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Background: Environmental soil contamination is a serious problem for humans 
worldwide, as it causes many diseases.

Methods: The present study focuses on utilizing biosurfactants produced by 
Pseudomonas stutzeri (P. stutzeri) NA3 and Bacillus cereus (B. cereus) EN6, as 
an electrolyte for removing chromium (Cr) from contaminated soil using the 
electrokinetic (EK) process.

Results: As a result, biosurfactants produced by P. stutzeri NA3 and B. cereus 
EN6, being lipopeptides, increase heavy metal mobility in the EK process. The 
Cr removal efficiency of a novel electrolyte (biosurfactants) in the EK process 
was compared with that of NA3 and EN6 biosurfactants. The EK results revealed 
a maximum Cr removal of 75 and 70% by NA3 and EN6, respectively, at the end 
of 7  days.

Discussion: The biosurfactant aids in the breaking down of the heavy metals 
that are present deeper into the soil matrix. From the metagenomics analysis, 
it was identified that biosurfactant changes the microbial community with an 
enhanced ability to remove heavy metals. The phytotoxicity assay confirms 
that NA3 biosurfactant solution showed 95% seed germination and can lower 
hazardous pollutants in the soil.

Conclusion: The application of biosurfactants as a potent electrolyte for the 
remediation of hazardous pollutants is an integrated process. Overall, the results 
of this study suggest that biosurfactants can serve as an economic and efficient 
electrolyte in the EK process to remove Cr from polluted soil.
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Introduction

Environmental soil pollution has become a major issue for 
humans across the world. The effluents from various industries have 
polluted the environment with various types of harmful heavy metals 
(Mulligan et  al., 2001; Wang et  al., 2023). Among various heavy 
metals, Cr is widely used in numerous industries, such as Cr leather 
tanning, ceramics, stainless steel manufacturing, pyrotechnics, 
electronics, and painting and textile industries (Fonseca et al., 2012; 
Abilaji et al., 2023a,b). Tannery wastewater has been found to have 
elevated levels of chemical oxygen demand (COD), total dissolved 
solids (TDSs), biochemical oxygen demand (BOD), total suspended 
solids (TSSs), phosphate, nitrogen, and heavy metals, particularly Cr 
(Muthukkauppan and Parthiban, 2018; Prakash et al., 2021). However, 
these industries fail to implement effective Cr disposal techniques, 
resulting in major contamination of underground water and soil. The 
effects of the world’s expanding Cr pollution were known to cause 
neurological, renal, gastrointestinal, nasal bleeding, ulcers, skin rashes, 
allergies, and even human mortality (Thiele, 1995; Liao et al., 2014; 
Lewis et al., 2004; Mao et al., 2016).

Generally, many technologies have been proposed for the 
remediation of heavy metal-contaminated soils, including soil 
replacement, stabilization, chemical reduction, and acid washing 
(Devi et  al., 2023). However, these methods are expensive and 
considered hazardous to the ecosystem. Therefore, it is necessary to 
develop an effective and economical technique to remediate heavy 
metal-contaminated soil (Taneja et al., 2023). EK remediation is an 
effective technique and a low-cost method for treating heavy metal-
contaminated soil (Gu et al., 2018). According to Ren et al. (2014), 
the cost of the EK process (electrical energy) was approximately 
$83.3 per cubic meter of soil. Al-Hamdan and Reddy (2008) define 
EK remediation as the deployment of a low-intensity direct current 

or low potential gradient to the electrodes implanted in polluted 
soil. Electrolysis, electroosmosis, electromigration, and 
electrophoresis are the primary removal processes of EK remediation 
(Yeung and Gu, 2011; Zhang et al., 2016; Cameselle et al., 2021; 
Sathish et al., 2024). During the EK process, electrolysis produces 
hydrogen gas and hydroxyl ions at the cathode and hydrogen ions 
and oxygen at the anode. The anode-produced hydrogen ions 
interact with the metal cations in the soil to exchange electrons. 
Then, by electromigration, the desorbed metal ions move toward the 
cathode where the heavy metals are precipitated as oxides, 
hydroxides, carbonates, and other compounds by the hydroxyl ions 
that develop at the cathode (Santhosh et al., 2024; Priyadharsan et 
al., 2024). Although the heavy metals are actively precipitated 
causing their removal, increased accumulation of those heavy 
metals decreases the efficacy of cleanup. To accomplish successful 
remediation throughout EK procedures, an EK improvement 
program is frequently necessary.

In the EK approach, chelating agents and inorganic/organic acids 
are frequently used to remove heavy metals from soil (Santhosh et al., 
2024). Apart from the aforementioned removable agents, washing 
chemicals, such as salts and surfactants, were also utilized to reduce 
surface and interfacial tension and to enhance the efficiency of heavy 
metal removal (Guo et al., 2016; Prakash et al., 2021). Biosurfactants 
exhibit higher biodegradability, less toxicity, and are more eco-friendly 
than chemical surfactants. Accordingly, biosurfactants are more 
appropriate for soil remediation. Some microorganisms (bacteria, 
fungi, and yeast) can produce biosurfactants as a result of metabolic 
activities (Kumar et al., 2021; Liepins et al., 2021; Tang et al., 2018). 
They also produce a number of organic acids that allow it to act as a 
chelating agent, increasing its potential as an electrolyte for the EK 
process. Hence, the present investigation is attempted to demonstrate 
the ability of bacterial biosurfactants (Pseudomonas stutzeri NA3 and 
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Bacillus cereus EN6) to serve as a potential electrolyte for the EK 
process in removing Cr from contaminated soil.

