
Frontiers in Microbiology 01 frontiersin.org

Experiences of discrimination are 
associated with microbiome and 
transcriptome alterations in the 
gut
Tien S. Dong 1,2,3,4,5*, Simer Shera 5, Kirstin Peters 5, 
Gilbert C. Gee 6,7, Hiram Beltrán-Sánchez 6,7, May C. Wang 6, 
Lisa A. Kilpatrick 1,2,3,5, Xiaobei Zhang 1,2,3,4,5, Jennifer S. Labus 1,2,3,4,5, 
Allison Vaughan 1,2,3,5 and Arpana Church 1,2,3,4,5*
1 G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA, Los Angeles, CA, United 
States, 2 UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, United 
States, 3 David Geffen School of Medicine at UCLA, Los Angeles, CA, United States, 4 Goodman Luskin 
Microbiome Center at UCLA, Los Angeles, CA, United States, 5 Department of Medicine, University of 
California, Los Angeles, Los Angeles, CA, United States, 6 Department of Community Health Sciences 
Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States, 
7 California Center for Population Research, UCLA, Los Angeles, CA, United States

Background: Discrimination is a recognized psychosocial stressor that has 
been linked to various negative health outcomes. This study explored the 
impact of discrimination on gut health, specifically focusing on microbiome 
changes, predicted metagenomic differences, transcriptomic profiles, and 
the potential for using a multi-omic approach to predict discrimination to 
identify discrimination status for an individual. Methods: We  conducted a 
comprehensive investigation involving male and premenopausal female 
participants, using the Everyday Discrimination Scale to classify them into 
either high or low discrimination. Multiple questionnaires were administered 
to evaluate participants’ physiological, psychological, and perceived stressors. 
Two diet questionnaires were also administered. Stool samples were collected 
for microbiome analysis and RNA sequencing. Microbial composition changes 
were analyzed using the Shannon index and Chao1 richness estimator for 
alpha diversity and the Aitchison distance metric for beta diversity. Differential 
abundance was evaluated using MaAsLin2, followed by metatranscriptomics 
sequencing and annotation. A multi-omic approach utilizing random forest was 
used to assess the predictability of discrimination.

Results: The study results showed that high discrimination was linked to 
higher gut microbiome species richness (Chao1, p  =  0.02) and significant beta 
diversity differences (p  =  0.04). Prevotella and Ruminococcaceae were both less 
abundant in the high discrimination group. High discrimination participants also 
reported higher levels of depression, anxiety, perceived stress, early life adversity, 
visceral sensitivity, and neuroticism than those in the low discrimination group. 
Gene expression analysis revealed distinctive patterns, with significant changes 
in genes associated with environmental sensing (two-component system) and 
metabolic pathways. In a plot comparing gene transcription to DNA content, 
certain genes showed higher expression levels in participants who experienced 
both high and low levels of discrimination. Our random forest classifier 
demonstrated the capability to accurately differentiate individuals with high and 
low discrimination in our training cohort (AUC  =  0.91).
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Conclusion: These findings illuminate the substantial impact of discrimination 
on gut health, encompassing microbiome composition, gene expression, and 
functional pathways. These findings suggest that discrimination is associated 
with internal biological changes that can be  associated with negative health 
outcomes, opening research to examine novel pathways that can be used to 
mitigate the negative health effects of discrimination.
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Introduction

Discrimination, or the differential treatment of individuals based 
on existing or perceived membership to a specific identity, plays a 
significant role in the social structures that perpetuate inequality and 
injustices (Schmitt and Branscombe, 2002; Slopen and Williams, 
2014). The role of discrimination and one’s place in either an 
“advantaged” or “disadvantaged” group has clear implications for their 
prospective healthcare outcomes (Berger and Sarnyai, 2015). However, 
the biological pathways by which discrimination impacts mental and 
physical health remain unclear.

Previous research has consistently revealed that belonging to 
disadvantaged groups is directly associated with poorer health 
outcomes (Melchior et al., 2007; Banerjee, 2016; Killen et al., 2016). 
Several pathways have been described to link discrimination to health, 
with the most popular being the stress response provoked by 
discrimination via the activation of the hypothalamic–pituitary–
adrenal (HPA) axis. Physical arousal that results from the experience 
of discrimination can activate the HPA axis, resulting in the release of 
cortisol (Keller et al., 2017). Cortisol release as a result of dysregulation 
of the HPA axis has been implicated in the pathophysiology of anxiety 
and depression (Tetel et al., 2018; Lyte et al., 2020; Foster et al., 2017).

