

(Scheiman et al., 2019) as well as a potential agent for the bioremediation of sodium selenite (Pearce et al., 2009). V. atpyica is also frequently observed in human oral dental 

plaque biofilms where it may be metabolically strongly linked to Streptococcus gordonii (Egland et al., 2004). [23% sample prevalence; 0.04% mean relative abundance (sd 

0.16%); 23% negative correlations]
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in accordance with recently described enterosignatures of gut microbial 
communities (Frioux et al., 2023) and may point towards a modular 
gut microbiome composed of distinct groups of co-occurring taxa.

3.7 Keystone taxa are transcriptionally 
versatile and show distinct transcriptional 
states

In an effort to elucidate the functional role of putative keystone 
taxa, we  investigated their genomic potential and transcriptional 
versatility. No genomic features were identified to be distinctive of 
keystone taxa (Supplementary Figure S5), so we focused on analyzing 
their transcriptional versatility and potential transcriptional states. 

We  estimated the transcriptional versatility of prevalent taxa by 
computing pairwise Sorensen similarities on the presence and 
absence of gene families in the metatranscriptomes. The average 
transcriptional similarity of keystone taxa ranges from fairly high 
(Holdemania: 0.7, R. lactaris: 0.64) to the lower end of the observed 
range (Bilophila: 0.22, E. tayi: 0.18) (Supplementary Figure S6). 
However, as is the case for most of the prevalent taxa, transcriptional 
similarity within each keystone taxon varies strongly across all 
analyzed samples. This suggests that keystone taxa do not occupy a 
conserved ecological niche—as inferred by transcriptional profiles—
but are rather functionally versatile and potentially occupy different 
ecological niches within different gut microbial communities. Based 
on these observations we  performed clustering analyses on the 
transcriptional profiles of the keystone taxa to identify potentially 

FIGURE 4

Fractions of negative and positive correlations (A) between taxa at different taxonomic resolution, (B) between genera and within genera and (C) of 
keystone genera and non-keystone genera. (D) Absolute correlation strength from keystone genera to other genera versus the mean absolute 
correlation strength within the respective genera (linear model: p-value <0.001, adj. R2  =  0.79).
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differing transcriptional states. We were able to identify two to three 
discrete transcriptional states for most keystone taxa (Figures 6, 7), 
with the exceptions of Holdemania and V. atypica. In these two cases 
very few reads mapped to known gene families and fewer still could 
be  grouped into known Enzyme Commission numbers (ECs), 

indicating low annotation rates in their reference genomes. 
Consequently, a clustering analysis based on transcriptional profiles 
could not be performed for these two taxa.

We next performed random forest machine-learning analyses to 
identify individual ECs that distinguish the transcriptional states 

FIGURE 5

Positive correlation networks of prevalent (present in ≥20% of analyzed samples) (A) species and (B) genera. Gray circles indicate taxa, red diamonds 
indicate identified correlation network keystone taxa. Circle and diamond size represent the mean relative abundance of taxa. Edges between circles 
indicate positive correlations. Light blue indicates a weak correlation, darker blue indicates a stronger correlation. Taxa are organized into 4 clusters of 
strongly positively correlated species and genera, respectively, as identified with a fast greedy clustering algorithm.
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FIGURE 6

Ordination plots depicting principal component analyses of metatranscriptomes of (A) Agathobaculum, (C) Bilophila and (E) Methanobrevibacter. 
Metatranscriptome reads were mapped to reference genomes, grouped to Enzyme Commission numbers (ECs) and normalized to the total number of 

(Continued)

https://doi.org/10.3389/fmicb.2024.1454634
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bauchinger et al. 10.3389/fmicb.2024.1454634

Frontiers in Microbiology 12 frontiersin.org

(Figures 6, 7; Supplementary Table S1). For Bilophila, this revealed two 
ECs with contrasting transcription profiles (Figures 6C,D). Taurine-
pyruvate aminotransferase (EC 2.6.1.77), is involved in taurine and 
hypotaurine metabolism and shows higher relative transcription in 
the samples in transcriptional state 1. Taurine metabolism is well 
described in Bilophila and may be  linked to disease phenotypes 
(Natividad et al., 2018; Peck et al., 2019). Glucosamine-1-phosphate 
N-acetyltransferase (EC 2.3.1.157), which shows higher relative 
transcription in transcriptional state 2, is involved in the metabolism 
of various amino sugars and nucleotide sugars, such as glucose or 
extracellular N-Acetyl-D-glucosamine. For Methanobrevibacter, 
we  could identify three transcriptional states that are likely 
related to methane metabolism (Figure  6E). Coenzyme-B 
sulfoethylthiotransferase (EC 2.8.4.1), the enzyme that catalyzes the 
final step of methanogenesis, was the most important in distinguishing 
these states (Figure 6F). Our analysis revealed three additional ECs 
involved in methane metabolism (EC 2.3.1.101, Formylmethanofuran-
tetrahydromethanopterin formyltransferase, EC 1.17.1.9, Formate 
dehydrogenase and EC 4.1.2.43, 3-hexulose-6-phosphate synthase) as 
important in distinguishing transcriptional states 
(Supplementary Table S3). Two transcriptional states were identified 
in E. tayi (Figure 7C). Notably, all three ECs identified as important in 
distinguishing these transcriptional states are involved in the 
biosynthesis of lysine (Figure  7D). The proportion of E. tayi 
transcription dedicated to these enzymes seems to be  higher in 
transcriptional state 2, pointing towards an upregulation of 
lysine biosynthesis.

