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COVID-19 presents with a plethora of neurological signs and symptoms despite 
being characterized as a respiratory disease, including seizures, anxiety, depression, 
amnesia, attention deficits, and alterations in consciousness. The olfactory nerve 
is widely accepted as the neuroinvasive route by which the etiological agent 
SARS-CoV-2 enters the brain, but the trigeminal nerve is an often-overlooked 
additional route. Based on this consensus, we initially conducted a pilot experiment 
investigating the olfactory nerve route of SARS-CoV-2 neuroinvasion via intranasal 
inoculation in AC70 human ACE2 transgenic mice. Notably, we found that the 
trigeminal ganglion is an early and highly efficient site of viral replication, which 
then rapidly spread widely throughout the brain where neurons were primarily 
targeted. Despite the extensive viral infection across the brain, obvious evidence of 
tissue pathology including inflammatory infiltration, glial activation, and apoptotic 
cell deaths were not consistently observed, albeit inflammatory cytokines were 
significantly induced. However, the expression levels of different genes related to 
neuronal function, including the neurotransmitter dopamine pathway as well as 
synaptic function, and markers of neuronal damage were altered as compared to 
mock-infected mice. Our findings suggest that the trigeminal nerve may serve as 
a neuroinvasive route complementary to the olfactory nerve and that the ensuing 
neuroinvasion presented a unique neuropathological profile. This study provides 
insights into potential neuropathogenic mechanisms utilized by coronaviruses.
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Introduction

Over four years now since its emergence in Wuhan, China (World Health Organization, 
2020). Coronavirus Infectious Disease-2019 (COVID-19) has infected over 700 million people 
in total across the globe, and killed over 6.9 million of them (Dong et al., 2020). The etiological 
agent of COVID-19 is a member of the family Coronaviridae in the Betacoronavirus genus 
designated “Severe Acute Respiratory Syndrome-Coronavirus-2” or “SARS-CoV-2” 
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(Coronaviridae Study Group of the International Committee on 
Taxonomy of Viruses, 2020). Despite being characterized as a 
primarily respiratory disease, COVID-19 importantly also exhibits 
neurological symptoms that range from the mild, such as loss of sense 
of smell (anosmia) and taste (ageusia) as well as headache and fatigue, 
to the severe, such as strokes and seizures, as well as neuropsychiatric 
disorders including delirium, anxiety, depression, psychosis, memory 
loss (amnesia), and attention deficits (Baig and Sanders, 2020; Bauer 
et al., 2022; DosSantos et al., 2020; Huang et al., 2020; Solomon et al., 
2020; Solomon, 2021; Song et al., 2021; Arbour et al., 2000; Desforges 
et  al., 2014); with the plethora of neurological symptoms, it is 
undeniable that there is neurological system involvement in the 
pathogenesis of COVID-19. After having caused much death and 
illness globally, COVID-19 continues to be a public health issue in the 
form of lingering neurological symptoms and post-acute sequelae 
(Al-Aly et al., 2021; Proal and VanElzakker, 2021). Yet, despite great 
strides in the research effort in recent years, many of the 
neuropathogenic mechanisms of COVID-19 continue to elude 
elucidation, which would help in informing treatment of the 
neurological disorders that arise after disease onset.

One such neuropathogenic mechanism that still merits 
investigation is the routes of neuroinvasion taken by SARS-CoV-2. 
There is plentiful evidence to suggest SARS-CoV-2 has significant 
neuroinvasive potential (Baig and Sanders, 2020; Bauer et al., 2022; 
DosSantos et al., 2020; Song et al., 2021; Arbour et al., 2000; Desforges 
et al., 2014; Jeong et al., 2022; Morris and Zohrabian, 2020; Natoli 
et al., 2020; Paniz-Mondolfi et al., 2020). SARS-CoV-2 viral proteins 
and RNA have been detected within the brains of both COVID-19 
patients and SARS-CoV-2-infected mice, leading to associated tissue 
pathology, such as microglial activation and immune infiltrates (Song 
et al., 2021; Jeong et al., 2022; Meinhardt et al., 2021; Jeong et al., 
2022). Furthermore, neural tissue cells, including neurons and glia, do 
express, albeit at low levels, angiotensin-II-converting enzyme (ACE2) 
as well as transmembrane serine protease 2 (TMPRSS2), which have 
been identified as the main host enzymatic cofactors determining viral 
entry into permissive host cells (Hoffmann et al., 2020; Hoffmann 
et  al., 2020; Chen et  al., 2021). Although at least eight routes of 
neuroinvasion have been hypothesized to be utilized by SARS-CoV-2 
(Baig and Sanders, 2020; Bauer et al., 2022; DosSantos et al., 2020; 
Song et al., 2021; Arbour et al., 2000; Desforges et al., 2014; Jeong 
et al., 2022; Morris and Zohrabian, 2020; Natoli et al., 2020; Paniz-
Mondolfi et al., 2020), the current scientific consensus is the direct 
olfactory nerve is the main route of SARS-CoV-2 neuroinvasion, 
owing to the immediate exposure of the nerve endings to the outside 
atmosphere and short lengths of the nerves leading to the close 
proximity of the olfactory bulb (OB) to the external environment 
(Meinhardt et al., 2021). Nevertheless, an oft-understudied route of 
neuroinvasion that should be considered here in the context of SARS-
CoV-2 infection is the trigeminal nerve. Most well-characterized in 
studies involving human herpesvirus infections, particularly serotypes 
1/2/3/6 (HHV-1/2/3/6) (Theil et al., 2003; Beier, 2021; Shimeld et al., 
2001; Ptaszyńska-Sarosiek et al., 2019), the trigeminal nerve route of 
neuroinvasion is a particularly attractive route of neuroinvasion 
because the trigeminal neurons are directly connected to the 
brainstem at the pons while the nerve terminals still end in very close 
proximity to the external environment, only being separated by nasal 
epithelial cells, which have been reported to be susceptible to infection 
by SARS-CoV-2, thereby bypassing the blood–brain barrier (BBB) 

(Meinhardt et al., 2021; Kamel and Toland, 2001; Schaefer et al., 2002; 
Tremblay and Frasnelli, 2018; Romano et al., 2019).

