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Background: Low birth weight (LBW; <2,500  g) affects approximately 15 
to 20 percent of global births annually and is associated with suboptimal 
child development. Recent studies suggest a link between the maternal gut 
microbiome and poor obstetric and perinatal outcomes. The goal of this study 
was to examine relationships between maternal microbial taxa, fecal metabolites, 
and maternal anthropometry on incidence of LBW in resource-limited settings.

Methods: This was a secondary analysis of the Women First trial conducted 
in a semi-rural region of Guatemala. Maternal weight was measured at 12 and 
34  weeks (wk) of gestation. Infant anthropometry measures were collected 
within 48  h of delivery. Maternal fecal samples at 12 and 34  weeks were used for 
microbiome (16S rRNA gene amplicon sequencing) and metabolomics analysis 
(34  wk). Linear mixed models using the MaAslin2 package were utilized to assess 
changes in microbiome associated with LBW. Predictive models using gradient 
boosted machines (XGBoost) were developed using the H2o.ai engine.

Results: No differences in β-diversity were observed at either time point 
between mothers with LBW infants relative to normal weight (NW) infants. 
Simpson diversity at 12 and 34  weeks was lower in mothers with LBW infants. 
Notable differences in genus-level abundance between LBW and NW mothers 
(p  <  0.05) were observed at 12  weeks with increasing abundances of Barnesiella, 
Faecalibacterium, Sutterella, and Bacterioides. At 34  weeks, there were lower 
abundances of Magasphaera, Phascolarctobacterium, and Turicibacter and 
higher abundances of Bacteriodes, and Fusobacterium in mothers with LBW 
infants. Fecal metabolites related to bile acids, tryptophan metabolism and fatty 
acid related metabolites changed in mothers with LBW infants. Classification 
models to predict LBW based on maternal anthropometry and predicted 
microbial functions showed moderate performance.
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Conclusion: Collectively, the findings indicate that alterations in the maternal 
microbiome and metabolome were associated with LBW. Future research 
should target functional and predictive roles of the maternal gut microbiome in 
infant birth outcomes including birthweight.
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1 Introduction

Globally, more than 20 million infants annually are born with 
low-birth weight (LBW), defined as a birthweight <2,500 grams. The 
global burden of LBW is disproportionate with ~95% of LBW infants 
being born in low-and middle-income countries (Cutland et al., 2017; 
Bramer, 1988). While, the prevalence of LBW is ~8.5% in the 
United States (Burris and Hacker, 2017; Blencowe et al., 2019), LBW 
infants are twice as likely to be stunted in childhood and is one of the 
leading causes of diminished child development (Vats et al., 2024). 
Thus reducing LBW incidence by 30% by 2025 is a prioritiy of the 
Sustainable Development Goals as well as part of the six global 
nutrition targets by the World Health Assembly (McGuire, 2015). 
Recent work from over 148 countries suggests that this will be  a 
daunting task to meet, as it will require more than double the current 
annual reduction rate (Blencowe et al., 2019).

LBW is associated with a variety of maternal factors including age, 
infection, high blood pressure, nutritional status, and environmental 
exposures (Victora et al., 2008; Cluzeni et al., 2023). Of these factors, 
maternal nutrition, specifically adequacy of minerals and 
micronutrients, is thought to be a significant contributor to in utero 
growth and long-term adulthood disease risk (Victora et al., 2008; 
Tranidou et al., 2024; Freire et al., 2024). Emerging evidence has also 
suggests that the maternal gut microbiome during pregnancy can 
impact obstetric and perinatal outcomes, such as birthweight (Gough 
et al., 2021; Vinturache et al., 2016). A recent study conducted in 
Zimbabwe, part of the SHINE trial, showed that fecal microbiome 
from pregnant women could predict infant birth weight and neonatal 
growth outcomes (Gough et  al., 2021). Moreover, microbial 
metabolites present in the gut and systemic circulation, are thought to 
be an important component of host-microbiome communication. 
Research by Tang et al. showed evidence that fecal metabolites in 
pregnant women are associated with neonatal growth outcomes, 
specifically fetal growth restriction (Tang et al., 2024). However, no 
studies to-date have examined the linked effects of maternal 
malnutrition and abundance of microbial taxa and/or fecal metabolites 
during pregnancy on the risk of LBW.

We hypothesized that maternal microbiome and metabolites in 
pregnancy will be associated with a LBW compared to normal weight 
in infants. To address this question we  utilized samples from 
Guatemala women that tend to have shorter height, one of the 4 sites 
of the Women First (WF): Preconception Maternal Intervention 
Nutrition Trial (Arriaza et al., 2022) with the high rates of LBW (~15% 
of all births) and stunting in children by 2 years of age (~66%; Krebs 
et al., 2022). We leveraged maternal fecal samples during pregnancy 
to examine relationships between maternal microbiome (taxonomic 
abundance), fecal metabolites, and maternal anthropometry on 
incidence of LBW. In addition, machine learning models were 

implemented to determine whether microbial taxonomic abundance 
and other maternal variables are predictive of neonatal LBW.

2 Methods

2.1 Study design and participants

This is a secondary analysis of the Women First: Preconception 
Maternal Intervention Nutrition Trial (ClinicalTrials.gov ID: 
NCT01883193), that included women of reproductive age from four 
resource-limited countries and was focused on improving infant 
outcomes such as birth weight and length (Hambidge et al., 2019). 
This trial was unique in testing the effects of a combination of 
macro-and micronutrients on maternal–infant outcomes and included 
multiple biospecimens, including stool samples. For this analysis, only 
participants recruited from Chimaltenango, Guatemala were included. 
The full study details can be found in previous publications (Hambidge 
et al., 2019; Tang et al., 2022). Briefly, participants were randomized 
into three different treatment arms: Arm 1 received a daily small-
quantity lipid-based micronutrient supplement (sqLNS) starting at 
≥3 months before conception and throughout pregnancy, Arm 2 
received daily sqLNS supplementation starting at 12 weeks of gestation 
and through the remainder of pregnancy, and Arm 3 received only the 
local standard of care which included iron and folate supplementation 
(Figure 1A).