It is important to note that a large proportion of metatranscriptome 
reads could not be grouped into any known ECs. We still chose the 
higher resolution of ECs over gene families to gain more insight into 
the function of the transcripts at the expense of losing a larger 
proportion of reads. We would also like to point out that the presence 
of transcriptional states is not unique to keystone taxa and that 
we could observe similar patterns in many other taxa. Despite these 
limitations, the data point towards the presence of functionally 
versatile keystone taxa in the gut microbial community.

4 Discussion

The aim of the present study is to elucidate the potential ecological 
role of correlation network keystone taxa of the human gut 
microbiome and gain a better understanding of how these analyses tie 
into other avenues of human gut microbiome research. In order to 
identify correlation network keystones, we  developed a workflow 
based on a bootstrapping approach and a subsampling regime that 
enables the construction of robust and statistically significant 
correlation networks. We only observe high keystone potential of any 
taxa in genus- and species-level networks (Figure 2C), in contrast to 
previous suggestions of higher-order keystones (Trosvik and de 
Muinck, 2015). Due to the combination of different network features 
in our approach and the observed positive relationship between mean 

degree and betweenness centrality, the identified putative keystone 
taxa show a surprisingly low mean degree (Figure 2D). This result 
contrasts a more traditional understanding of keystone taxa as 
network hubs (nodes with a high number of edges) (Paine, 1969; Faust 
and Raes, 2012; Liu et al., 2019; Varsadiya et al., 2021). While we were 
able to identify taxa with a high keystone potential in the genus-level 
correlation network, they are interestingly all single-species genera, 
meaning that no other species belonging to these genera were detected 
in the analyzed samples. However, the respective species of these 
single-species genera are not identified as keystone species in the 
species-level network. This indicates that they exert their influence on 
other genera rather than other species. We  hypothesize that the 
correlations to other species may be weak because they are spread 
amongst many species of individual genera, but on genus-level these 
correlations aggregate to stronger correlations which lead to the 
detection of single-species keystone genera. Conversely, we may miss 
correlations due to intraspecific genetic variability that is only 
detectable at strain level. These dilutions of the correlation signal may 
occur to a different extent across taxa due to different genetic 
boundaries across taxonomic clades. A lower taxonomic resolution 
inevitably increases the functional potential of a taxon and broadens 
its ecological niche, which thereby likely weakens direct and indirect 
interactions between taxa. This would also explain the more evenly 
distributed correlations between orders and families when compared 
to genera and species and the lower keystone potentials. Keystone taxa 
are of great interest for systematic microbiome engineering, for 
example for the restoration of a perturbed gut microbiome through 
the introduction or targeted manipulation of keystones. In applied 
fields a microbial species or genus may well present a more practical 
target, as opposed to broader taxonomic groups.

Overall, the correlation networks have a high percentage of positive 
correlations (Figure 4A). This is somewhat surprising, as work by Coyte 
et al. (2015) has suggested that a diverse microbial community can only 
be stable when the majority of interactions are negative. Interestingly, 
the single-species keystone genera identified through our analysis have 
a considerably higher percentage of negative correlations to other 
genera (Figure 4C; Table 1). These high numbers of negative correlations 
with keystone taxa may provide stability to the microbial community, 
especially considering the particularly high percentage of positive 
correlations between species of the same genus (Figure  4B). The 
negative correlations with keystone genera potentially counteract these 
positive correlations that could otherwise result in positive feedback 
loops and lead to instability. Coyte et al. (2015) identify the dampening 
of these positive feedback loops as one mechanism for stabilization of a 
community. They furthermore suggest weaker ecological interactions 
as an additional stabilization mechanism. We indeed observe that the 
stronger the correlation of a keystone to a genus, the weaker the 
correlations between the species of the respective genus (Figure 4D), 
suggesting that the keystone genera may be both dampening positive 
feedback loops and weakening intergenic correlations. We additionally 
find that species’ positive correlations tend to be weaker in larger genera 
(Supplementary Figure S3A). This result supports another observation 

reads mapped to each taxon per sample. Colors and icons indicate transcriptional states identified through k-means clustering (average silhouette 
width: Agathobaculum: 0.87, Bilophila: 0.92, Methanobrevibacter: 0.86). Normalized transcription of example ECs identified as important in 
distinguishing the transcriptional states through a random forest model are depicted in panels (B,D,F), respectively.
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FIGURE 7

Ordination plots depicting principal component analyses of metatranscriptomes of (A) Ruminococcus lactaris, (C) Eisenbergiella tayi and (E) Firmicutes 
bacterium CAG 83 (unclassified Bacillota). Metatranscriptome reads were mapped to reference genomes, grouped to Enzyme Commission numbers 
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by Coyte et al. (2015) that functional redundancy in closely related taxa 
provides stability by replacing few strong interactions with many weaker 
interactions. In general, taxa correlated to a keystone taxon tend to have 
more, but weaker correlations (Supplementary Figures S3B,C), again 
indicating a stabilizing effect from keystone taxa.