There have been a few studies that seemingly confirm the 
trigeminal nerve route of neuroinvasion by SARS-CoV-2. Early in the 
pandemic, a study reported the detection of SARS-CoV-2 viral 
genome copies within the human trigeminal ganglion (TG) while also 
reporting the detection of viral proteins in the human olfactory 
epithelium (OE) and OB (Meinhardt et al., 2021). Similarly, a different 
study in K18 human ACE2 (hACE2) transgenic mice also reported the 
detection of SARS-CoV-2 viral genomes and infectious virions within 
the TG and brains, thus apparently validating the trigeminal nerve 
route of viral transmission (Jeong et al., 2022). Based on these early 
reports, we conducted a pilot experiment investigating the olfactory 
nerve route of neuroinvasion to determine the regions of greatest viral 
tropism within the brains of hACE2 transgenic mice; it was during 
this pilot experiment that we  incidentally found that the TG was 
intensely infected as well. In more recent studies, TG infection by 
SARS-CoV-2 has also been reported in deer mice (Fagre et al., 2021). 
However, these previous studies failed to thoroughly investigate the 
trigeminal nerve route of neuroinvasion by SARS-CoV-2 and illustrate 
the implications of this route of SARS-CoV-2 neuroinvasion on 
COVID-19 pathogenesis in great detail. Based on these early findings 
and our observations in the preliminary exploratory experiment, 
we present here our thorough and detailed findings confirming the 
trigeminal nerve route as an early and efficient route of SARS-CoV-2 
neuroinvasion in hACE2 transgenic mice, thereby resulting in a highly 
neurovirulent and neurotropic viral infection that induces altered 
neural function without obvious neuroinflammation or cell death.

Materials and methods

All procedures involving animals and infectious virus were 
performed in a biosafety level 3 (BSL-3) or animal biosafety level 3 
(ABSL-3) facility at Galveston National Laboratory at the University 
of Texas Medical Branch (UTMB) at Galveston, Texas, an Association 
for Assessment and Accreditation of Laboratory Animal Care 
(AAALAC)-accredited (November 24, 2020) and Public Health 
Service-Office of Laboratory Animal Welfare (PHS-OLAW)-approved 
(February 26, 2021) high-containment National Laboratory. All 
animal procedures were carried out in accordance with animal 
protocols approved by an Institutional Animal Care and Use 
Committee (IACUC) at UTMB.

Virus

The SARS-CoV-2 (strain US-WA-1/2020) used throughout this 
study was generously provided to us by Dr. Natalie Thornburg at the 
Centers for Disease Control (CDC), Atlanta, GA, through the World 
Reference Center for Emerging Viruses and Arboviruses (WRCEVA). 
SARS-CoV-2 were propagated in Vero-E6 cells maintained in Eagle’s 
Minimal Essential Medium (MEM) (Corning, 10-010-CV) 
supplemented with 2% fetal bovine serum (FBS), 2% L-Glutamine 
(GIBCO, 25030-164), and 1% Penicillin–Streptomycin (GIBCO, 
15140-122); this media formulation has been designated “2-MEM.” 
The original stock of SARS-CoV-2 was cultured in 2-MEM and 
passaged two more times in Vero-E6 cells to generate the working 
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viral stocks, which were stored at − 80°C. The working viral stocks 
used throughout this study were titrated at ~5 × 106 TCID50/mL by a 
standard TCID50 assay in Vero-E6 cells.

Mice

AC70 hACE2 transgenic mice were obtained from Taconic 
Biosciences, Inc. (Germantown, New York, United States). Initially 
generated in our laboratory in response to the 2003 SARS outbreak, 
AC70 hACE2 transgenic mice were previously extensively 
characterized in our laboratory for both SARS-CoV-1 and SARS-
CoV-2 (Drelich et al., 2024; Tseng et al., 2007; Yoshikawa et al., 2009).

Cells

Vero-E6 immortalized African green monkey kidney cells (CRL-
1580, American Type Culture Collection) were grown in a media 
formulation designated “10-MEM,” a media formulation similar to 
2-MEM but supplemented instead with 10% FBS.

SARS-CoV-2 infection and necropsy

Isoflurane-anesthetized female AC70 hACE2 transgenic mice at 
8–9 weeks old were challenged intranasally with 1 × 103 TCID50 SARS-
CoV-2 in 60 μL of 2-MEM; five control mice were mock-challenged 
with the same volume of phosphate-buffered saline. All mice were 
weighed daily to monitor disease progression. Additionally, illness 
severity in infected mice was scored independently by two 
investigators who used a standardized 1–4 grading system as follows: 
1, healthy; 2, ruffled fur, lethargic; 3, ruffled fur, lethargic, hunched 
posture, orbital tightening, labored breathing/dyspnea, and/or more 
than 15% weight loss; 4, reluctance to move when stimulated or at 
least 20% weight loss. Each day after infection, five infected mice were 
sacrificed to obtain whole skulls for determining viral infectivity titers, 
staining for viral antigen by IHC as well as other antigens by two-color 
IF, profiling inflammatory responses, and histopathological analysis. 
The control mice were sacrificed on the first day post-mock-challenge 
(1 dpi) to harvest the same as above described. The whole skull 
samples were then split into left and right hemispheres, with the left 
hemispheres subsequently being further split into whole brain and 
trigeminal ganglion samples; half of each of whole brain and 
trigeminal ganglion samples were saved for viral yield determination 
while the other half of each tissue type samples would be homogenized 
in TRIzol (Invitrogen, Waltham, Massachusetts, United States) using 
TissueLyser-QIAGEN (Retsch, Haan, Germany). The clarified lysates 
of all homogenates were used for RNA extraction and RT-qPCR. The 
remaining right hemisphere of each whole skull sample was then fixed 
by immersion in 10%-buffered formalin for 72 h followed by transfer 
to 70% ethanol.