Recent studies, however, have pushed for an investigation of the 
gut microbiome in influencing the psychosocial stress response via 
the gut–brain axis as well (De Palma et al., 2015; Moussaoui et al., 
2017). The gut microbiome and the brain communicate through 
various pathways, such as the HPA axis and the immune system 
(Dong et al., 2023; Cryan et al., 2019; Marcondes Ávila et al., 2020). 
Stress can dysregulate these pathways, interrupting the 
communication between the gut and the brain. It is well documented 
that stress-induced changes to the brain can result in a compromised 
brain–gut signaling network, leading to alterations in the gut 
microbiome, increased intestinal permeability, microbial dysbiosis, 
and changes to microbial gene expression (Keita and Söderholm, 
2010; Moreira et  al., 2016; Ritter et  al., 2012; Vetter et  al., 2010; 
Higginson and McNamara, 2016; Van Dyken and Lacoste, 2018). 
These changes can subsequently result in immune system activation 
and thus an inflammatory response by the host (Sarubbo et al., 2022; 
Chakrabarti et al., 2022). Despite emerging evidence linking stress, 
the gut–brain axis, and health outcomes, there is still a significant gap 
in understanding how discrimination specifically impacts these 
biological pathways. Understanding these effects is crucial in 
revealing novel biomarkers of discrimination-related stress and 
providing insights into targeted interventions to mitigate adverse 
health impacts.

The purpose of this study was to understand the exact impact of 
discrimination on the gut microbiome and its correlation with 

healthcare outcomes. To comprehensively understand how 
discrimination can affect biological pathways linked to outcomes in 
health, we performed a detailed analysis of the effects of discrimination 
on the gut microbiome in a racially diverse population, specifically 
focusing on changes to the gut microbiome composition, predicted 
metagenome differences, and transcriptomic profiles. These alterations 
were also examined in correlation with health outcomes such as 
depression, anxiety, and perceived stress. Using these results, 
we  evaluated the potential for using a random forest classifier to 
predict discrimination to identify discrimination status for 
an individual.

Materials and methods

Ethics approval and consent to participate

The procedures performed were approved by the Institutional 
Review Board at the University of California, Los Angeles, Office of 
Protection for Research Subjects. All participants provided written 
informed consent.

Study cohort

Individuals were recruited from clinics and communities in 
Los Angeles, California. To be eligible for the study, participants 
had to be at least 18 years old. We excluded individuals who took 
antibiotics or probiotics in the 3 months preceding the study. 
Because this part of the study was part of a larger study involving 
magnetic resonance scanning, participants were also excluded if 
they used analgesic drugs or medications that interfered with the 
central nervous system, weighed over 400 pounds (due to magnetic 
resonance imaging scanning weight limits), or were lefthanded 
(since there is variability in brain scans due to hand dominance). 
The initial cohort consisted of 165 adults, and the final sample 
consisted of 154 adults. Participant data included the following: 
blood samples for genetic expression, stool samples for microbial 
and transcriptomic analysis, anthropometrics, diet history, and 
verified medical survey questionnaires. Participants self-reported 
race/ethnicity (Asian American, Black, Hispanic, or White). For 
female participants, only premenopausal individuals were 
enrolled, and biological samples were collected in the follicular 
phase of their menstruation cycle, as determined by the reported 
date of their last menstrual period. This approach aimed to 
minimize any hormonal influence on the biological and 
microbiome samples.
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Questionnaires

The following validated questionnaires were used to assess the cohort 
members: Everyday Discrimination Scale (EDS), Connor Davidson 
Resilience Scale (CD-RISC), Early Traumatic Inventory (ETI), Hospital 
Anxiety and Depression (HAD) scale, International Personality Item Pool 
(IPIP), Perceived Stress Scale (PSS), State–Trait Anxiety Inventory (STAI), 
Visceral Sensitivity Index (VSI), Socioeconomic Status (SES), Patient 
Health Questionnaire-15 (PHQ-15), and Short Form Health Survey 
(SF12). All participants also participated in a Diet History Questionnaire 
(DHQ) III and the UCLA Diet Checklist (Lenhart et al., 2022).