In both the species- as well as genus-level network we identified 
four clusters of co-occurring taxa (Figure  5). The analyzed gut 
microbiomes all consisted of more than one cluster, both on species 
as well as genus level, resulting in a compositional gradient ranging 
from strongly dominated by a particular cluster to a fairly even 
distribution of all four clusters (Supplementary Figure S3). Frioux 
et  al. (2023) recently described similar patterns in the genus 
composition of gut microbial communities. They identified five 
so-called enterosignatures (commonly co-occurring genera) that, in 
combination, can accurately describe most healthy gut microbiomes. 
These five enterosignatures show strong similarities to the genus 
clusters we  were able to identify in our correlation network. 
Specifically, ES-Firm (enterosignature with a high contribution of 
various Bacillota) and ES-Prev (dominated by Prevotella) correspond 
to cluster 3 and cluster 4 in Figure 4, respectively. An enterosignature 
mainly found in the gut microbiome of infants, ES-Bifi, does not have 
a corresponding genus cluster in the cohort we  analyzed, which 
consists solely of adults. However, the main genera of ES-Bifi, namely 
Bifidobacterium, Streptococcus, Veillonella, Enterococcus and 
Haemophilus, are members of genus cluster 1, together with 
Bacteroides, one of the main genera in ES-Bact. The remaining cluster 
2 includes Escherichia, the main contributor to ES-Esch, and Blautia, 
a strong contributor to ES-Firm, but most genera in this cluster were 
not reported as strongly contributing to an enterosignature. These 
differences may be  due to differences in the applied methods 
(correlation analysis vs. non-negative matrix factorization) as well as 
size and diversity of the analyzed cohorts. While not a perfect match 
to the described enterosignatures, the genus clusters we identified are 
still remarkably similar in composition. In contrast to the study by 
Frioux et al. (2023) we focused on the analysis of samples from healthy 
adults and can therefore not draw any conclusions on the relationship 
between the identified keystones and disease states. The presence of 
the keystones does not imply a healthy microbiome nor does their 
absence imply a perturbed microbiome.

We observe distinct transcriptional states in all putative keystone 
taxa that can be attributed to differential transcription of particular 
ECs. In a small synthetic gut microbial community, Shetty et  al. 
(2022) observed shifting functional roles of species in an otherwise 
compositionally and functionally fairly stable community. These 
observations suggest functional versatility that enables these taxa to 
adjust their metabolism to available resources and shifting ecological 
niches. Particularly striking is the high number of ECs from 
Methanobrevibacter involved in methane metabolism that we could 
identify as important in distinguishing the transcriptional states of 
Methanobrevibacter. In Bilophila, we identified an EC involved in 
taurine and hypotaurine metabolism as important in distinguishing 

transcriptional states and an EC potentially involved in host glycan 
degradation that shows an opposing transcription pattern, suggesting 
a metabolic shift. These findings are consistent with the idea that the 
gut microbiome needs to be  able to accommodate a diverse and 
variable set of available resources as well as dynamic interplay with 
the host. Together with the stabilizing effects previously discussed, 
functional versatility may be another mechanism enabling keystone 
taxa to exert their influence on the microbial community.

In an intriguing study on gnotobiotic mice, Weiss et al. (2023) 
observe that functional roles of individual taxa are strongly dependent 
on the environment and question the existence of universally valid 
keystone species in the gut microbiome. While we also observe that 
the transcriptional activity of keystones is variable, our results suggest 
that the complex intestinal microbial community is modular and 
keystone taxa exert a stabilizing effect on subsets of the microbiome. 
These subsets are relatively independent and co-occur in individual 
gut microbiomes at various frequencies. However, experimental 
validation is needed to strengthen this hypothesis and in particular to 
further our understanding of the metabolic interplay underlying the 
observed dynamics (Tudela et al., 2021).

5 Limitations of the study

The present study has several limitations. We focused exclusively 
on the analysis of publicly available data and no experimental 
validation was carried out. Metagenome and metatranscriptome reads 
were mapped to reference genomes and analyzed on different 
taxonomic resolutions up to species. Consequently, strain-level 
variation has not been taken into account and the reliance on reference 
genomes further reduces the genetic variation represented in this 
study. We also recognize that correlation networks can reflect other 
ecological processes beyond interactions such as habitat filtering. 
Additionally, our analyses focused only on prevalent taxa and 
therefore would miss any less common keystone taxa. Our 
observations are furthermore limited to the distal colon, while 
community composition as well as functionality may differ in more 
proximal parts of the intestines. Lastly, the data we used for this study 
consisted of two cohorts with limited demographic diversity and 
different putative keystones may be present in other populations. Our 
study focused on healthy adults from the USA and does not represent 
and cannot readily be translated to other world populations.

6 Conclusion

In this study we developed a pipeline (available on github) for the 
robust construction and analysis of correlation networks and the 
identification of putative keystone taxa, namely Agathobaculum 
butyriciproducens, Bilophila wadsworthia, Eisenbergiella tayi, 
Firmicutes bacterium CAG 83 (unclassified Bacillota, Holdemania 

(ECs) and normalized to the total number of reads mapped to each taxon per sample. Colors and icons indicate transcriptional states identified 
through k-means clustering (average silhouette width: R. lactaris: 0.92, E. tayi: 0.78, Firmicutes bacterium CAG 83: 0.81). Normalized transcription of 
example ECs identified as important in distinguishing the transcriptional states through a random forest model are depicted in panels (B,D,F), 
respectively.
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filiformis, Methanobrevibacter smithii, Ruminococcus lactaris and 
Veillonella atypica). Through a comprehensive analysis of the 
constructed correlation networks we are able to show that correlation 
networks and their properties are highly sensitive to taxonomic 
resolution. Furthermore, we  identified signatures of potentially 
community stabilizing interaction patterns reflected in the correlation 
networks as well as co-occurring sub-communities in the human gut 
microbiome that show a high similarity to previously described 
enterosignatures. The ecological significance of correlation network 
keystones is still an open question. Nevertheless, we see indications 
that keystone taxa may have a local stabilizing effect on 
sub-communities of the gut microbiome. This suggests that it is 
unlikely that there are individual taxa that globally affect the entire 
community. We rather hypothesize that keystone taxa act as stabilizing 
agents in relatively independently co-occurring subsets of 
the microbiome.