Determination of tissue viral yields

Brain and trigeminal ganglion samples were homogenized in 2% 
FBS-PBS using TissueLyser-QIAGEN; homogenates were then 

clarified via low-speed centrifugation. Clarified lysates were subjected 
to viral titration (TCID50).

End-point dilution median tissue culture 
infectious dose viral titration assay

The end-point dilution median tissue culture infectious dose 
(TCID50) viral titration assay was performed as previously described 
(Tseng et al., 2007; Yoshikawa et al., 2009; Yap et al., 2021). Briefly 
summarized, we carried out a 1:10 serial dilution from 10−1 to 10−8 
from a starting dilution of 50 μL of viral samples into 450 μL of 
2-MEM. Then, we aliquoted 100 μL of the dilution into a 96-well plate 
of confluent Vero E6 cells at four wells each dilution. All 96-well plates 
were incubated at 37°C at 5% CO2 for up to 3 days, after which the 
number of wells exhibiting cytopathic effect were counted for each 
dilution. Then, the number of viable virions were calculated and 
quantified based on the Reed and Muench method and expressed as 
TCID50/mL (Reed and Muench, 1938).

RNA extraction and reverse 
transcription-quantitative polymerase 
chain reaction

Total RNA was isolated from the tissues of infected mice 
homogenized in TRIzol solution as indicated above using a chloroform 
extraction method according to manufacturer instructions. 
Contaminating genomic DNA was removed upon digestion with 
DNase I during the extraction procedure using a DNase I clean-up kit 
(Invitrogen, AM1907, Waltham, Massachusetts, United States). The 
resulting RNA samples were subjected to two-step RT-qPCR analysis 
to assess the expression of SARS-CoV-2 E gene as well as other genes, 
starting with reverse transcription into cDNA using the iScript 
Reverse Transcription kit (Bio-Rad, 1,708,841, Hercules, California, 
United States). The primers for all genes can be seen in Table 1. 18S 
rRNA was used as the endogenous control. 20 ng cDNA was amplified 
for each replicate, with each animal specimen being assayed in 
duplicate for each gene, using an iTaq Universal SYBR Green supermix 
reagent kit (BioRad, 1,725,124, Hercules, California, United States), in 
a CFX96 thermocycler (BioRad, Hercules, California, United States). 
The cycling parameters for PCR for 40 cycles were as follows: initial 
polymerase activation at 95°C for 30 s, denaturation at 95°C for 10 s, 
and annealing/extension with plate read at 60°C for 30 s. The relative 
fold gene expression for each sample was calculated based on the 
Livak delta–delta Ct method (Livak and Schmittgen, 2001).

Histopathology and immunostaining

Formalin-fixed whole skull sections in 70% ethanol from the 
above-described necropsy were subsequently paraffin-embedded and 
then sectioned at 5 μm thickness along the sagittal plane. 
Histopathological evaluation was performed on deparaffinized 
sections stained by routine hematoxylin-and-eosin (H&E) staining. 
Testing for the SARS-CoV-2 S viral antigen was performed using a 
standard colorimetric indirect horseradish peroxidase (HRP) IHC 
protocol modified from a previously described protocol (Tseng et al., 
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2007; Yoshikawa et  al., 2009) using a rabbit anti-SARS-CoV-2 S 
protein antibody (Abcam, ab272504, Cambridge, United Kingdom) 
at 1:5000 dilution (0.2 μg/mL). Heat-mediated antigen retrieval at pH 
6 using citrate buffer was performed. Specifically, the primary 
antibody was detected using the ImmPRESS® HRP Horse Anti-Rabbit 
IgG PLUS Polymer Kit (Vector Laboratories, MP-7801-15, Newark, 
California, United  States) following manufacturer instructions. 
Counterstaining was achieved with Mayer’s hematoxylin (Sigma-
Aldrich, MHS16-500 mL, St. Louis, Missouri, United  States). For 
two-color IF staining, the above IHC protocol was modified such that 
the anti-SARS-CoV-2 S primary antibody was at 1:1000 dilution 
(1 μg/mL) in background-reducing antibody diluent (Dako, 
S302283-2, Santa Clara, California, United States). A second primary 
antibody to detect a different cell marker antigen was simultaneously 
used with the SARS-CoV-2 S primary antibody at the following 
dilutions: TUBB3/Tuj1 (GeneTex, GTX85469, Irvine, California, 
United States, 1:100), GFAP (GeneTex, GTX85454, Irvine, California, 
United States, 1:500), and ACE2 (R&D Systems, AF933, Minneapolis, 
MN, United  States, 1:250); IBA1 (GeneTex, GTX637629, Irvine, 
California, United  States, 1:100) was used with a different mouse 
SARS-CoV-2 S antibody (GeneTex, GTX632604, Irvine, California, 
United States, 1:1000). The primary antibodies were then visualized 
using secondary antibodies conjugated with the appropriate listed 
fluorophores: goat anti-rabbit IgG Alexa Fluor 568 (Invitrogen, 
A-11011, Waltham, Massachusetts, United States, 1:1000), goat anti-
chicken IgY Alexa Fluor 488 (Invitrogen, A-11039, Waltham, 
Massachusetts, United States, 1:2000), and goat anti-mouse IgG Alexa 
Fluor 555 (Invitrogen, A-32727, Waltham, Massachusetts, 
United States, 1:2000).

Graph creation and statistical analysis

Statistical analysis was performed, and graphs were created, in 
GraphPad Prism 10.2.3. Student’s t-test was used for all 
statistical analyses.