EDS was used to assess discrimination. It measures routine and 
chronic experiences of unjust treatment, categorizing subjects into a high 
EDS level or a low EDS (Michaels et al., 2019). The questionnaire has been 
widely used in diverse populations, consisting of nine-item questions to 
assess how frequently someone perceives discrimination in their 
day-to-day life with frequency rate options of ‘never,’ ‘less than once a year,’ 
‘a few times a year,’ ‘a few times a month,’ ‘at least once a week,’ and ‘almost 
every day.’ These answers are assigned a score on a Likert scale, with 
‘never’ equating to zero and ‘almost every day’ equating to a five and a 
maximum score of 50. Follow-up questions are asked, querying the 
responder to speculate on the main reason for these experiences if they 
answered a few times a year or more frequently to any initial questions.

The CD-RISC, ETI, HAD, IPIP, PSS, STAI, and VSI were used as 
psychological and symptom instruments. The CD-RISC was used to 
measure stress-coping ability by assessing resilience (Connor and 
Davidson, 2003). It includes 25 items, each scored on a scale from 0 to 4, 
with higher scores reflecting greater resilience in respondents. The ETI 
was used to measure self-reported childhood trauma, including questions 
from general, physical, emotional, and sexual trauma, as well as additional 
questions for serious trauma (Jeon et al., 2012). The HAD scale assessed 
anxiety and depression symptoms in the participants (Edelstein et al., 
2010). Respondents were asked to rate 14 different items on a 4-point 
severity scale, producing results for both anxiety and depression. The IPIP 
was used to assess personality, categorizing an individual into the big five 
personality traits (Ypofanti et al., 2015). The PSS was used to measure 
one’s perception of stress based on their evaluation of the degree to which 
specific situations are categorized as stressful (Nater and Ali, 2020). The 
STAI was used to assess anxiety in cohort members (Carmin and Ownby, 
2010). The questionnaire includes four separate dimensions of “state” and 
“trait” anxiety, including feelings of tension, worry, and more. The VSI was 
used to measure gastrointestinal symptom-specific anxiety (Trieschmann 
et al., 2022). The questionnaire consists of 15 items ranked on the same 
Likert scale described previously, with examples of items including 
statements such as “I worry that abdominal pain might be due to a serious 
illness” and “I am afraid that when I experience stomach discomfort, it 
will get worse.”

The SF12 was used to assess an individual’s quality of life by 
quantifying the impact of health on daily life (Huo et al., 2018). Both the 
DHQ-III and UCLA Diet Checklist were used for the evaluation of 
participants’ diets.

Statistical analyses

Differences in baseline demographic characteristics were assessed 
using Student’s t-test for continuous variables and the chi-squared test 
for categorical variables. For the purposes of our analyses, 

we dichotomized EDS to either “high discrimination” (EDI > =6) or 
“low discrimination” (EDI < 6) using the median score of our study 
population. This process determined a cutoff using the study 
population similar to previously published studies (Chang et al., 2018).

Changes to microbial composition were analyzed using several 
metrics. Raw microbiome reads were processed through DADA2 
(Callahan et  al., 2016). The microbiome dataset was rarefied to a 
standardized sequence depth of 34,222 reads. Alpha diversity—the 
diversity within a sample—was computed using the Shannon (a measure 
of species evenness) and Chao1 (a measure of species richness) indices 
through QIIME2. The statistical significance of the Shannon and Chao1 
indices was determined using analysis of variance (ANOVA) using the 
aov function in R. Beta diversity—the variability in composition among 
the community—was analyzed using the robust Aitchison distance metric 
within the DEICODE package of QIIME2 (Sawyer et  al., 2012). 
Significance in beta diversity was evaluated using permutational 
multivariate analysis of variance, specifically employing the ‘adonis’ 
package in R (Version 4.1.2), adjusting for sex, age, body mass index 
(BMI), and diet. Differential abundance analysis of genera was computed 
using MaAsLin2 (Mallick et al., 2021).

Fecal samples were sent to Viome Life Sciences, Inc., for RNA 
extraction, metatranscriptomics sequencing, and annotation (Hatch et al., 
2019). Functional annotation of genes using metatranscriptomics allowed 
for the identification and comparison of genes expressed by the high and 
low discrimination groups. RNA extraction was performed via bead 
beating; DNase was used to degrade DNA, and subtractive hybridization 
was used to deplete 16S/23S ribosomal RNA. The resulting RNA was used 
to prepare sequencing libraries. The libraries were processed through 
150×2 paired-end sequencing on Illumina NovaSeq. Sequence reads were 
aligned to a precomputed unique k-mers database. To perform functional 
annotation, the sequence reads were aligned to the MetaHIT Consortium 
integrated gene catalog (MetaHIT Consortium, 2014).