Data availability statement

Publicly available datasets were analyzed in this study. This 
data can be  found at: https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA354235/ and https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA389280/. Code and a wrapper function for the established 
workflow to construct correlation networks and compute keystone 
potential of individual taxa can be  found at: https://github.com/
fbauchinger/correlation.network.keystones_workflow.

Ethics statement

Ethical approval was not required for the study involving humans 
in accordance with the local legislation and institutional 
requirements. Written informed consent to participate in this study 
was not required from the participants or the participants’ legal 
guardians/next of kin in accordance with the national legislation and 
the institutional requirements.

Author contributions

FB: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Software, Validation, Visualization, 
Writing – original draft, Writing – review & editing. DS: 
Conceptualization, Formal analysis, Methodology, Software, 
Visualization, Writing – original draft, Writing – review & editing. 

DB: Conceptualization, Funding acquisition, Methodology, Project 
administration, Resources, Supervision, Validation, Writing – original 
draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported by ERC starting grant 714623 “FunKeyGut” and the 
Austrian Science Fund (FWF) (10.55776/COE7). Work in the 
laboratory of DB is supported by the FWF project MAINTAIN DOC 
69 doc.fund (10.55776/DOC69).

Acknowledgments

A previous version of this work was deposited on a preprint server 
(Bauchinger et al., 2023).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2024.1454634/
full#supplementary-material

References
Ahn, S., Jin, T.-E., Chang, D.-H., Rhee, M.-S., Kim, H. J., Lee, S. J., et al. (2016). 

Agathobaculum butyriciproducens gen. nov. sp. nov., a strict anaerobic, butyrate-
producing gut bacterium isolated from human faeces and reclassification of Eubacterium 
desmolans as Agathobaculum desmolans comb. nov. Int. J. Syst. Evol. Microbiol. 66, 
3656–3661. doi: 10.1099/ijsem.0.001195

Amir, I., Bouvet, P., Legeay, C., Gophna, U., and Weinberger, A. (2014). Eisenbergiella 
tayi gen. nov., sp. nov., isolated from human blood. Int. J. Syst. Evol. Microbiol. 64, 
907–914. doi: 10.1099/ijs.0.057331-0

Amit, G., and Bashan, A. (2023). Top-down identification of  
keystone taxa in the microbiome. Nat. Commun. 14:3951. doi: 10.1038/
s41467-023-39459-5

Archer, E. (2023). rfPermute: estimate permutation p-values for random forest 
importance metrics. Available at: https://cran.r-project.org/web/packages/rfPermute/
index.html. (Accessed September 22, 2023)

Arita, S., and Inagaki-Ohara, K. (2019). High-fat-diet-induced modulations of leptin 
signaling and gastric microbiota drive precancerous lesions in the stomach. Nutrition 
67–68:110556. doi: 10.1016/j.nut.2019.110556

Banerjee, S., Schlaeppi, K., and van der Heijden, M. G. A. (2018). Keystone taxa as 
drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576. doi: 
10.1038/s41579-018-0024-1

Baron, E. J., Summanen, P., Downes, J., Roberts, M. C., Wexler, H., and Finegold, S. M. 
(1989). Bilophila wadsworthia, gen. nov. and sp. nov., a unique gram-negative anaerobic 

https://doi.org/10.3389/fmicb.2024.1454634
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA354235/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA354235/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA389280/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA389280/
https://github.com/fbauchinger/correlation.network.keystones_workflow
https://github.com/fbauchinger/correlation.network.keystones_workflow
https://doi.org/10.55776/COE7
https://doi.org/10.55776/DOC69
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1454634/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1454634/full#supplementary-material
https://doi.org/10.1099/ijsem.0.001195
https://doi.org/10.1099/ijs.0.057331-0
https://doi.org/10.1038/s41467-023-39459-5
https://doi.org/10.1038/s41467-023-39459-5
https://cran.r-project.org/web/packages/rfPermute/index.html
https://cran.r-project.org/web/packages/rfPermute/index.html
https://doi.org/10.1016/j.nut.2019.110556
https://doi.org/10.1038/s41579-018-0024-1


Bauchinger et al. 10.3389/fmicb.2024.1454634

Frontiers in Microbiology 16 frontiersin.org

rod recovered from appendicitis specimens and human faeces. Microbiology 135, 
3405–3411. doi: 10.1099/00221287-135-12-3405

Bauchinger, F., Seki, D., and Berry, D. (2023). Characteristics of putative keystones in 
the healthy adult human gut microbiome as determined by correlation network analysis. 
bioRxiv. Available at: https://doi.org/10.1101/2023.11.20.567895. [Epub ahead of 
preprint]

Beghini, F., McIver, L. J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., et al. 
(2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial 
communities with bioBakery 3. eLife 10:e65088. doi: 10.7554/eLife.65088

Belzer, C., Chia, L. W., Aalvink, S., Chamlagain, B., Piironen, V., Knol, J., et al. (2017). 
Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and 
vitamin B12 production by intestinal symbionts. mBio 8:e00770. doi: 10.1128/
mBio.00770-17

Bernard, K., Burdz, T., Wiebe, D., Balcewich, B. M., Zimmerman, T., Lagacé-Wiens, P., 
et al. (2017). Characterization of isolates of Eisenbergiella tayi, a strictly anaerobic gram-
stain variable bacillus recovered from human clinical materials in Canada. Anaerobe 44, 
128–132. doi: 10.1016/j.anaerobe.2017.03.005