All participants recruited for this study were between 16 and 
35 years old, parity 0–5, and planned to conceive during the following 
18 months. Written informed consent was obtained from all the 
participants. The study protocol was approved by Institutional Review 
Board at the University of Colorado and Comité de Ética de la 
Universidad Francisco Marroquín.

2.2 Maternal and infant anthropometrics

Maternal weight and height were obtained by trained study 
personnel and measured at enrollment. Neonatal birth length, birth 
weight, and head circumference were collected within 24 h of delivery 
by trained research staff who were blinded to treatment arms. All 
measurements were taken in triplicates using neonatal stadiometers 
(Ellard Instrumentation Ltd., Monroe WA), Seca 334 electronic scales, 
and Seca 201 measuring tapes (Seca North America, Chino CA). First-
trimester ultrasound data were used to determine gestational age. 
Birth weight, length, and head circumference measurements were 
obtained and transformed to z-scores adjusted for gestational age 
using INTERGROWTH-21st standards (https://intergrowth21.tghn.
org/; Papageorghiou et al., 2014).
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2.3 Fecal sample collection

Duplicate fecal samples were collected at two timepoints during 
pregnancy: 12 weeks (Arm 1 taking sqLNS, and Arm 2 before 
starting sqLNS) and 34 weeks gestation (Arms 1, 2, and 3). Stool 
was collected into fecal bags using a sterile scoop and placed into a 
Styrofoam container with ice or ice packs. The research team picked 
up samples the day of stool passage, transferred samples back to 
facility where they were aliquoted into storage tubes with and 
without 3 ml of RNAlater™ and frozen at −80°C. The RNALater™ 
aliquot was used for microbiome analysis and the other aliquot was 
used for metabolomics. Samples were shipped to the University of 
Colorado Pediatric Nutrition Laboratory and stored at −80°C 
until analyses.

2.4 16S rRNA sequencing and analysis

Generation and pre-processing of the 16S rRNA gene sequence 
datasets analyzed herein was previously reported in Tang et al., 2022; 
sequence data and associated clinical/demographic metadata are 
available through the NCBI sequence read archive (Bioproject 
PRJNA553183). In Supplementary Table 1, sample identifiers from 
this BioProject and relevant metadata (eg. LBW status) are provided. 
Microbial sequence counts, taxonomy information and sample 
metadata were imported into the phyloseq package (McMurdie and 
Holmes, 2013). The microbiome package ‘core’ function was used to 
eliminate taxa that did not have at least 5 counts in 5% of samples. 
Alpha diversity was determined using the microeco package (Liu 
et al., 2021) and Student’s t-test were used to test differences between 
groups (LBW vs. NW). Beta diversity was assessed using Bray–Curtis 

dissimilarity. Multidimensional scaling was used to visualize beta 
diversity for each group and statistical difference was tested using 
PERMANOVA with 999 permutations. Multivariable associations 
between LBW status and taxonomic abundance were assessed using 
the MaAsLin2 package (Mallick et al., 2021). For normalization of the 
data we used MaAsLin2 default settings, which included total sum 
scaling (TSS) and log transformation. LBW and treatment arm were 
considered fixed effects, and analyses were adjusted for regional 
clusters, sex, maternal age, and sample batch. Taxa were agglomerated 
at the genus level. All nominal p-values at p < 0.05 were considered 
significant. The relative abundance of taxa was visualized on a 
log-transformed axis in figures.

2.5 Fecal metabolomics and analysis

Approximately 100 mg of frozen stool at 34 weeks from LBW and 
NW groups (n = 20 per group), were extracted and subjected to 
untargeted metabolomics analyses using liquid chromatography/
mass spectrometry (LC–MS) at the Metabolomics and Analytical 
Chemistry Core-Arkansas Children’s Nutrition Center. Briefly, 500 μl 
of LC–MS grade 50% of MeOH in water and 1 ml of Acetonitrile was 
added to the stool. The mixture was quantitatively transferred to 
screw cap tube containing 200 μl of 1.44 mm beads, 100 μl of 0.5 mm 
beads and 3 beads of 2.8 mm beads. Samples were homogenized at 
5,300 rpm with a Precellys 24 for two 30 s cycles. The mixture was 
vortexed for 10 min at 4°C on a ThermoMixer (Eppendorf Inc., 
Enfield, CT) and then centrifuged at 4,347 g at 4°C for 10 min. 700 μl 
of the supernatant was aliquoted and subsequently dried by using a 
vacuum concentrator (SpeedVac SPD210, Thermo Fisher Scientific 
Waltham, MA). Extracts were then reconstituted in 250 μl of 5% 

FIGURE 1

Women first trial experimental design and sample size. (A) Experimental design of Women First Trial and treatment arms. (B) Sample size of microbiome 
samples included in this analysis by timepoint and treatment arms. As well as sample number of low birth weight (LBW) infants compared to normal 
weight (NW) infants included in the study. Created with BioRender.com

https://doi.org/10.3389/fmicb.2024.1456087
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.biorender.com/