PICRUst2, a reputable tool used to attain metagenomic data from 16S 
rRNA compositional data, was used to infer metagenomic data from the 
16S rRNA sequencing data of each sample. The 16S rRNA sequencing 
data were inputted into the PICRUst2 program and normalized by copy 
number. Default parameters were used. The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database was used to categorize subsequent 
metagenes by function. DESeq2 was used to identify differences in 
predicted metagenes by discrimination, with p-values adjusted for 
multiple hypothesis testing.

Using a random forest classifier, a model incorporating 16S data, 
transcriptomic data, and metagenomic data was created using the 
variables that had at least a p-value of <0.1 to classify participants as either 
high or low discrimination. Random forest analysis was conducted 
utilizing the `randomForest` package in R. The analysis was executed 
with default settings, including a forest size of 1,000 trees. To assess the 
model’s performance and generalization ability, k-fold cross-validation 
was employed, with k set to a value of 10. This procedure ensures 
robustness and minimizes overfitting by partitioning the dataset into k 
equally sized folds, where each fold serves as a validation set while the 
remaining data are utilized for training. The process is repeated k times, 
with each fold serving once as the validation set. This approach allows for 
an unbiased estimation of the model’s predictive performance.

Clinical measures as evaluated by the abovementioned 
questionnaires and demographic data were correlated with 
discrimination using analysis of variance for continuous variables and 
the chi-square tests for categorical variables.
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Results

Participant characteristics

Of the 154 participants, 141 submitted fecal samples for analysis. 
The participants consisted of 30 Asian individuals (13 high EDS and 
17 low EDS), 18 Black individuals (11 high EDS and 7 low EDS), 57 
Hispanic individuals (32 high EDS and 25 low EDS), and 36 White 
individuals (19 high EDS and 17 low EDS) (Table 1).

No significant differences were observed in the proportion of 
missing microbiome or metabolomics data between the groups 
(p = 0.20).

Of the 154 participants, 80 were classified as high 
discrimination and 74 were classified as low discrimination. 
Compared to the low discrimination group, the high discrimination 
group presented with higher levels of depression (p = 0.009), 
anxiety (p = 0.009), perceived stress (p = 0.001), early life adversity 
(p = 0.009), visceral sensitivity (p < 0.001), neuroticism (p = 0.01), 

TABLE 1 Participant characteristics and clinical questionnaires.

Low EDS (n =  74) High EDS (n =  80) P-value

Mean EDS (SD) 2.1 (2.1) 12.9 (5.7) <0.001

Male participants (n = 43) 44.20% 55.80%

0.55Female participants (n = 111) 49.50% 50.50%

Age (year) (SD) 32.6 (10.3) 30.5 (10.3) 0.21

BMI (SD) 29.9 (5.9) 29.9 (5.8) 0.98

Education

Some high school 0.4 0.6

0.88

High school graduate 47.30% 52.70%

College graduate or higher 47.90% 52.10%

Marital status

Never married 43.90% 56.10%

0.39

Married 51.30% 48.70%

Divorced 56.30% 43.80%

Widowed 100.00% 0.00%

Questionnaire scores (reference range: cutoff value)