Berry, D., and Widder, S. (2014). Deciphering microbial interactions and detecting 
keystone species with co-occurrence networks. Front. Microbiol. 5:219. doi: 10.3389/
fmicb.2014.00219

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/btu170

Brugiroux, S., Beutler, M., Pfann, C., Garzetti, D., Ruscheweyh, H.-J., Ring, D., et al. 
(2017). Genome-guided design of a defined mouse microbiota that confers colonization 
resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2, 
16215–16212. doi: 10.1038/nmicrobiol.2016.215

Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M., and Owen, L. J. (2015). Dysbiosis 
of the gut microbiota in disease. Microb. Ecol. Health Dis. 26:26191. doi: 10.3402/mehd.
v26.26191

Cartmell, A., Muñoz-Muñoz, J., Briggs, J. A., Ndeh, D. A., Lowe, E. C., Baslé, A., et al. 
(2018). A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone 
status for arabinogalactan degradation. Nat. Microbiol. 3, 1314–1326. doi: 10.1038/
s41564-018-0258-8

Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., et al. (2016). 
The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of 
pathway/genome databases. Nucleic Acids Res. 44, D471–D480. doi: 10.1093/nar/gkv1164

Coyte, K. Z., Schluter, J., and Foster, K. R. (2015). The ecology of the microbiome: 
networks, competition, and stability. Science 350, 663–666. doi: 10.1126/
science.aad2602

Csárdi, G., Nepusz, T., Müller, K., Horvát, S., Traag, V., Zanini, F., et al. (2023). igraph 
for R: R interface of the igraph library for graph theory and network analysis. doi: 
10.5281/zenodo.8240644

Dalgaard, P. (2010). R Development Core Team (2010): R: a language and 
environment for statistical computing. Available at: https://research.cbs.dk/en/
publications/r-development-core-team-2010-r-a-language-and-environment-for-sta. 
(Accessed September 22, 2023).

Dridi, B., Henry, M., el Khéchine, A., Raoult, D., and Drancourt, M. (2009). High 
prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in 
the human gut using an improved DNA detection protocol. PLoS One 4:e7063. doi: 
10.1371/journal.pone.0007063

Egland, P. G., Palmer, R. J., and Kolenbrander, P. E. (2004). Interspecies communication 
in Streptococcus gordonii–Veillonella atypica biofilms: Signaling in flow conditions 
requires juxtaposition. Proc. Natl. Acad. Sci. U.S.A. 101, 16917–16922. doi: 10.1073/
pnas.0407457101

Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models. Nat. 
Rev. Microbiol. 10, 538–550. doi: 10.1038/nrmicro2832

Feng, Z., Long, W., Hao, B., Ding, D., Ma, X., Zhao, L., et al. (2017). A human stool-
derived Bilophila wadsworthia strain caused systemic inflammation in specific-
pathogen-free mice. Gut Pathog. 9:59. doi: 10.1186/s13099-017-0208-7

Fisher, C. K., and Mehta, P. (2014). Identifying keystone species in the human gut 
microbiome from metagenomic timeseries using sparse linear regression. PLoS One 
9:e102451. doi: 10.1371/journal.pone.0102451

Frankel, A. E., Coughlin, L. A., Kim, J., Froehlich, T. W., Xie, Y., Frenkel, E. P., et al. 
(2017). Metagenomic shotgun sequencing and unbiased metabolomic profiling identify 
specific human gut microbiota and metabolites associated with immune checkpoint 
therapy efficacy in melanoma patients. Neoplasia 19, 848–855. doi: 10.1016/j.
neo.2017.08.004

Friedman, J., and Alm, E. J. (2012). Inferring correlation networks from genomic 
survey data. PLoS Comput. Biol. 8:e1002687. doi: 10.1371/journal.pcbi.1002687

Frioux, C., Ansorge, R., Özkurt, E., Ghassemi Nedjad, C., Fritscher, J., Quince, C., et al. 
(2023). Enterosignatures define common bacterial guilds in the human gut microbiome. 
Cell Host Microbe 31, 1111–1125.e6. doi: 10.1016/j.chom.2023.05.024

Go, J., Chang, D.-H., Ryu, Y.-K., Park, H.-Y., Lee, I.-B., Noh, J.-R., et al. (2021). Human 
gut microbiota Agathobaculum butyriciproducens improves cognitive impairment in 
LPS-induced and APP/PS1 mouse models of Alzheimer’s disease. Nutr. Res. 86, 96–108. 
doi: 10.1016/j.nutres.2020.12.010

Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., et al. 
(2014). Human genetics shape the gut microbiome. Cell 159, 789–799. doi: 10.1016/j.
cell.2014.09.053

Gophna, U., Konikoff, T., and Nielsen, H. B. (2017). Oscillospiraand related bacteria—
from metagenomic species to metabolic features. Environ. Microbiol. 19, 835–841. doi: 
10.1111/1462-2920.13658

Hamaker, B. R., and Tuncil, Y. E. (2014). A perspective on the complexity of dietary 
fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 426, 
3838–3850. doi: 10.1016/j.jmb.2014.07.028

Hausmann, B., Pelikan, C., Rattei, T., Loy, A., and Pester, M. (2019). Long-term 
transcriptional activity at zero growth of a cosmopolitan rare biosphere member. mBio 
10:e02189. doi: 10.1128/mbio.02189-18

Horz, H.-P., and Conrads, G. (2010). The discussion goes on: what is the role of 
Euryarchaeota in humans? Archaea 2010:967271. doi: 10.1155/2010/967271