Results

Intranasal challenge with a lethal dose of 
SARS-CoV-2 caused a profound infection 
in the TG before spreading to the brain

To gain insights into the neuroinvasive potential of SARS-CoV-2, 
we intranasally challenged AC70 human ACE2 (hACE2) transgenic 
mice with 1 × 103 TCID50 (approximately 333 LD50) of SARS-CoV-2 
(US-WA-1/2020 strain) (Drelich et al., 2024; manuscript in press) and 
monitored them daily for morbidity (e.g., weight changes) and 
mortality. Starting on 4 days post-infection (dpi), the challenged mice 
began to exhibit significant weight loss as well as other signs of disease, 
before rapidly succumbing to infection with nearly 100% mortality by 
5 dpi (Figures 1A–C). Then, we assessed the kinetics of viral spread 
within the brain and its nearby peripheral nervous structures, e.g., OE 
and TG, by using immunohistochemical (IHC) staining for SARS-
CoV-2 Spike (S) protein.

We noted that SARS-CoV-2 S could only be sporadically detected 
within the OE as early as 1 dpi (one out of five mice), and progressively 
sustained thereafter through 4 dpi (Figures 2A–D), thereby confirming 
earlier reports that the OE serves as an early site of viral replication 

TABLE 1 List of RT-qPCR primers used in this study.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

18 s GGACCAGAGCGAAAGCATTTGCC TCAATCTCGGGTGGCTGAACG

Sars2e ACAGGTACGTTAATAGTTAATAGCGT ATATTGCAGCAGTACGCACACA

Ifnα GACCTTCCTCAGACTCATAACC CATCCACCTTCTCCTGCG

Ifnβ GCGGACTTCAAGATCCCTATG ACAATAGTCTCATTCCACCCAG

Ifnγ AAATCCTGCAGAGCCAGATTAT GCTGTTGCTGAAGAAGGTAGTA

Tnfα TTGTCTACTCCCAGGTTCTCT GAGGTTGACTTTCTCCTGGTATG

Il1β TGGACCTTCCAGGATGAGGACA GTTCATCTCGGAGCCTGTAGTG

Il6 TACCACTTCACAAGTCGGAGGC CTGCAAGTGCATCATCGTTGTTC

Il10 AGCCGGGAAGACAATAACTG GGAGTCGGTTAGCAGTATGTTG

Il4 TTGAGAGAGATCATCGGCATTT CTCACTCTCTGTGGTGTTCTTC

Ip10 ATCATCCCTGCGAGCCTATCCT GACCTTTTTTGGCTAAACGCTTTC

Mcp1 GTCCCTGTCATGCTTCTGG GCTCTCCAGCCTACTCATTG

Mx1 TGGACATTGCTACCACAGAGGC TTGCCTTCAGCACCTCTGTCCA

Rantes CCTGCTGCTTTGCCTACCTCTC ACACACTTGGCGGTTCCTTCGA

Drd1 TCTGGTTTACCTGATCCCTCA GCCTCCTCCCTCTTCAGGT

Th GCCAAGGACAAGCTCAGGAA CTCAGTGCTTGGGTCAGGGT

Nefl GCGCCATGCAGGACACA ACCTGGCCATCTCGCTCTT

Eno2 AGGTGGATCTCTATACTGCCAAA GTCCCCATCCCTTAGTTCCAG

Syn1a AGCTCAACAAATCCCAGTCTCT CGGATGGTCTCAGCTTTCAC

Snap25 CAACTGGAACGCATTGAGGAA GGCCACTACTCCATC CTGATTAT
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(Meinhardt et al., 2021; Zhang et al., 2020). Despite the incrementing 
viral infection of OE over time, we were unable to detect any SARS-
CoV-2 S within the OB until 4 dpi (Figures 2E–H). Similarly, we could 
not detect any SARS-CoV-2 S staining within the pons either until 4 dpi 
(Figures 2I–L). An analysis revealed that at 4 dpi most challenged mice 
stained positively for SARS-CoV-2 S in the OB and the pons. 
Interestingly, we were able to unambiguously detect the expression of 
SARS-CoV-2 S in the TG starting at 3 dpi in a couple of infected mice, 
of which the staining intensity profoundly increased in all infected mice 
at 4 dpi (Figures  2M–P). Taken together, the finding of TG as a 
permissive site of SARS-CoV-2 infection suggests that the trigeminal 
nerve route could be another early and olfactory nerve-independent 
route of neuroinvasion by SARS-CoV-2 to enter the CNS/brain. 
Nevertheless, consistent with the onset of severe disease in infected mice, 
we observed at 4 dpi overwhelming viral infection in all major anatomic 
regions of the brain, including the proposed initial ports of entry, i.e., OB 
and pons of the olfactory nerve and trigeminal nerve neuroinvasive 
routes, respectively (Figures 2H,L), as well as regions distal to the initial 
sites of entry, such as the frontal cerebral cortex (prefrontal, somatomotor, 
somatosensory, etc.), basal ganglia (caudate putamen and striatum), 
thalamus, hypothalamus, hippocampal formation, cerebellum, and 
brainstem (mesencephalon and medulla) (Supplementary Figure S2). At 
5 dpi, we  observed the viral antigen staining continue to spread 
throughout almost all regions of the brain (Supplementary Figure S3).

Kinetics of SARS-CoV-2 viral infection in 
brain and TG

As we have shown the TG is an early site of SARS-CoV-2 infection, 
we investigated the kinetics of viral infection within the brain and TG. As 
shown in Figure 3, we found that infectious virus could be recovered 
from the brain at 3 dpi with a titer of approximately 4.5 log TCID50/g, 
followed by a sharp increase to ~7 log and ~ 7.5 log TCID50/g at 4 and 5 
dpi, respectively. While we could not detect any signs of viral infection 
by IHC staining within the TG until 3 dpi (Figure 2O), infectious virus 
was recovered at 2 dpi (~4 log TCID50/g). The titers of infectious virus in 
the TG increased thereafter to 6.5 log TCID50/g 5 dpi. Specifically, while 
we were only able to isolate a low titer of live virus from the TG of 1/10 
challenged mice at 1 dpi, we saw an increase in viral detection reaching 
7/10 and 10/10 mice at 2 and 3 dpi and thereafter. Therefore, viral 
replication occurs 1 day earlier in the TG than in the brain.