Ruebel et al. 10.3389/fmicb.2024.1456087

Frontiers in Microbiology 04 frontiersin.org

methanol spiked with 1,000 ng ml−1 sulfadimethoxine (SDMO) for 
immediate analysis. Instrumental pooled quality control (QC) 
samples were prepared by pooling equal volumes of each sample 
extract (50 μl). Chromatographic separations were conducted on a 
Dionex Ultimate 3,000 UHPLC with a Premier CSH C18 reversed 
phase column (2.1 × 100 mm, 1.7 μm). An Orbitrap Exploris 480 mass 
spectrometer (ThermoFisher Scientific, Waltham, MA) interfaced 
with the Vanquish UHPLC system and fitted with heat-electrospray 
ionization (HESI) probes was used for instrumental analysis. Detailed 
information about chromatographic and mass spectrometry 
conditions is provided in the Supplementary methods. Using an 
untargeted metabolomics workflow, the acquired data (full MS and 
data dependent MS2) was processed using Compound Discoverer 
3.3, which is described in detail in the Supplementary methods. Peak 
intensities of resulting metabolite features with Level 2 identification 
were utilized for statistical analysis. Data pre-processing included 
normalizations to exact sample (stool) weights, log transformation, 
and auto-scaling implemented in the MetaboAnalyst package. 
Z-scores of metabolite abundance were further utilized in linear 
regression models conducted in R. These models adjusted for 
recruitment cluster and treatment arm. Significance was set using an 
FDR p < 0.05.

2.6 Predictive machine-learning model

For predictive machine-learning modelling, we used LBW as the 
outcome variable (categorical) and taxa abundance (z-scores) and 
maternal anthropometry as predictive features. We used only the 
34-week samples in this analysis, which included a total of 243 
subjects that were randomly split into training (80% of samples) and 
test datasets (20% of samples) using the createDataPartition function 
from the caret package. Model development and validation were done 
in R using the H2o.ai engine and the h2o package (Xiao et al., 2024; 
LeDell and Poirer, 2020). Initial model evaluation was conducted 
using the AutoML function in H2o and employed multiple model 
families, including distributed random forest, GLM (generalized 
linear model), gradient boosted machines (GBM, including 
XGBoost). The process of hyperparameter tuning and grid search 
were performed using AutoML (LeDell and Poirer, 2020). Initial 
results revealed that XGBoost models had the best performance, and 
hence were chosen for further refinement. XGBoost is a supervised 
learning algorithm forward-learning process called boosting to yield 
accurate models. Model performance was evaluated by the following 
measures of accuracy, sensitivity, specificity, mean per-class error, and 
precision derived from the confusion matrix. Model performance 
was evaluated by training on 80% of the samples and testing the 
remaining 20%. Important features contributing to the model were 
derived using a scaled variable importance (VIPs scores) determined 
by calculating the relative influence of each variable.

2.7 Statistical analysis

All other statistical analyses were performed in GraphPad Prism 
version 10.1.1. Data are presented as mean ± SD or percentages. 
Statistical significance of p < 0.05 was calculated using Student t-test 
or chi-squared tests.

3 Results

3.1 Participant characteristics

Microbiome samples from a total of 265 mother-infant pairs were 
used in this study. Of those 179 were 12-week samples (Arm 1: 89; 
Arm 2: 90) and 243 were 34-week samples (Arm 1: 83, Arm 2: 91; Arm 
3: 69). Maternal–infant data were grouped based on birth weight of 
infants and classified as LBW (n = 35, 15%) or normal weight (NW, 
n = 230; Figure 1B). Maternal body mass index (BMI) at both 12 and 
34 weeks was significantly higher in the mothers that had NW infants 
(Table 1). There were no differences in maternal age, parity, mode of 
delivery, antibiotic use, or infant sex in between birth weight groups 
(Table 1). It is also important to note that on average ~ 75% of women 
in this study cohort gave birth vaginally. Infants in the LBW group had 
significantly higher rates of being classified as small for gestational age 
(SGA) and lower gestational-age adjusted z-scores for birth weight-
for-age (WAZ), length-for-age (LAZ), and head circumference-for-age 
(HCAZ) compared to NW weight infants (Table 1).

3.2 Fecal microbiome composition of 
pregnant mothers differed based on LBW 
vs. NW infants’ status

To examine changes in the maternal gut microbiome associated 
with LBW, we  evaluated maternal fecal microbiome at 12 weeks 
(Trimester 1) and 34 weeks (Trimester 3). Alpha diversity only differed 
at 12 weeks by one of 6 (Observed, Chao1, ACE, Shannon, Simpson, 
and Fischer) indices assessed. Mothers with LBW infants had 
significantly higher evenness (Simpson) at 12 weeks compared to NW 
(Figure 2A). There was no changes in alpha diversity parameters at 
34 weeks of gestation. Non-metric dimensional scaling (NMDS) 
ordination of Bray Curtis dissimilarity and unsupervised Principal 
Component Analysis (PCA) plots showed no significant differences 
by PERMANOVA in global genus-level composition (beta diversity) 
due to LBW at either 12 or 34 weeks of gestation (Figures 2B–E). 
We also analyzed β-diversity comparing intervention arms and found 
no difference in intervention arm at either timepoint (data not shown).

Next, we examined changes in genus-level bacterial abundance in 
both the 12-and 34-week samples associated with LBW. At 12 weeks, 
we  identified significantly increased abundance of Barnesiella, 
Faecalibacterium, Sutterella, Odoribacter, Hafnia, and Bacterioides in 
the fecal microbiome of women who had LBW infants compared to 
NW infants (Figure 3, Table 2). During late pregnancy (34 weeks), 
mothers of LBW infants had significantly lower abundance of 
Megasphaera, Phascolarctobacterium, and Turicibacter and increased 
abundance of Bacteriodes, Flavonifractor, Acinetobacter, and 
Fusobacterium compared to NW infants (Figure 4; Table 2).