Kassambara, A., and Mundt, F. (2020). factoextra: extract and visualize the results of 
multivariate data analyses. Available at: https://cran.r-project.org/web/packages/
factoextra/index.html. (Accessed September 22, 2023)

Kharofa, J., Apewokin, S., Alenghat, T., and Ollberding, N. J. (2023). Metagenomic 
analysis of the fecal microbiome in colorectal cancer patients compared to healthy 
controls as a function of age. Cancer Med. 12, 2945–2957. doi: 10.1002/cam4.5197

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with bowtie 2. 
Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Lee, D. W., Ryu, Y.-K., Chang, D.-H., Park, H.-Y., Go, J., Maeng, S.-Y., et al. (2022). 
Agathobaculum butyriciproducens shows neuroprotective effects in a 6-OHDA-induced 
mouse model of Parkinson’s disease. J. Microbiol. Biotechnol. 32, 1168–1177. doi: 
10.4014/jmb.2205.05032

Liu, F., Li, Z., Wang, X., Xue, C., Tang, Q., and Li, R. W. (2019). Microbial co-
occurrence patterns and keystone species in the gut microbial community of mice in 
response to stress and chondroitin sulfate disaccharide. Int. J. Mol. Sci. 20:2130. doi: 
10.3390/ijms20092130

Liu, A., Ma, T., Xu, N., Jin, H., Zhao, F., Kwok, L.-Y., et al. (2021). Adjunctive probiotics 
alleviates asthmatic symptoms via modulating the gut microbiome and serum 
metabolome. Microbiol. Spectr. 9:e0085921. doi: 10.1128/Spectrum.00859-21

Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A. B., et al. 
(2017). Strains, functions and dynamics in the expanded human microbiome project. 
Nature 550, 61–66. doi: 10.1038/nature23889

Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V., and Thiele, I. (2015). Systematic 
genome assessment of B-vitamin biosynthesis suggests co-operation among gut 
microbes. Front. Genet. 6:148. doi: 10.3389/fgene.2015.00148

Mays, T. D., Holdeman, L. V., Moore, W. E. C., Rogosa, M., and Johnson, J. L. (1982). 
Taxonomy of the genus Veillonella Prévot. Int. J. Syst. Evol. Microbiol. 32, 28–36. doi: 
10.1099/00207713-32-1-28

Mazier, W., Le Corf, K., Martinez, C., Tudela, H., Kissi, D., Kropp, C., et al. (2021). A 
new strain of Christensenella minuta as a potential biotherapy for obesity and associated 
metabolic diseases. Cells 10:823. doi: 10.3390/cells10040823

Mehta, R. S., Abu-Ali, G. S., Drew, D. A., Lloyd-Price, J., Subramanian, A., 
Lochhead, P., et al. (2018). Stability of the human faecal microbiome in a cohort of adult 
men. Nat. Microbiol. 3, 347–355. doi: 10.1038/s41564-017-0096-0

Miller, T. L., Wolin, M. J., de Macario, E. C., and Macario, A. J. (1982). Isolation of 
Methanobrevibacter smithii from human feces. Appl. Environ. Microbiol. 43, 227–232. 
doi: 10.1128/aem.43.1.227-232.1982

Moore, W. E. C., Johnson, J. L., and Holdeman, L. V. (1976). Emendation of 
Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten 
new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and 
Ruminococcus. Int. J. Syst. Evol. Microbiol. 26, 238–252. doi: 
10.1099/00207713-26-2-238

Moreno-Arrones, O., Serrano-Villar, S., Perez-Brocal, V., Saceda-Corralo, D., 
Morales-Raya, C., Rodrigues-Barata, R., et al. (2020). Analysis of the gut microbiota in 
alopecia areata: identification of bacterial biomarkers. J. Eur. Acad. Dermatol. Venereol. 
34, 400–405. doi: 10.1111/jdv.15885

Natividad, J. M., Lamas, B., Pham, H. P., Michel, M.-L., Rainteau, D., 
Bridonneau, C., et al. (2018). Bilophila wadsworthia aggravates high fat diet induced 
metabolic dysfunctions in mice. Nat. Commun. 9:2802. doi: 10.1038/
s41467-018-05249-7

Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., 
et al. (2022). vegan: community ecology package. Available at: https://cran.r-project.org/
web/packages/vegan/index.html. (Accessed September 22, 2023).

Paine, R. T. (1969). A note on trophic complexity and community stability. Am. Nat. 
103, 91–93. doi: 10.1086/282586

Pearce, C. I., Pattrick, R. A. D., Law, N., Charnock, J. M., Coker, V. S., Fellowes, J. W., 
et al. (2009). Investigating different mechanisms for biogenic selenite transformations: 
Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica. Environ. 
Technol. 30, 1313–1326. doi: 10.1080/09593330902984751