Neurons are the primary brain cells 
supporting productive SARS-CoV-2 
infection

The profound SARS-CoV-2 infection within the brain of infected 
mice prompted us to investigate the identity of permissive brain cells by 
using two-color immunofluorescent (IF) staining on 4 dpi sections by 
simultaneously targeting specific cell markers and viral antigens. 
Encouraged by the data shown in Figure 2 and Supplementary Figure S3 
that a vast majority of cells positively stained for the S protein by IHC 
morphologically resembled neuronal cells, we repeated the IHC staining 
for the expression of beta tubulin III (TUBB3, also known as Tuj1), a 
marker of neuronal cells, and SARS-CoV-2 S protein. We found that 
most cells that were stained positively for the S protein co-expressed 

Tuj1  in the cytosols of the main bodies of the neurons, indicating 
neurons are likely the prime brain cells permissive to SARS-CoV-2 
infection (Figures 4A–D). To further verify that neurons were indeed the 
preferred brain cells targeted by SARS-CoV-2, we use the same IHC 
staining technique for detecting the expressions of glial fibrillary acidic 
protein (GFAP) and ionized calcium-binding adaptor molecule 1 (IBA1), 
markers for astrocytes and microglia, respectively, along with SARS-
CoV-2 S protein. While there were a few cells co-labelled with GFAP and 
SARS-CoV-2 S (Figure 4H, arrowheads), the majority of GFAP+ astroglia 
were not permissive to SARS-CoV-2 infection (Figures  4E–H). 
Moreover, we  did not observe any signs of proliferative response 
(astrogliosis) and activation of astroglia (Figure 4F), based on the absence 
of detectable extension and thickening of cellular processes (Pekny et al., 
2014; Pekny and Pekna, 2014; Garman, 2011), when compared to mock-
infected animals (Figure 4J). In contrast to SARS-CoV-2-permissive 
neurons and, astroglia, to a much lesser extent, we were unable to reveal 
any cells dually labelled with IBA1, the marker of microglial cells, and 
SARS-CoV-2 S protein (Figures 4M–P), indicating that microglial cells 
likely are not permissive to infection by SARS-CoV-2. However, as 
we could only detect very few cells that were IBA1+, we could not make 
any conclusions on microglial activation based on proliferation and 
retraction of processes (Figure 4N).

While human (h) ACE2 transgene is known to constitutively express 
in tissues/organs of AC70 transgenic mice (Tseng et al., 2007; Yoshikawa 
et al., 2009), to what extent this human hACE2 expression conferred the 
susceptibility of brain cells to SARS-CoV-2 infection has not been fully 
investigated. To study this, paraffin-embedded brain sections of infected 
AC70 mice were subjected to the standard IHC staining for hACE2 and 
SARS-CoV-2 S protein, as described above. As shown in Figures 5A–D, 
we found that in the choroid plexus (ChP), hACE2 expression alone 
cannot act as the determinant for permissiveness to SARS-CoV-2 
infection; the ChP, which is composed of endothelial and glial ependymal 
cells, was shown to intensely express hACE2 (Figure  5B), which is 
consistent with earlier reports (Chen et al., 2021), and yet, cells within 
this region apparently were not stained positively with SARS-CoV-2 S 
protein (Figures 5C,D). Furthermore, we found that the expression of 
hACE2  in the TG was comparable to that in the rest of the brain, 
suggesting that the early detection of viral infection within the TG was 
not dependent on the relative expression levels of hACE2 
(Supplementary Figure S4). Whether the lack of infection is caused by a 
lack of additional host factors, such as TMPRSS2, or that the choroid 
plexus might be physically anatomically secluded from the virus as a 
result of its unique anatomic location remain currently unknown and 
warrant additional investigation.

Host responses to SARS-CoV-2 infection 
within the brains of AC70 transgenic mice

Having revealed the profound viral infection throughout major 
anatomical regions of the brain, we  investigated how host would 
respond in the brain upon lethal challenge with SARS-CoV-2. 
We initially profiled the inflammatory responses by RT-qPCR, followed 
by examining the brain sections for the histopathology. We found that 
among 13 inflammatory mediators measured, 11 mediators were 
significantly induced in the brains at 4 dpi (Figure 6), the time when 
significantly elevated viral titers were recovered, as shown in Figure 3. 
We also found that 10 out of 11 virally induced soluble mediators were 
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FIGURE 1

SARS-CoV-2 infection via the intranasal route results in a rapid development of clinical disease and mortality. 25 AC70 mice were intranasally 
inoculated with 1  ×  103 TCID50 of SARS-CoV-2 strain US-WA-1/2020 in 2% fetal bovine serum-supplemented cell media (2-MEM) and then five mice 
were sacrificed each day for 5  days post-infection. (A) Significant weight loss rapidly developed starting on 4 dpi, correlating with (B) the onset of 
severe clinical signs of disease. (C) The onset of clinical disease quickly advanced to near full mortality at 5 dpi Weight changes were expressed as the 
mean percent changes in infected animals relative to the initial weights at 0 dpi Error bars represent standard errors of the mean (SEM). ****p  <  0.0001. 
These were the representative results of one out of two independent experiments.