3.3 Prediction of LBW using microbiome 
data

We then determined whether microbial taxonomic abundance 
and other maternal variables were predictive of neonatal LBW using 
a gradient-boosted machine-learning model. Due to the small 
sample size that was used to conduct fecal metabolomics, we did not 
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include metabolite data into our model. We  first evaluated the 
performance and overall accuracy of our model. Our model showed 
moderate to good performance, with an overall accuracy of 79.5%, 
sensitivity at 0.79 and specificity at 0.83 (Figure 5A). The top features 
contributing to model prediction based on relative importance were 
maternal BMI, gestational length, and genus-level taxonomic 
abundance of Oribacterium, Streptococcus, and Thalassospiria 
(Figure 5B). We repeated the same models excluding the microbiome 
data but retaining the maternal variables. The performance of the 
models was classified as poor with less than 60% accuracy (data not 
shown), suggesting that maternal fecal microbiome has an important 
contribution on model performance and the ability to predict LBW 
status in infants.

3.4 Maternal fecal metabolomics

A subset of fecal samples at 34-week gestation (n = 20, LBW and 
n = 20, NW) underwent untargeted metabolomic analysis to test 
whether certain metabolites were associated with having a LBW 
infant. We  identified 109 metabolites in positive mode and 125 
metabolites in negative mode at Level 2 annotation. PCA did not 
show separation between fecal metabolome from mothers that had 
LBW infants compared to those with NW infants (data not shown). 
However, partial least squares discriminant analysis (PLDS-DA) 

with selected metabolites, that were identified using average VIP 
scores, showed separation between samples from LBW vs. NW 
infants (Figure 6A). Although no metabolites met the pre-defined 
FDR cut-off (p < 0.05), a few had VIP scores greater than 2 
(Figure 6B), likely due to the smaller sample size per group. Next, 
we used z-scores of metabolite abundance to determine if there 
were fecal metabolites that differed in the mothers who had LBW 
or NW infants. Specifically, we  used linear regression that was 
adjusted for recruitment cluster and treatment arm. We identified 
26 metabolites that were significantly different between LBW and 
NW infants, 2 metabolites (Xanthurenic acid and 
pi-Methylimidazoleacetic acid) had increased abundance, and 24 
metabolites were decreased in mothers that had LBW infants 
(adjusted p < 0.05). These included bile acids (Cholic acid, 
Isodeoxycholic acid), fatty acids (Stearamide, Glycerol-3-phosphate, 
Eicosapentaenoic acid methyl ester) and other metabolites related 
to endocannabinoids [(9Z)-9-Octadecenamide, 2-arachidonyl 
glyceryl ether, Linoleoyl ethanolamide, and Palmitoyl ethanolamide; 
Figure 6C; Table 3].

4 Discussion

In this report, we leveraged a population of women from rural 
Guatemala where maternal micronutrient deficiencies and LBW are 

TABLE 1 Participant characteristics by time and birth outcome.

12  weeks 34  weeks

Maternal 
outcomes

LBW Infant NW Infant p-value LBW Infant NW Infant p-value

Age (y) 23.6 ± 4.1 22.9 ± 4.0 0.57 23.0 ± 3.8 23.8 ± 3.9 0.39

BMI (kg/m2) 23.5 ± 4.3 25.6 ± 4.3 0.02 23.7 ± 4.0 25.7 ± 4.1 0.009

Underweight (%) 7.1 0.0 0.001 3.0 0.0 0.01

Normal weight (%) 57.1 50.0 0.49 63.6 46.9 0.07

Overweight/obese (%) 35.7 50.0 0.16 33.3 53.1 0.03

Parity at enrollment 1.5 ± 1.2 1.8 ± 1.1 0.13 1.6 ± 1.2 1.9 ± 1.1 0.28

Mode of delivery (% 

vaginal)

78.6 68.9 0.3 81.8 69.0 0.13

Antibiotic use (% yes) 0.0 0.9 0.72 0.0 0.5 0.69

Infant outcomes

Infant sex (% female) 39.3 47.7 0.41 42.4 46.7 0.65

SGA classification (% yes) 88.0 12.0 <0.0001 89.7 10.3 <0.0001

Infant weight at 24H (kg) 2.26 ± 0.17 2.99 ± 0.30 <0.0001 2.27 ± 0.16 3.01 ± 0.29 <0.0001

Infant height at 24 H (cm) 44.96 ± 1.69 48.13 ± 1.49 <0.0001 44.99 ± 1.58 48.06 ± 1.54 <0.0001

Infant head circumference 

at 24H (cm)

37.9 ± 1.2 39.3 ± 1.1 <0.0001 37.9 ± 1.2 39.3 ± 1.2 <0.0001

Gestational Age Adjusted 

LAZ

−1.84 ± 0.77 −0.56 ± 0.76 <0.0001 −1.86 ± 0.73 −0.64 ± 0.76 <0.0001

Gestational Age Adjusted 

WAZ

−1.85 ± 0.50 −0.55 ± 0.72 <0.0001 −1.86 ± 0.46 −0.54 ± 0.70 <0.0001

Gestational Age Adjusted 

HCAZ

−1.40 ± 0.85 −0.06 ± 0.91 <0.0001 −1.37 ± 0.79 −0.11 ± 0.91 <0.0001

Data presented as mean ± SD or percentages. Statistical significance of p < 0.05 was calculated using student t-test or chi-squared tests. Bold signifies p < 0.05.
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FIGURE 2