Peck, S. C., Denger, K., Burrichter, A., Irwin, S. M., Balskus, E. P., and Schleheck, D. 
(2019). A glycyl radical enzyme enables hydrogen sulfide production by the human 

https://doi.org/10.3389/fmicb.2024.1454634
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1099/00221287-135-12-3405
https://doi.org/10.1101/2023.11.20.567895
https://doi.org/10.7554/eLife.65088
https://doi.org/10.1128/mBio.00770-17
https://doi.org/10.1128/mBio.00770-17
https://doi.org/10.1016/j.anaerobe.2017.03.005
https://doi.org/10.3389/fmicb.2014.00219
https://doi.org/10.3389/fmicb.2014.00219
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/nmicrobiol.2016.215
https://doi.org/10.3402/mehd.v26.26191
https://doi.org/10.3402/mehd.v26.26191
https://doi.org/10.1038/s41564-018-0258-8
https://doi.org/10.1038/s41564-018-0258-8
https://doi.org/10.1093/nar/gkv1164
https://doi.org/10.1126/science.aad2602
https://doi.org/10.1126/science.aad2602
https://doi.org/10.5281/zenodo.8240644
https://research.cbs.dk/en/publications/r-development-core-team-2010-r-a-language-and-environment-for-sta
https://research.cbs.dk/en/publications/r-development-core-team-2010-r-a-language-and-environment-for-sta
https://doi.org/10.1371/journal.pone.0007063
https://doi.org/10.1073/pnas.0407457101
https://doi.org/10.1073/pnas.0407457101
https://doi.org/10.1038/nrmicro2832
https://doi.org/10.1186/s13099-017-0208-7
https://doi.org/10.1371/journal.pone.0102451
https://doi.org/10.1016/j.neo.2017.08.004
https://doi.org/10.1016/j.neo.2017.08.004
https://doi.org/10.1371/journal.pcbi.1002687
https://doi.org/10.1016/j.chom.2023.05.024
https://doi.org/10.1016/j.nutres.2020.12.010
https://doi.org/10.1016/j.cell.2014.09.053
https://doi.org/10.1016/j.cell.2014.09.053
https://doi.org/10.1111/1462-2920.13658
https://doi.org/10.1016/j.jmb.2014.07.028
https://doi.org/10.1128/mbio.02189-18
https://doi.org/10.1155/2010/967271
https://cran.r-project.org/web/packages/factoextra/index.html
https://cran.r-project.org/web/packages/factoextra/index.html
https://doi.org/10.1002/cam4.5197
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.4014/jmb.2205.05032
https://doi.org/10.3390/ijms20092130
https://doi.org/10.1128/Spectrum.00859-21
https://doi.org/10.1038/nature23889
https://doi.org/10.3389/fgene.2015.00148
https://doi.org/10.1099/00207713-32-1-28
https://doi.org/10.3390/cells10040823
https://doi.org/10.1038/s41564-017-0096-0
https://doi.org/10.1128/aem.43.1.227-232.1982
https://doi.org/10.1099/00207713-26-2-238
https://doi.org/10.1111/jdv.15885
https://doi.org/10.1038/s41467-018-05249-7
https://doi.org/10.1038/s41467-018-05249-7
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/vegan/index.html
https://doi.org/10.1086/282586
https://doi.org/10.1080/09593330902984751


Bauchinger et al. 10.3389/fmicb.2024.1454634

Frontiers in Microbiology 17 frontiersin.org

intestinal bacterium Bilophila wadsworthia. Proc. Natl. Acad. Sci. U.S.A. 116, 3171–3176. 
doi: 10.1073/pnas.1815661116

Rakoff-Nahoum, S., Coyne, M. J., and Comstock, L. E. (2014). An ecological network 
of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49. 
doi: 10.1016/j.cub.2013.10.077

Rao, C., Coyte, K. Z., Bainter, W., Geha, R. S., Martin, C. R., and Rakoff-Nahoum, S. 
(2021). Multi-kingdom ecological drivers of microbiota assembly in preterm infants. 
Nature 591, 633–638. doi: 10.1038/s41586-021-03241-8

Risely, A. (2020). Applying the core microbiome to understand host–microbe systems. 
J. Anim. Ecol. 89, 1549–1558. doi: 10.1111/1365-2656.13229

Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A., Pham, L.-D., et al. 
(2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that 
functions via lactate metabolism. Nat. Med. 25, 1104–1109. doi: 10.1038/s41591-019-0485-4

Schirmer, M., Franzosa, E. A., Lloyd-Price, J., McIver, L. J., Schwager, R., Poon, T. W., 
et al. (2018). Dynamics of metatranscription in the inflammatory bowel disease gut 
microbiome. Nat. Microbiol. 3, 337–346. doi: 10.1038/s41564-017-0089-z

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). 
Cytoscape: a software environment for integrated models of biomolecular interaction 
networks. Genome Res. 13, 2498–2504. doi: 10.1101/gr.1239303

Sharma, S., and Tripathi, P. (2019). Gut microbiome and type 2 diabetes: where we are 
and where to go? J. Nutr. Biochem. 63, 101–108. doi: 10.1016/j.jnutbio.2018.10.003

Shetty, S. A., Kostopoulos, I., Geerlings, S. Y., Smidt, H., de Vos, W. M., and Belzer, C. 
(2022). Dynamic metabolic interactions and trophic roles of human gut microbes 
identified using a minimal microbiome exhibiting ecological properties. ISME J. 16, 
2144–2159. doi: 10.1038/s41396-022-01255-2

Surono, I. S., Jalal, F., Bahri, S., Romulo, A., Kusumo, P. D., Manalu, E., et al. (2021). 
Differences in immune status and fecal SCFA between Indonesian stunted children and 
children with normal nutritional status. PLoS One 16:e0254300. doi: 10.1371/journal.
pone.0254300

Tett, A., Huang, K. D., Asnicar, F., Fehlner-Peach, H., Pasolli, E., Karcher, N., et al. (2019). 
The Prevotella copri complex comprises four distinct clades underrepresented in westernized 
populations. Cell Host Microbe 26, 666–679.e7. doi: 10.1016/j.chom.2019.08.018

Trosvik, P., and de Muinck, E. J. (2015). Ecology of bacteria in the human 
gastrointestinal tract—identification of keystone and foundation taxa. Microbiome 3:44. 
doi: 10.1186/s40168-015-0107-4