FIGURE 2

Immunohistochemical analysis of SARS-2 antigen in the brain, OE, and TG after infection via the intranasal route. Formalin-fixed, paraffin-embedded 
(FFPE) skull sagittal or coronal sections containing the brain, OE, and TG were analyzed via immunohistochemistry (IHC) for the expression of the 
SARS-2 spike (S) protein. SARS-2 S antigen (brown) can be detected only in the OE in one out of five mice (sole positive shown in A) starting from 1 dpi 
but can begin to be detected in the TG starting from 3 dpi; SARS-2 S could not be detected in all other regions of the brain from 1 dpi to 3 dpi, 
including the olfactory bulb. Black arrowheads indicate selected points of antigen detection. (A–D) Olfactory epithelium; (E–H) olfactory bulb; (I–L) 
brainstem (pons); (M–P) trigeminal ganglion. Magnification 40X. Blue nuclei indicate hematoxylin counter-staining.
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proinflammatory, including IFN-I (α/β), IFN-II (γ), TNF-α, IL-1β, 
IL-6, IP-10, MCP-1, MX-1, and RANTES, whereas the transcriptional 
levels of IL-4 and IL-10, markers of Th2 and anti-inflammatory or 
inflammatory regulator, respectively, were either slightly downregulated 
(IL-4) or significantly upregulated (IL-10). Despite the significant 
expression of inflammatory mediators within the brain, we did not 
identify any infiltrates of mononuclear cells within H&E-stained 
sections of the brains even at 4 dpi (Supplementary Figure S1). Because 
SARS-CoV-2 infection exhibits cytopathic effects resulting in the 
deaths of permissive host cells (Ogando et al., 2020), we examined the 
brain sections for any histopathological signs of cell death. As shown 
in Supplementary Figure S1, we were unable to detect any signs of 
apoptotic cell death as apoptotic cell deaths were the most common 
type of cell deaths associated with neurovirulent viral infections. 
We  used the standard TUNEL assay kit (Abcam, Cambridge, 
United Kingdom) to detect apoptotic cells within the brains harvested 
at 5 dpi. Among a total of five brains examined, only one exhibited a 
few apoptotic cells while the other four were negative for TUNEL 
assays (data not shown). Together, these results suggested that infected 
brain cells, especially neurons as indicated by the IF dual-labeling 
results (Figures 4A–D), but not inflammatory infiltrates, are the likely 
sources of the inflammatory mediators detected in the brain. 
Additionally, the lack of inflammatory infiltrates and convincing cell 
death within the brain emphasize the neuronopathy, but not 
encephalitis, is the likely cause of death of acutely infected AC70 
transgenic mice.

Neuroinvasive SARS-CoV-2 infection 
dysregulated the expression of key genes 
regulating neurological functions

Despite the intense SARS-CoV-2 infection within the brain, 
preferentially targeting neurons, especially neurons, of acutely infected 
AC70 transgenic mice that succumbed to infection within days, 

we did not reveal histopathological evidence of neuroinflammatory 
response (encephalitis) with noticeable cell death. We  examined 
whether this seemingly nonlytic, but extensive neuronal infection of 
SARS-CoV-2 might still alter neurological functions. Thus, 
we explored the expression of six key genes, i.e., DRD1, TH, NEFL, 
Eno2 (NSE), Syn-1A, SNAP-25, that serve as the regulators and 
markers for neuronal function and damage, respectively, in the brains 
of infected AC70 transgenic mice over time, compared to uninfected 
brains. We  found that, except for DRD1, the transcriptional 
expressions of all other five genes evaluated were downregulated, with 
statistical significance only at a few timepoints for TH, NEFL, and 
Syn-1A (Figure 7). The up-and down-regulated expressions of the 
dopamine receptor D1 (DRD1) and tyrosine hydroxylase (TH), 
respectively, a functional pair of molecules governing a unique 
neuronal function, is of interest; at 2 dpi, the significant upregulation 
of DRD1 was mirrored by the significant downregulation of TH 
(Figure 7). Intriguingly, the kinetics of gene expression do not reflect 
the kinetics of viral replication. While the exact nature of the lack of 
any direct correlation between viral infection and dysregulated gene 
expression remains unknown, our results might suggest that the 
impact on neuron transmission/gene expression may be  initiated 
before viral infection could be  readily detected. Regardless, our 
findings are novel in specifically connecting SARS-CoV-2 infection to 
an immediate impact on neurological functions. Nevertheless, these 
results show that neuroinvasive SARS-CoV-2 infection could indeed 
alter functional gene expression without causing neuroinflammation 
or obvious cell death.

Discussion

In the study of coronavirus pathogenesis and particularly that of 
SARS-CoV-2, the trigeminal nerve is a possible route into the CNS 
that is often overlooked in favor of the olfactory nerve. Widely 
reported and generally accepted as the main route of entry into the 
CNS, the olfactory nerve route alone does not explain how SARS-
CoV-2 infection could penetrate the main bulk of the brain at its rear 
(Bulfamante et al., 2021; Bulfamante et al., 2020; Emmi et al., 2023). 
To this end, we mapped and characterized the trigeminal nerve route 
of neuroinvasion by SARS-CoV-2  in the AC70 hACE2 transgenic 
mouse model and found that there are many potential consequences. 
Specifically, we demonstrated that the trigeminal nerve may be an 
early and highly efficient site of SARS-CoV-2 viral replication, on par 
with that of the olfactory nerve, and that SARS-CoV-2 viral infection 
primarily targets neurons, leading to changes in neural function with 
minimal tissue pathology.

Early in the course of viral infection, SARS-CoV-2 can be readily 
detected in the TG, even before the onset of weight loss and disease 
signs in our mouse model. IHC staining showing the early SARS-
CoV-2 S staining in the TG (Figures 2O,P), supported by the high viral 
titer of the TG at an earlier timepoint (Figure 3), implied that viral 
infection of the trigeminal nerve occurred nearly simultaneously with 
the OE and olfactory nerve, which would have occurred immediately 
after intranasal challenge. Additionally, the SARS-CoV-2 S staining 
pattern changing from undetectable to observable in all major 
anatomic regions of the brain within the span of 1 day suggested that 
the spread of viral infection occurred extremely rapidly. Since on 4 dpi 
the peripheral regions of the brain closest to both the OE (e.g., OB and 

FIGURE 3

SARS-CoV-2 replication kinetics in the trigeminal ganglion and the 
brain. The titers of infectious virus in brain and TG were calculated 
and expressed as log10 TCID50 virus per gram of tissue and were 
plotted as the mean of two different cohorts (n  =  10 animals per 
timepoint). Virus titers in the brain (blue) and TG (green) were 
assessed using a standard Vero-E6 cell-based TCID50 assay. * 
p  <  0.05, by Student’s t-test, comparing brain and TG. Error bars 
represent standard errors of the mean (SEM). These were the 
combined data of two different independent experiments.
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frontal cortex) and the TG (e.g., hypothalamus, midbrain, and pons) 
(Supplementary Figure S3A) stained more intensely with SARS-
CoV-2 S than the central internal regions, we speculated that SARS-
CoV-2 neuroinvasion proceeded via retrograde axonal transmission. 