Low birth weight (LBW) status and gut microbiome composition at 12 and 34  weeks of gestation. (A) Violin plots of alpha diversity indices associated 
with LBW status at 12-and 34-week gestation. All main effects of LBW were p  <  0.05. Pairwise p-values were derived using Wilcoxon test. (B) Bi-plot 
representation of principal components analysis of genus-level taxa at 12 and (C) 34  weeks of gestation by LBW status. (D) Non-metric dimensional 
scaling (NMDS) ordination of Bray-Curtis similarities of samples at 12 and (E) 34  weeks by LBW status.
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prominent (Lander et al., 2019). We show that (1) LBW was associated 
with specific maternal gut microbial taxa and modest changes in alpha 
diversity; (2) genus-level taxonomic data substantially improved 
accuracy of a machine learning model to predict LBW; and (3) fecal 
metabolites related to tryptophan metabolism, bile acids, fatty acids 
and endocannabinoid system were associated with LBW. These 
findings represent potential links between the maternal gut 
microbiome and host-microbial metabolite interactions during 
pregnancy and the risk of LBW infants.

At 12 weeks of gestation, mothers who delivered LBW infants 
showed increased abundance of several bacterial taxa known to 
be associated with pregnancy outcomes and growth. Higher Sutterella 
abundance during pregnancy has been associated with preterm birth 
(Ollberding et  al., 2016) which may be  related to its potential 
pro-inflammatory role (Ferrocino et al., 2018). Postnatally, Sutterella 
abundance has been found to be associated with rapid infant growth, 
fat mass, and weight loss (Gilley et al., 2022; Reyna et al., 2022; Peng 
et al., 2024) supporting a role for this taxon in growth. Barnesiella, a 
beneficial gut microbe and producer of the short chain fatty acid 
(SCFA) acetate, is known to increase throughout pregnancy and is 
associated with low-birth weight pups in mice (Wang et al., 2016). 
Another SCFA-producing bacterium elevated in the LBW group at 
12 weeks, Faecalibacterium, was similarly higher in mothers who had 
fetal growth restricted infants (Tu et al., 2022) or premature labor (Mu 
et  al., 2023). Lastly, Fusobacterium, a gram-negative bacterium 

associated with infections that is typically found in the oral cavity, 
gastrointestinal tract, and female genital tract (Chen et al., 2022), was 
increased during late pregnancy in the LBW group. Both oral and 
vaginal Fusobacterium nucleatum abundances are associated with 
pre-term birth/delivery (Cobb et  al., 2017; Holst et  al., 1994). 
Enrichment of Fusobacterium was identified in the fecal microbiome 
of pregnant mothers who gave birth prematurely (Yin et al., 2021), 
mothers with pre-eclampsia (Chen et al., 2020), and was associated 
with C-reactive protein levels in the blood of mothers with 
hyperglycemia (Gao et  al., 2020). Published reports support our 
results that specific microbial species likely have a role in LBW. Further 
investigation is needed to identify the mechanistic connection 
between these bacterial taxa during pregnancy on LBW status.

Our results suggest a possible role of inflammation in the birth of 
LBW infants, which is in line with previous studies (Hunter et al., 
2023). Multiple bacterial taxa altered in women who delivered LBW 
infants have known roles in regulating inflammation. As detailed 
above, Sutterella is known to be  pro-inflammatory while 
Faecalibacterium has anti-inflammatory effects (Al Bander et  al., 
2020). The only genus increased among the LBW group at both 
pregnancy timepoints was Bacteroides, a gram-negative bacterium 
that contributes to lipopolysaccharide (LPS) biosynthesis. Increased 
Bacteroides abundance has been suggested to induce inflammation 
during pregnancy (Tang et  al., 2023; Gorczyca et  al., 2022) and 
abundance was higher in women with fetal growth restricted infants 

FIGURE 3

Violin plots showing levels of differentially expressed genus-level taxa by LBW status at 12  weeks of gestation. (A) Bacteroides, (B) Barnesiella 
(C) Faecalibacterium, and (D) Sutterella. Differential abundance was assessed using MaAsLin2. All main effects of LBW were p  <  0.05. Pairwise p-values 
were derived using Wilcoxon test.
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(Tu et al., 2022). Flavonifractor, thought to be an important taxon for 
establishing neonatal immunity, was higher in the LBW group at 
34 weeks. Contrary to our results, lower abundance has been identified 
in LBW piglets (Li et  al., 2018), in neonates from mothers with 
gestational diabetes (GDM; Soderborg et al., 2020), and in pregnant 
women with intrahepatic cholestasis (Zhan et al., 2021). This may 
be due to analysis conducted on infant fecal samples compared to 
pregnant mothers or different maternal factors (i.e., GDM or 
intrahepatic cholestasis) that could also impact the abundance of this 
bacterial taxon. Thus, more studies are needed to understand the role 
of Flavonifractor during pregnancy on fetal growth.

Several fecal metabolites with higher concentration associated with 
LBW also are linked to inflammation. Xanthurenic acid, a downstream 
metabolite of the kynureine pathway, was increased with LBW in our 
study, and in pregnant women with preeclampsia in work by others (van 
Zundert et al., 2022). Metabolites from the kynurenine pathway have 
been previously associated with inflammation, environmental enteric 
enteropathy, zinc homeostasis, birthweight and poor linear growth (Gazi 
et al., 2020; Kosek et al., 2016; Groer et al., 2018; Tan et al., 2022; Garay 
et al., 2022). Tang et al. also showed high rates of elevated intestinal and 
systemic inflammatory markers in the pregnant mothers from Gutamela 
compared to other sites of WF trial (Tang et al., 2022). In addition, bile 
acid metabolites (cholic acid, isodeoxycholic acid) also were associated 
with LBW in our study. Bile acids are thought to shape microbial 