ETI total score (SD) (0–69; >16) 3.6 (4.3) 5.5 (4.4) 0.009

CDRISC score (SD) (0–100; NR) 80.5 (12.0) 76.9 (13.3) 0.09

IPIP neuroticism (SD) (0–240: NR) 20.1 (6.3) 23.1 (7.6) 0.01

IPIP extraversion (SD) (0–240; NR) 36.1 (7.0) 34.3 (7.1) 0.12

SES score (SD) (0–10; NR) 6.3 (1.4) 5.8 (1.5) 0.06

PHQ-15 score (SD) (0–30; min <5, low 5–9, 

medium 10–14, high >14) 4.5 (3.8) 5.9 (4.2) 0.03

STAI trait score (SD) (0–80; >37) 30.9 (7.5) 35.6 (10.7) 0.002

HAD anxiety (SD) (0–21; >7) 4.2 (3.6) 5.9 (3.7) 0.005

HAD depression (SD) (0–21; >7) 1.8 (1.8) 2.9 (2.9) 0.009

PSS score (SD) (0–40; >13) 10.8 (5.7) 14.8 (6.4) 0.001

SF12 physical score (SD) (0–100; >50) 54.2 (3.1) 52.4 (5.6) 0.02

SF12 mental score (SD) (0–100; >50) 53.1 (6.3) 49.7 (9.4) 0.01

VSI score (SD) (0–75, >37) 7.2 (10.1) 15.4 (17.7) 0.0006

Ethnicity/Race

African American (n = 20) 35.00% 65.00%

0.44

Asian (n = 31) 58.10% 41.90%

Hispanic (n = 62) 46.80% 53.20%

White (n = 40) 47.50% 52.50%

Other (n = 1) 100.00% 0.00%

EDS, Everyday Discrimination Scale; BMI, body mass index; SD, standard deviation; ETI, early traumatic inventory; CDRISC, Connor Davidson Resilience Scale; IPIP, international 
personality item pool; SES, socioeconomic status; PHQ, physical health questionnaire; STAI, Stair Trait Anxiety Inventory; HAD, Hospital Anxiety and Depression Scale; PSS, Perceived Stress 
Scale; SF12, short form healthy survey; VSI, visceral sensitivity index. Significant p-value < 0.05 (bolded). Cutoff values and reference ranges for each questionnaire are listed adjacent to each 
questionnaire. NR, no established reference ranges.
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and overall poorer scores for physical (p = 0.02) and mental 
(p = 0.01) health. No significant differences were observed in age, 
BMI, education, marital status, or diet between the high and the 
low discrimination groups.

Discrimination introduces changes to 
microbiome composition

Analysis of the gut microbiome between the high and low 
discrimination groups indicates that discrimination is associated with 
clear microbiome changes. Both the Chao1 richness estimator and 
Shannon indices were used to measure alpha diversity for the high 
and low discrimination groups. Those with high levels of 
discrimination had higher levels of species richness (Figure 1A). A 
similar trend was seen with the Shannon index (p-value = 0.05) 
(Figure 1B). Beta diversity showed a statistically significant difference 
between the two groups (p-value = 0.04) (Figure 1C).

Using MAASLIN2 to assess the abundance of specific genera 
revealed that the abundance of Prevotella specifically was lower 
in the high discrimination group than in the low discrimination 
group (Figure  1D). Genera belonging to Ruminococcaceae, 
Candidatus, Methanobrevibacter, and the order Mollicutes were 
higher in the high discrimination group than the low 
discrimination group. A taxonomic plot summarizing major 
genera is shown in Figure 1E.

Analysis of predicted metagenomic and 
transcriptomic profiles reveals potential 
biomarkers for high discrimination group

Both the predicted metagenome and transcriptomics show no 
significant differences between the high and low discrimination 
groups based on principal component analysis (Figures  2A,B). 
Differential abundance testing of the predicted metagenome showed 
that there were higher amounts of electrochemical potential-driven 
transporters (K11689)—proteins that rely on electrochemical 
gradients to facilitate secondary active transport—and micrococcal 
nuclease (K01174)—enzymes that cleave regions between 
nucleosomes—in the high discrimination group than in the low 
discrimination group (Figure 2C). Differential abundance testing of 
the transcriptomic data showed less antigen processing and 
presentation (K01369) and nucleotide excision repair (K03657) in 
the high discrimination group than in the low discrimination group 
(Figure 2D). Generally, the pattern of RNA relative abundances to 
the DNA relative abundance between the high and low 
discrimination groups was similar but not identical (Figures 2E,F).