Alternatively, the more extensive viral antigen staining of the 
peripheral anatomic regions of the brain than the central regions 
could indicate the virus was transported in the cerebrospinal fluid 
(CSF), as has been previously suggested (Viszlayová et al., 2021); not 

FIGURE 4

Viral tropism analysis via immunofluorescence of SARS-CoV-2 antigen in the brain. FFPE serial sections of the brain harvested at 4 dpi were analyzed 
via dual-labeling immunofluorescence (IF) for the expression of the SARS-2 spike (S) protein (red) and different cell identity markers (green). (A–D) 
Neurons (Tuj1+, frontal cortex); (E–L) Astrocytes (GFAP+, frontal cortex), white arrowheads indicate selected points of colocalization, (E–H) SARS-CoV-
2-infected mice, (I–L) mock-infected mice; (M–P) Microglia (IBA1+, frontal cortex). Magnifications: (A–L), 10X; (M–P), 40X. DAPI counterstaining (blue).

FIGURE 5

ACE2 co-expression with SARS-CoV-2 S antigen at the choroid plexus. FFPE brain section showing specifically the choroid plexus analyzed via 
immunostaining (IHC and dual-labeling IF) for hACE2 and SARS-2 S. (A) SARS-2 S IHC (brown); (B) hACE2 IF (ACE2+, green); (C) SARS-2 S IF (SARS-2 S+, 
red); (D) Merge of hACE2 and SARS-2 IF (ACE2+ and SARS-2 S+). Magnification 10X. IHC hematoxylin counterstaining (blue).
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only is the TG itself situated anatomically in the CSF-rich Meckel’s 
cavity, but terminals of all three branches of the trigeminal nerve 
penetrate through the cribriform plate to innervate skull bone marrow 
niches and ultimately the dura mater of the meninges, which are 
awash in CSF (Kamel and Toland, 2001; Kemp et al., 2012; Pulous 
et al., 2022). Although the TG and trigeminal nerve were previously 
reported to have been infected early on during the heights of the 
COVID-19 pandemic (Meinhardt et  al., 2021), this study greatly 
extends the findings from the previous study by investigating the 
dynamics of SARS-CoV-2 neuroinvasion along the trigeminal nerve 
on a time course basis.

Our findings indicate that the primary target of SARS-CoV-2 viral 
tropism in the brain is neurons, but not astrocytes, microglia, or even 
endothelial cells. Initially, based on the expression levels of ACE2, in 
descending order, the main targets of SARS-CoV-2 tropism in the 
brain were thought to be endothelial cells, and then ependymal glial 
cells, astrocytes, and microglia, but not neurons (Brann et al., 2020; 
Hamming et al., 2004). Yet, our IF staining showing the amount of 
SARS-CoV-2 S expression in different cell types to be  highest in 
neurons (Figures  4A–D) suggests otherwise in our model. 
We identified an anatomic structure of the brain, the ChP, as not only 
the structure of the brain with one of the highest expression levels of 

ACE2 as previously reported (Chen et al., 2021; Pellegrini et al., 2020), 
but one that was not observably infected by SARS-CoV-2 at all. 
We were interested in the permissiveness of the ChP to SARS-CoV-2 
because the ChP has been suggested as an alternative portal of viral 
entry into the brain via the hematogenous routes due to its 
composition of primarily endothelial and ependymal glial cells (Song 
et al., 2021; Chen et al., 2021; Pellegrini et al., 2020).

Despite the profound viral infection throughout the brain, the 
brain was notably devoid of the typical correlates of tissue pathology 
associated with neuro-dysfunction. Although the pro-inflammatory 
cytokines were generally significantly induced corresponding to the 
magnitude and kinetics of viral replication, we were initially very 
surprised to observe an overall lack of any histopathological signs of 
neuroinflammation; inflammatory infiltrates and the associated 
vascular cuffing were rarely, if at all, observed, while our IF staining 
revealed a lack of astrocytic and microglial activation, which is 
atypical for viral neuroinvasion. However, we  rationalized this by 
considering a sufficiently highly virulent and rapid viral infection has 
the ability to induce an immunosuppressive state that the 
neuroimmune system does not have the time to mount an 
inflammatory response before the organism succumbs (Borrow et al., 
1995; Libbey and Fujinami, 2002; McChesney et  al., 1989). 

FIGURE 6

Kinetics of the cytokine responses in the brains of SARS-2-infected AC70 mice. Total RNA extracted from the brains of AC70 mice sacrificed daily after 
SARS-2 infection were used to measure the expression of various cytokines and chemokines by RT-qPCR. Each individual brain sample was assayed in 
duplicate. Results are shown as the mean for five animals at each time point. Error bars represent SEM. * p  <  0.05, ** p  <  0.01, *** p  <  0.001, **** 
p  <  0.0001, p  <  0.00001 where indicated (Student’s t-test, compared to mock-infected mice).
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Additionally, we noticed that the occurrences of apoptosis were not 
consistent with the vast extent of viral infection; for example, in two 
anatomic regions of the brain with heavy viral infection, the frontal 
cortex and medulla oblongata, there were only a few cells actively 
undergoing apoptosis as revealed by TUNEL assay, while the 
hypothalamus, one of the most heavily infected region of the brain, 
had no cells detected undergoing apoptosis. However, we  again 
surmised that owing to their postmitotic nature and limited numbers, 
mature neurons are remarkably resistant to apoptosis and 
programmed cell death, even after viral infections (Hollville et al., 
2019; Yakovlev and Faden, 2004; Kole et  al., 2013). All the 
histopathological results combined prompted us to investigate the 
expression levels of neural function markers, namely those for 
dopamine neurotransmitter processing and synaptic function, to gain 
any insights into the mechanisms of neurodysfunction. The pair of 
DRD1 and TH is relevant because this gene couple is directly involved 
in neurotransmitter dopamine processing; TH is the rate-limiting 
enzyme that catalyzes the production of the dopamine precursor 
L-DOPA (Daubner et al., 2011), while DRD1 is the most abundant 
dopamine receptor within the CNS (Zhuang et al., 2021). Furthermore, 
the downregulation of the neural damage markers neurofilament light 
chain (NEFL) and neuron-specific enolase (NSE) (Figure  7) ran 
counter to our expectations; in cases of acute brain injury, such as 
traumatic brain injuries (TBI) or ischemic events, NEFL and NSE have 
been reported to be elevated as markers of neuronal injury (Kim et al., 