composition via activation of host signaling pathways or antimicrobial 
effects on microbes (Ridlon and Gaskins, 2024). Dysregulation of bile 
acids in pregnant women can increase risk of preterm birth (You et al., 
2020). Cholic acid in a normal pregnancy increases with progression of 
gestation (Gagnon et al., 2021). Cholic acid has been found be lower in 
feces from preterm infants (Kumagai et  al., 2007) and negatively 
correlated with Bacteroidetes, Staphylococcus and Acinetobacter in very 
low birth weight infants (Liu et al., 2023). At 34 weeks, we also showed 
an association of LBW with reduced Turicibacter, which is reported to 
modify host bile acids and lipid metabolism (Lynch et al., 2023). In 
settings of stress during pregnancy, similar lower relative abundance has 
been identified in pregnant women with HIV infection (Verdam et al., 
2013), heat stressed pigs (Ridaura et al., 2013), and in calorie-restricted 
pregnant mice (Gilley et  al., 2024). However, it was not found to 
be significantly altered in fecal samples from mothers with overweight/
obesity during pregnancy (Ruebel et al., 2021).

Targeting pro-inflammatory gut microbes and metabolites may 
be a viable intervention to reduce incidence of LBW. In mice, the gut 
microbiome protected against fetal growth restriction through 
modulation of inflammatory pathways including toll-like receptors 
that recognize and respond to pro-inflammatory signals including 
LPS (Tang et al., 2023). Pregnant women with higher circulating levels 
of interleukin 17A and interleukin 1β were associated with increased 
risk of both preterm birth and LBW and associated with lower birth 

TABLE 2 Fecal Microbial Abundances at Genus Level from Pregnant Women in Guatemala with low birth weight (LBW) infants compared to normal 
weight (NW) infants at both 12 and 34  weeks of Gestation.

Fecal samples from pregnant women who had LBW compared normal weight infants

Phylum Family Genus Coefficient Std. Dev. p value Q value

12 weeks gestation

Bacteroidetes Porphyromonadaceae Barnesiella 0.403 0.13 0.002 0.17

Firmicutes Ruminococcaceae Faecalibacterium 0.171 0.06 0.003 0.17

Proteobacteria Alcaligenaceae Sutterella 0.384 0.15 0.012 0.37

Bacteroidetes Porphyromonadaceae Odoribacter 0.599 0.25 0.016 0.37

Proteobacteria Enterobacteriaceae Hafnia 0.066 0.03 0.029 0.49

Bacteroidetes Bacteroidaceae Bacteroides 0.363 0.18 0.042 0.53

Proteobacteria Alcaligenaceae Parasutterella 0.409 0.21 0.055 0.61

Firmicutes Lachnospiraceae Lachnospira 0.285 0.15 0.059 0.61

Bacteroidetes Prevotellaceae Paraprevotella 0.425 0.23 0.070 0.62

Firmicutes Erysipelotrichaceae Solobacterium −0.447 0.25 0.078 0.62

Bacteroidetes Prevotellaceae Prevotella −0.205 0.12 0.085 0.62

Firmicutes Lachnospiraceae Roseburia 0.160 0.09 0.093 0.63

34 weeks gestation

Firmicutes Veillonellaceae Megasphaera −0.636 0.27 0.020 0.97

Firmicutes Acidaminococcaceae Phascolarctobacterium −0.450 0.22 0.025 0.97

Bacteroidetes Bacteroidaceae Bacteroides 0.313 0.14 0.025 0.97

Firmicutes Ruminococcaceae Flavonifractor 0.215 0.10 0.033 0.97

Proteobacteria Moraxellaceae Acinetobacter 0.127 0.06 0.034 0.97

Fusobacteria Fusobacteriaceae Fusobacterium 0.294 0.14 0.042 0.97

Firmicutes Erysipelotrichaceae Turicibacter −0.326 0.17 0.053 0.97

Proteobacteria Enterobacteriaceae Escherichia-Shigella −0.284 0.16 0.081 0.97

Statistical differences between groups were determined by MaAsLin2, adjusting for regional clusters, sex, maternal age, and sample batch. Significance was set at p < 0.05, using nominal 
p-values. Bold signifies p < 0.05.
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length z-score and lower weight for age z-scores (Shafiq et al., 2021). 
Another larger cohort study in healthy pregnant women, also found 
inflammatory related serum markers, C-reactive protein and vascular 
endothelial growth factor (VEGF)-D to be  predictive of lower 
birthweight (Yeates et  al., 2020). However, additional research is 
needed to thoroughly test this possibility.

Our machine learning model identified gestational length, maternal 
BMI, and relative abundances of Oribacterium, Phascolarctobacterium, 
Roseburia, Bifidobacterium, Lachnospira, Fusobacterium, and 
Escherichia-Shigella as contributors to predicting delivery of a LBW 
infant. The maternal variables shown to be predictive of LBW are in line 
with previous reports demonstrating associations with maternal height, 
weight, parity, SES, education, prenatal care, nutrition status and LBW 
status (Fedrick and Adelstein, 1978; Alsayeed et al., 2023; Jafree et al., 
2015; Cluzeni et al., 2023). Of the microbial taxa identified, Roseburia 
was enriched at 12 weeks in mothers of LBW compared to NW infants, 
although it did not reach statistical significance During pregnancy, 
Roseburia is lower in women with gestational diabetes and obesity 
(Shen et al., 2024; Obuchowska et al., 2022). It has also been shown to 

be enriched in very low birth weight infants at 1 month of age (Chang 
et al., 2011), lower in infants with extrauterine growth restriction (Fan 
et al., 2021), and predictive of birthweight (Gough et al., 2021). These 
studies and our data show conflicting results, which may partially 
be due to the varying degree of growth restriction or birth weight 
between infants. However, this information can still highlight a 
potential role for Roseburia in predicting infant growth outcomes. 
Another taxon of note is Fusobacterium, which was enriched in the 
LBW group and mentioned above. In addition, both Escherichia-
Shigella and Phascolarctobacterium were decreased in late pregnancy 
samples and Lachnosipria was increased in 12-week samples with LBW 
infants in this study and previously associated with low birth weight (Li 
et al., 2022) and fetal growth restriction (Zhang et al., 2019; Tang et al., 
2024). Thus, these combined results suggest that not only maternal 
factors, but the maternal gut microbiome may be predictive of LBW 
status during pregnancy. However, additional more robust data sets will 
be needed to confirm this observation.