Tudela, H., Claus, S. P., and Saleh, M. (2021). Next generation microbiome research: 
identification of keystone species in the metabolic regulation of host-gut microbiota 
interplay. Front. Cell Dev. Biol. 9:719072. doi: 10.3389/fcell.2021.719072

Varsadiya, M., Urich, T., Hugelius, G., and Bárta, J. (2021). Fungi in permafrost-
affected soils of the Canadian Arctic: horizon- and site-specific keystone taxa 
revealed by co-occurrence network. Microorganisms 9:1943. doi: 10.3390/
microorganisms9091943

Wang, X.-W., Sun, Z., Jia, H., Michel-Mata, S., Angulo, M. T., Dai, L., et al. (2024). 
Identifying keystone species in microbial communities using deep learning. Nat. Ecol. 
Evol. 8, 22–31. doi: 10.1038/s41559-023-02250-2

Watts, S. C., Ritchie, S. C., Inouye, M., and Holt, K. E. (2019). FastSpar: rapid and 
scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066. 
doi: 10.1093/bioinformatics/bty734

Weiss, A. S., Niedermeier, L. S., von Strempel, A., Burrichter, A. G., Ring, D., Meng, C., 
et al. (2023). Nutritional and host environments determine community ecology and 
keystone species in a synthetic gut bacterial community. Nat. Commun. 14:4780. doi: 
10.1038/s41467-023-40372-0

Willems, A., Moore, W. E. C., Weiss, N., and Collins, M. D. (1997). Phenotypic 
and phylogenetic characterization of some Eubacterium-like isolates containing a 
novel type B Wall Murein from human feces: description of Holdemania filiformis 
gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 47, 1201–1204. doi: 
10.1099/00207713-47-4-1201

Wilson, A. S., Koller, K. R., Ramaboli, M. C., Nesengani, L. T., Ocvirk, S., Chen, C., 
et al. (2020). Diet and the human gut microbiome: an international review. Dig. Dis. Sci. 
65, 723–740. doi: 10.1007/s10620-020-06112-w

Xi, W., Gao, X., Zhao, H., Luo, X., Li, J., Tan, X., et al. (2021). Depicting the 
composition of gut microbiota in children with tic disorders: an exploratory study. J. 
Child Psychol. Psychiatry 62, 1246–1254. doi: 10.1111/jcpp.13409

Ze, X., Duncan, S. H., Louis, P., and Flint, H. J. (2012). Ruminococcus bromii is a 
keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 
1535–1543. doi: 10.1038/ismej.2012.4

Zheng, D., Liwinski, T., and Elinav, E. (2020). Interaction between microbiota and 
immunity in health and disease. Cell Res. 30, 492–506. doi: 10.1038/s41422-020-0332-7

Zhou, X., Baumann, R., Gao, X., Mendoza, M., Singh, S., Katz Sand, I., et al. (2022). 
Gut microbiome of multiple sclerosis patients and paired household healthy controls 
reveal associations with disease risk and course. Cell 185, 3467–3486.e16. doi: 10.1016/j.
cell.2022.08.021

https://doi.org/10.3389/fmicb.2024.1454634
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1073/pnas.1815661116
https://doi.org/10.1016/j.cub.2013.10.077
https://doi.org/10.1038/s41586-021-03241-8
https://doi.org/10.1111/1365-2656.13229
https://doi.org/10.1038/s41591-019-0485-4
https://doi.org/10.1038/s41564-017-0089-z
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/j.jnutbio.2018.10.003
https://doi.org/10.1038/s41396-022-01255-2
https://doi.org/10.1371/journal.pone.0254300
https://doi.org/10.1371/journal.pone.0254300
https://doi.org/10.1016/j.chom.2019.08.018
https://doi.org/10.1186/s40168-015-0107-4
https://doi.org/10.3389/fcell.2021.719072
https://doi.org/10.3390/microorganisms9091943
https://doi.org/10.3390/microorganisms9091943
https://doi.org/10.1038/s41559-023-02250-2
https://doi.org/10.1093/bioinformatics/bty734
https://doi.org/10.1038/s41467-023-40372-0
https://doi.org/10.1099/00207713-47-4-1201
https://doi.org/10.1007/s10620-020-06112-w
https://doi.org/10.1111/jcpp.13409
https://doi.org/10.1038/ismej.2012.4
https://doi.org/10.1038/s41422-020-0332-7
https://doi.org/10.1016/j.cell.2022.08.021
https://doi.org/10.1016/j.cell.2022.08.021

	Characteristics of putative keystones in the healthy adult human gut microbiota as determined by correlation network analysis
	1 Introduction
	2 Materials and methods
	2.1 Processing of raw data
	2.2 Principal coordinate analysis of community profiles
	2.3 Computation of correlation networks
	2.4 Functional potential of keystone taxa
	2.5 Transcriptional stability and transcriptional states of keystone taxa

	3 Results
	3.1 Establishing a workflow to build significant and robust correlation networks
	3.2 Community structure and species properties
	3.3 Correlation networks reveal a loss of structure and keystone potential at lower taxonomic resolution
	3.4 Few taxa have a relatively high keystone potential
	3.5 Correlation patterns indicate that keystone taxa may facilitate community stability
	3.6 Correlation patterns reveal co-occurring clusters of taxa
	3.7 Keystone taxa are transcriptionally versatile and show distinct transcriptional states

	4 Discussion
	5 Limitations of the study
	6 Conclusion

	References