A closer analysis of gene transcription relative to DNA content in 
participants from the low and high discrimination groups revealed 
that several genes appear to be transcribed at significantly different 
levels between the two groups (Figure 3A). Seven genes—K13924 
(bacterial chemotaxis), K07795 (two-component system), K00998 
(biosynthesis and metabolic pathways), K01069 (pyruvate 

FIGURE 1

Analysis of gut microbiome diversity and taxonomic composition in the high and low discrimination groups. (A) Box plot of Chao1 index (species 
richness) and (B) Shannon index (species evenness). (C) Principal coordinate analysis plot of the microbiome composition by the high and low 
discrimination groups as measured by the Everyday Discrimination Scale (EDS). (D) MaAsLin2 output that shows which genera were differentially 
abundant in the high discrimination group compared to the low discrimination group. (E) Taxonomic plots of all genera by discrimination status. Only 
genera with a relative abundance of >1% are represented.
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metabolism), K01029 (metabolic pathways), K07678 (two-component 
system), and K01758 (biosynthesis and metabolic pathways)—had 
higher transcription rates in individuals with high discrimination 
levels. Six genes—K12983 (lipopolysaccharide biosynthesis), K07670 

(two-component system), K01659 (metabolic pathways), K05881 
(metabolic pathways), K02771 (fructose and mannose metabolism), 
and K10742 (DNA replication)—had lower transcription rates in 
individuals with high discrimination levels.

FIGURE 2

Analysis of predicted metagenomic and transcriptomic profiles in the high and low discrimination groups. (A) Principal component analysis plot of 
predicted metagenomic data and (B) transcriptomic data by discrimination. (C) DESeq2 analysis showing differential abundant predicted metagenes in 
the high discrimination group compared to the low discrimination group. (D) DESeq2 analysis showing differential abundant transcripts between the 
high discrimination group and the low discrimination group. (E) DNA relative abundance to RNA relative abundance of each gene in the participants 
with low discrimination and (F) high discrimination.

FIGURE 3

Comparative analysis of RNA-to-DNA ratios and functional descriptions of discrimination-associated genes. (A) Graphical comparison of RNA-to-DNA 
ratios between the low and high discrimination groups. The genes above the line indicate higher transcription rates than those with high discrimination 
levels, while those below the line represent higher transcription levels in the low discrimination group. Of those genes, the ones highlighted in red and 
blue represent transcription rates two standard deviations greater than the baseline in the high and low discrimination groups. (B) Descriptions of 
functions for genes indicated to be significantly different between the high and low discrimination groups in figure.
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In general, the genes with the most significant changes were 
associated with environmental sensing (two-component system) and 
metabolic pathways (Figure 3B).

Prediction of discrimination status using a 
multi-omic approach

Using a random forest classifier, we showed that a dataset based 
on the gut microbiome composition, metagenome, and transcriptome 
could accurately identify participants in the cohort as either in the 
high or low discrimination group. The model’s receiver operating 
characteristic (ROC) curve demonstrated a high accuracy, with an 
area under the curve (AUC) of 0.91 (Figure 4). A model with only 
microbiome data had an AUC of 0.79, a model with only predicted 
metagenome data had an AUC of 0.89, and a model with only 
transcriptomic data had an AUC of 0.86.

Discussion

Discrimination is associated with significant changes in the gut 
microbiome profile affecting both the composition of the gut 
microbiome and its gene expression. A model that encompasses 
microbiome, metagenomic, and transcriptomic data has a high 
accuracy for classifying those with high discrimination.

Discrimination impacts psychological and 
physical symptoms

Discrimination has been increasingly recognized as a 
psychosocial stressor with implications for health outcomes (Sawyer 
et al., 2012). In our study, individuals in the high discrimination 
group not only exhibited significantly higher levels of adverse 
psychological traits, including depression, anxiety, and perceived 

stress, but also reported higher occasions of life adversity and 
neuroticism. The high discrimination group also had poorer scores 
overall in physical and mental health. These findings align with 
existing literature that highlights the deleterious effects of stressors 
such as discrimination on physical and mental health (Sawyer et al., 
2012; Brandt et  al., 2022). For example, past studies have linked 
discrimination to a higher incidence of anxiety and obesity (Chang 
et al., 2018; MacIntyre et al., 2023; Panza et al., 2019).

The association between visceral sensitivity and discrimination 
specifically reflects the relationship between psychological stress and 
physiological response. Visceral sensitivity is the experience of 
discomfort in an individual’s internal organs (Zhou and Verne, 2011). 
Chronic stressors, such as discrimination, are considered capable of 
dysregulating the body’s HPA axis and autonomic nervous system—
both critical to the human stress response (Herman et  al., 2016; 
Stephens and Wand, 2012). In our study, the high discrimination 
group reported heightened visceral sensitivity compared to the low 
discrimination group. Such physiological changes may contribute to 
compromised gastrointestinal function.