Our analysis also highlighted changes in fecal metabolites related to 
the endocannabinoid system that were associated with LBW. It is well 

FIGURE 4

Violin plots showing levels of differentially expressed genus-level taxa by low bith weight (LBW) status at 34  weeks of gestation. (A) Bacteroides, 
(B) Flavonifactor, (C) Megasphera, and (D) Turicibacter. Differential abundance was assessed using MaAsLin2. All main effects of LBW were p  <  0.05. 
Pairwise p-values were derived using Wilcoxon test.
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TABLE 3 Fecal metabolites of pregnant mothers at 34-week gestation with low birth weight (LBW; N  =  20) compared to normal weight (NW; N  =  20) infants.

Metabolites Coefficient SE CI_low CI_high p-value

Stearamide −0.964 0.288 −1.548 −0.380 0.002

Cholic acid −0.716 0.215 −1.154 −0.279 0.002

Xanthurenic acid 0.952 0.292 0.358 1.546 0.003

(9Z)-9-Octadecenamide −0.845 0.270 −1.393 −0.296 0.004

Cholic acid −0.540 0.175 −0.898 −0.182 0.004

2-arachidonyl glyceryl ether −0.774 0.282 −1.349 −0.199 0.010

1-oleoyl-sn-glycero-3-

phosphoethanolamine

−0.502 0.189 −0.887 −0.118 0.012

Linoleoyl ethanolamide −0.740 0.285 −1.319 −0.160 0.014

CP 47,497-C9-homolog −0.628 0.245 −1.125 −0.130 0.015

Glycerol-3-phosphate −0.753 0.296 −1.355 −0.152 0.015

(3alpha,5beta,7beta,17xi)-3,7,12-

Trihydroxycholan-24-oic acid

−0.417 0.164 −0.753 −0.081 0.017

(9Z,12S,13R)-12,13-Dihydroxy-9-

octadecenoic acid

−0.765 0.307 −1.388 −0.142 0.018

2-arachidonyl glyceryl ether −0.372 0.149 −0.676 −0.068 0.018

Neohesperidin −0.658 0.270 −1.207 −0.108 0.021

Thiamine −0.694 0.286 −1.276 −0.113 0.021

pi-Methylimidazoleacetic acid 0.710 0.294 0.114 1.305 0.021

CP 47,497-C9-homolog −0.714 0.301 −1.324 −0.104 0.023

17-Hydroxypregnenolone −0.685 0.291 −1.275 −0.094 0.024

13-EPI-12-OXO PDA 0.708 0.301 0.096 1.320 0.025

Eicosapentaenoic acid methyl ester −0.664 0.283 −1.240 −0.089 0.025

1-Methylproline −0.671 0.290 −1.261 −0.081 0.027

Prostaglandin H1 0.726 0.317 0.084 1.368 0.028

Isodeoxycholic acid −0.585 0.261 −1.116 −0.054 0.032

CP 47,497-C9-homolog −0.508 0.242 −1.001 −0.016 0.043

NP-011548 −0.650 0.317 −1.294 −0.006 0.048

Palmitoyl ethanolamide −0.631 0.310 −1.260 −0.002 0.049

3-linoleoyl-sn-glycerol −0.640 0.321 −1.291 0.011 0.054

Estriol 17-sulfate −0.538 0.275 −1.096 0.020 0.058

Lithocholic Acid −0.618 0.317 −1.262 0.027 0.060

8-Hydroxy-2(1H)-quinolinone −0.604 0.314 −1.241 0.032 0.062

5-[(1S,2R,4aR)-5-(Hydroxymethyl)-

1,2,4a-trimethyl-1,2,3,4,4a,7,8,8a-

octahydro-1-naphthalenyl]-3-

methylpentanoic acid

−0.600 0.315 −1.238 0.038 0.065

(2R)-3-{[(2Aminoethoxy) (hydroxy)

phosphoryl]oxy}-2-hydroxypropyl 

myristate

−0.515 0.273 −1.069 0.039 0.067

Alpha-Eleostearic acid −0.346 0.186 −0.725 0.033 0.072

4-Pyridoxic acid 0.472 0.255 −0.049 0.992 0.074

D-(+)-Xylose −0.542 0.297 −1.144 0.060 0.076

Stachydrine −0.581 0.321 −1.231 0.069 0.078

Taurine −0.589 0.326 −1.251 0.072 0.079

(Continued)
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known that the endocannabinoid system plays an important role in 
energy balance, metabolism, immune system and is a modulator of gut 
homeostasis and physiology (Ellermann, 2023; Drummen et al., 2020; 
Bambang et  al., 2012). Closely related to leptin signaling, the 
endocannabinoid system, a lipid related signaling system, has emerged 
as a potential modulator of different biological processes involved in 
developmental programming (Keimpema et al., 2013). Recent evidence 
has suggested that altered nutrition during pregnancy may have an 
impact on the endocannabinoid system and lead to changes in brain 
function or behavioral development of offspring (Ramirez-Lopez et al., 
2017; Matias et al., 2003; Ramirez-Lopez et al., 2016; Ramirez-Lopez 
et al., 2015). More specifically, maternal undernutrition is associated with 
lower levels of endocannonid related metabolites in different biological 