2018; Graham et al., 2021; Shahim et al., 2016; Lee et al., 2021; Rech 
et  al., 2006). These results indicated to us that there were indeed 
alterations to neural function because of viral infection, whether due 
to inflammation or viral infection. Our results suggest that there are 
alternative mechanisms of neurological disorder that extend beyond 
neuroinflammation and cell death.

The neuroinvasive potential of SARS-CoV-2 has been a 
controversial topic, with some reports suggesting the 
non-permissiveness of neurons to SARS-CoV-2 and limited invasion 
of the CNS (Butowt et al., 2021; Thakur et al., 2021; Pedrosa et al., 
2021; Jagst et  al., 2024), but more recent studies have reported 
contradictory findings. SARS-CoV-2 has been reported to infect 
neurons and has in fact been found in the trigeminal ganglia of human 
patients (Song et al., 2021; Meinhardt et al., 2021; Emmi et al., 2023; 
Stein et al., 2022). Although brain tissue damage caused by SARS-
CoV-2 infection has been reported, other studies have reported the 
lack of direct viral infection-induced tissue damage in line with our 
data (Matschke et al., 2020; Seehusen et al., 2022; Stein et al., 2023). In 
vivo studies using the K18-hACE2 mouse model of SARS-CoV-2 
neuroinvasion are in line with our findings such as viral tropism for 
neurons as well as minimal histopathological changes in the infected 
brains (Seehusen et al., 2022; Oladunni et al., 2020). Moreover, despite 
the fact that hACE2 transgenic mouse lines, such as AC70 and 
K18-hACE2, and other established mouse and other animal models 
of SARS-CoV-2 infection, may not fully recapitulate the pathogenesis 

FIGURE 7

SARS-CoV-2 brain infection alters gene expression of neuronal function and neural damage markers. Total RNA extracted from the brains of infected 
AC70 mice daily after SARS-2 infection were used to measure the gene expression levels of selected neural biomarkers of damage (Nefl and Eno2) and 
neuronal function (DRD1, TH, Syn-1A, and SNAP-25). Each individual brain sample was assayed in duplicate. Results are shown as means (±SEM) of five 
animals at each time point. * p  <  0.05, ** p  <  0.01 (Student’s t-test, compared to mock-infected mice).
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of COVID-19 and pattern of ACE2 expression in human patients, the 
findings of this study still bring insights into the neuropathogenic 
mechanisms of SARS-CoV-2 infection.

Overall, our results show that the trigeminal nerve is an early and 
efficient site of SARS-CoV-2 infection in our model, suggesting that it 
may be an efficient entry route to the brain/CNS. Based on all our 
results together, we  speculated neuroinvasive SARS-CoV-2 uses a 
two-pronged route from the OB and the pons towards the center of 
the brain (Figure 8). We also characterized alterations in neuronal 
function that were observed despite a general lack of typical 
histopathological findings of neuroinflammation. It is clear from these 
findings that additional studies are warranted for the further 
characterization of COVID-19 neuropathogenesis.
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FIGURE 8

Two-pronged neuroinvasion route of SARS-CoV-2. Theorized two-pronged neuroinvasion route taken by SARS-CoV-2 starting from the nasal cavity 
during respiratory infection based on the observed viral antigen staining pattern. Red and blue arrows indicate the two main forks invading into the 
brain [e.g., OE  →  OB (blue); nasal/olfactory epithelium → TG  →  pons (red)]. Orange arrows indicate speculated routes of further viral spread inside the 
brain proper once brain has been penetrated. Created with Biorender.com.
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SUPPLEMENTARY FIGURE S1

Histopathological analysis of SARS-CoV-2-infected mice brains. Micrograph 
of whole skull section (right hemisphere) of infected AC70 mouse at 5 dpi 
show a lack of abnormalities or differences between the mock-infected 
sections (A–D) and sections from the SARS-2-infected brains (E–H). 
Magnification 10X.

SUPPLEMENTARY FIGURE S2

Immunohistochemical analysis of SARS-CoV-2 antigen in the brain at 4 dpi. 
Images of FFPE skull sections of infected AC70 mice at 4 dpi. (A) Whole left 
hemisphere, 10X; (B) pre-frontal cortex, 40X; (C) striatum, 40X; (D) thalamus, 
40X; (E) hypothalamus, 40X; (F) hippocampus, 40X; (G) cerebellum, 40X; 
(H) medulla oblongata, 40X. Insets’ origins marked by lower-case letters in 
(A). Blue nuclei indicate hematoxylin counter-staining.

SUPPLEMENTARY FIGURE S3

Immunohistochemical analysis of SARS-CoV-2 antigen in the brain at 5 dpi. 
Micrograph of whole skull section (right hemisphere) of infected AC70 
mouse at 5 dpi.

SUPPLEMENTARY FIGURE S4

Protein expression via immunofluorescence of ACE2 in the brain and 
trigeminal ganglion. Infected AC70 mice at 5 dpi.
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