Discrimination impacts the gut 
microbiome

Analyses of the gut microbiome revealed significant differences 
between the high and low discrimination groups, indicating the 
potential role of discrimination on the composition of the gut 
microbiome. One of the most notable observations from these analyses 
was that the median value for the Chao1 richness estimator was higher 
for the high discrimination group than for the low discrimination 
group, suggesting that the high discrimination group has greater 
species richness. Alpha diversity is used as a common indicator for 
assessing gut microbiota health and can be closely associated with 
disease status (Gong et al., 2016). While the exact relationship between 
higher species richness and inflammation still remains unclear, several 
studies imply that a higher alpha diversity is considered a biomarker 
for high-stress environments (Kelly et al., 2021). In this context, a 
higher Chao1 index implies higher species richness as a response to 
environmental stressors that can be associated with discriminatory 
experiences. Taxonomic analysis of the gut microbiome showed that 
the most notable difference was a decrease in the abundance of 
Prevotella in individuals experiencing high levels of discrimination. 
Prevotella species are associated with the production of short-chain 
fatty acids and the stimulation of regulatory T-cell production by the 
immune system. These regulatory T cells play a significant role in 
suppressing excessive inflammation and maintaining immune 
homeostasis (Larsen, 2017). Prevotella is also linked to various 
metabolic processes, suggesting that its alteration in individuals with 
high discrimination may disrupt the host’s health more broadly.

From the microbial gene expression analysis, the differential 
expression of environmental sensing genes in the high discrimination 
group is suggestive of an adaptive response by the microbiome to 
maintain homeostasis in a high-stress environment (Karl et al., 2018; 
Wu and Wu, 2012). The high discrimination group had less antigen 
processing and presentation, indicating a weaker host immune 
response, and less expression of nucleotide excision repair, indicating 
a potentially weakened DNA damage response (Cheong and Nagel, 
2022). The high discrimination group also had significantly higher 
amounts of micrococcal nuclease (K01174). Micrococcal nuclease 

FIGURE 4

Receiver operating characteristic (ROC) curve for discrimination 
status classification. ROC curve for random forest classifier using 
microbiome data, predicted metagenomic data, and transcriptomic 
data. AUC: area under the curve.

https://doi.org/10.3389/fmicb.2024.1457028
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Dong et al. 10.3389/fmicb.2024.1457028

Frontiers in Microbiology 08 frontiersin.org

catalyzes the hydrolysis of nucleic acids (Alexander et al., 1961). An 
increased abundance of micrococcal nucleases in the high 
discrimination group may reflect a greater need for DNA repair or 
nucleic acid turnover. This enhanced nuclease activity is potentially 
indicative of a greater need for DNA repair mechanisms due to 
discriminatory stressors that induce inflammation, thereby increasing 
the likelihood of DNA damage (Nastasi et al., 2020).

Prediction of discrimination status

The multi-omic approach, one that combines metagenomic, 
transcriptomic, and microbiome data, reflected high accuracy in 
identifying the discrimination status of participants in the trained 
cohort. This implies that these changes in the gut microbiome are 
highly linked to discrimination status. While this study has 
many strengths, such as the use of transcriptomic analysis 
and comprehensive microbiome analysis, there are several 
limitations. Because of the sample size, we were unable to split the 
cohort into a training and validation cohort. While the model was 
internally validated using k-fold cross-validation, an external cohort 
will be needed to validate these results. Furthermore, the cross-
sectional nature of this study cannot imply causality. Longitudinal 
studies will be needed to examine the effects of early and late-stage 
discrimination on the effects of microbiome development.

Conclusion and clinical implications

Overall, the findings in this study confirm that there is an 
association between the gut microbiome and its gene expression to 
discrimination status. The trends revealed in this study emphasize the 
need for further research to identify the exact mechanisms underlying 
these relationships. This study provides an initial step toward 
understanding how inequality manifests into a whole-body experience. 
Empowering individuals with knowledge about the potential impact of 
discrimination on their gut microbiome and, more largely, their health 
could aid in promoting preventative stress and health management 
strategies. Individuals coping with the physiological and psychological 
consequences of discrimination could also be supported by actively 
modulating their gut microbiota through dietary and probiotic 
interventions tailored to their individual microbiome profiles. By 
gaining an understanding of how discriminatory experiences shape the 
microbiome, we can develop targeted interventions that aim to mitigate 
health inequities as a result of discriminatory experiences.
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