tissues (Matias et al., 2003; Ramirez-Lopez et al., 2016), mimicking a 
similar response to what we found in maternal stools samples. However, 
there is limited knowledge on the role of endocannabinoids and related 
compounds within the maternal-fetal dyads, although maternal 
endocannabinoids have been shown to be transferred by the placenta to 
the fetus (Keimpema et al., 2013; Chan et al., 2013; Kozakiewicz et al., 
2021). As an example, cannabis use during pregnancy leads to increased 
risk of LBW infants, pre-term birth (Leemaqz et al., 2016), poor fetal 
growth (Conner et al., 2016), stillbirth (Varner et al., 2014) and other 
adverse neonatal outcomes (Kozakiewicz et al., 2021; Metz et al., 2017). 
In addition, specifically endocannabinoid related metabolites, plasma 
anandamide (AEA) and palmitylethanolamide (PEA) levels in pregnant 
women during late pregnancy predict pre-term birth (Bachkangi et al., 
2019). Different endocannabinoid anandamides in the placenta were 
found to be  associated with premature labor (Taylor et  al., 2023). 
Combined with the growing knowledge that endocannabinoid and 
related metabolites may modulate the gut microbiome, specifically, 
microbial composition has also been shown to be  associated with 
different endocannabinoid components, when altered by dietary patterns 
or antibiotics (Lacroix et al., 2019; Castonguay-Paradis et al., 2023; Guida 
et al., 2018; Tagliamonte et al., 2021). Our results highlight a potential 
system that could be influenced by gut microbiome during pregnancy 
and predict infant growth outcomes, such as LBW. Although more 
studies would be needed to understand this mechanism.

The present study is not without limitations. We did not consider 
the effect of pre-term infants, or exclude them from our analysis due 
to low sample number in the LBW group. On average in both 12-and 
34-week samples there was a combined total of 5% of infants classified 
as preterm. Next, metabolomics analyses were conducted on a subset 
of 34-week samples, which limited incorporation of these data into 
predictive models. Future metabolomics studies with a larger sample 
set could provide insight into key metabolites that relate to bacterial 
abundances, and which predict LBW risk. We did not examine the 
direct impact of nutritional intervention treatment arms with LBW, 
but we did include this as a covariate for our analysis. Our previous 
publication, examining the gut microbiome from all four sites of the 
Women First Trial (Democratic Republic of the Congo, Guatemala, 
India, and Pakistan), found no association with supplement status and 
bacterial taxa abundance or alpha diversity metrics (Tang et al., 2022). 
In the present study, many of our differences were only nominally 
significant and did not pass multiple testing corrections, and hence 
should be interpreted with caution. Lastly, with the use of short-read 
16S rRNA amplicon sequencing, we were unable to obtain species-
level data, therefore, the present analyses reflect a broad view of the 
microbiome and leave room for future granular analyses.

FIGURE 5

Results of GBM models predicting LBW status based on maternal 
microbiome and anthropometry. (A) Model performance was 
evaluated on separate (20%) dataset. (B) Model features by relative 
importance that show predictable of LBW status.

TABLE 3 (Continued)

Metabolites Coefficient SE CI_low CI_high p-value

Bilirubin −0.579 0.323 −1.235 0.076 0.082

Linoleoyl Ethanolamide −0.425 0.239 −0.913 0.062 0.085

D-(+)-Glucose −0.563 0.318 −1.207 0.082 0.085

(20R)-17-Hydroxy-3-oxopregn-4-en-20-

yl hydrogen sulfate

0.485 0.275 −0.072 1.042 0.086

Conocarpan 0.510 0.290 −0.079 1.099 0.087

1,5-Isoquinolinediol 0.528 0.303 −0.089 1.145 0.091

Metabolites identify by linear regression model adjusted for recruitment cluster and treatment arm. Significance level set at p < 0.05.
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In conclusion, our findings indicate that mothers who delivered 
LBW infants showed differences in their gut microbiome at both early 
and late pregnancy, compared to mothers who gave birth to NW 
infants. Maternal factors such as BMI, gestational length, and individual 
bacterial taxa predict LBW status. We also showed associations of LBW 
with maternal fecal metabolites related to tryptophan metabolism, 
endocannabinoid system, fatty acids, and bile acids. Combined with 
findings from others, the results presented here may suggest a functional 
role of the maternal microbiome in mediating adverse growth outcomes 
in offspring. In addition, the maternal gut microbiome and metabolites 
may be potential biomarkers that could be used to predict LBW infants 
or targets for future interventions to reduce prevalence of LBW.
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Glossary

LBW Low birth weight

NW Normal birth weight

WF The women first: preconception maternal intervention nutrition trial

sqLNS Small-quantity lipid-based micronutrient supplement

QC Quality control

SDMO Sulfadimethoxine

HESI Heat-electrospray ionization

GLM Generalized linear model

VIP Variable importance

SGA Small for gestational age

WAZ Weight-for-age z-score

LAZ Length-for-age z-score

HCAZ Head circumference-for-age z-score

NMDS Non-metric dimensional scaling

PCA Principal Component Analysis

PLDS-DA Partial least squares discriminant analysis.

BMI Body mass index

SCFA Short chain fatty acid

LPS Lipopolysaccharide

GDM Gestational diabetes mellitus

VEGF-D Vascular endothelial growth factor-D

AEA Anandamide

PEA Palmitylethanolamide
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