Methodology

Sample collection

The heavy metal-contaminated soil sample was collected from 
Ranipet, Vellore, Tamil Nadu, India (latitude 12.9320°N, longitude 
79.3334°E). The total Cr content of the soil was measured according 
to Krishna and Philip (2005) and was found to be 10.2 mg/g. This 
accumulation of Cr beyond the admissible limits happened during the 
operation of the facility, which produced sodium chromate, Cr salts, 
and basic chromium sulfate until 1995, and later on, the factory was 
closed. The samples were collected in a sterile container, transferred 
to the laboratory, and stored at 4°C for further studies. A physio-
chemical characteristic of the soil elemental composition was analyzed 
using the US EPA SW 846 method 3050B. The sample was analyzed 
using inductively coupled plasma-mass spectrometry (ICP-MS) 
following acid digestion for heavy metal analysis.

Bacterial strain and culture conditions

The bacterial strains, P. stutzeri NA3 (KU708859), which is a 
Gram-negative strain, and B. cereus EN6 (KR183877), which is a 
Gram-positive strain, were used in this study. These bacterial cultures 
were sub-cultured on nutrient agar (NA) and incubated for 24 h at 
37°C. The colonies were plated using a streak plate technique until 
individual cultures were obtained, after that those colonies were 
inoculated in nutrient broth (pH 7.0) and then incubated for 24 h at 
37°C in an orbital shaker (150 rpm) (Parthipan et  al., 2017; 
Narenkumar et al., 2018; Tang et al., 2018).

Production and extraction of biosurfactant

Bacterial cultures were centrifuged at 8,000 rpm at 4°C for 10 min. 
Then HCl was added to a supernatant to bring the pH level down to 
2. The acidified supernatant was kept at 4°C overnight for 
precipitation. The precipitate was separated by centrifugation at 
8,000 rpm for 10 min. This white precipitate produced by bacterial 
cultures was chosen and used to identify biosurfactants (Mahesh et al., 
2006). After identification, the biosurfactant produced by the bacteria 
was extracted using a separating funnel. A total of 65 mL of 
chloroform, 15 mL of phenol, and 50 mL of bacterial culture were 
added to the separating funnel and kept at room temperature for 
10 min. After separation, three layers were formed from which the 
bottom layer of biosurfactant was collected and further used for 
screening by different methods (the drop collapse method and the oil 
spreading method).

Characterization of biosurfactant

The extracted biosurfactant was characterized using Fourier 
transform infrared spectroscopy (FTIR) and gas 

chromatographic-mass spectroscopy (GC-MS). FTIR (PerkinElmer, 
Nicolet Nexus-470) was used to qualitatively characterize the 
functional groups of the surfactant that was extracted from P. stutzeri 
NA3 and B. cereus EN6. The biosurfactant (10 mg) was mixed with 
5% HCl-methanol reagent for GC-MS analysis. Using a Shimadzu 
QP2010 Ultra Rtx-5Sil MS (30 m × 0.25 mm ID × 0.25 μm) GC-MS, 
1 μL of the sample was injected after the reaction was quenched with 
the injection of 1 mL of sterile H2O (Parthipan et al., 2017).

Electrokinetic remediation

The EK test setup and cell details are presented in Figure 1. The 
EK apparatus was composed of three chambers: a soil chamber 
measuring 30 × 5 × 5 cm (l × w × h) and two electrode chambers 
measuring 4 × 160 × 200 cm (l × w × h) (Sarankumar et al., 2020). To 
stop soil from seeping into the electrode chamber, two sheets of 
cellulose filter paper were placed between the three chambers. 
According to Marshall and Haverkamp (2012) and Prakash et al., 
2021), a titanium-coated iridium oxide mesh measuring 10 cm in 
width and 10 cm in height was utilized as the anode, while stainless 
steel measuring the same was utilized as the cathode electrode 
(Prakash et  al., 2021). This electrode was found to be  corrosive-
resistant and showed better electrocatalytic activity for chlorine 
estimation. Two electrolytes (biosurfactant solution) were used in the 
EK testing. A total of 600 g of dry soil was soaked in electrolyte 
solutions in the soil chamber for 3 days before each EK test, and the 
anode and cathode chambers were filled with the tested electrolytes. 
For 7 days, EK analysis was carried out at a constant direct current 

FIGURE 1

FTIR spectrum of biosurfactant isolated from P. stutzeri NA3 and B. 
cereus EN6.
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electric potential of 30 V. In order to avoid creating a hydraulic 
gradient in the soil column, fresh electrolyte solutions were introduced 
to the anode chamber every 2 days and the overflowing solution was 
removed from the cathode chamber during an EK procedure 
(Al-Hamdan and Reddy, 2008). From the anode to the cathode side, 
the soil chamber was divided into five slices, numbered EKS1 through 
EKS5. Without using a pH control, all of the trials were carried out at 
ambient temperature. Every day during an EK procedure, a pH 
electrode was inserted directly into the soil to measure the pH of the 
soil in each sliced segment (EKS1 to EKS5). Following the experiment, 
the sliced piece of soil (EKS1 to EKS5) was taken out of the EK 
chamber, and the soil sample was finely ground using a mortar and 
pestle to prepare it for X-ray diffraction (XRD) and Fourier transform 
infrared (FTIR) analysis (Sarankumar et al., 2020). An inductively 
coupled plasma mass spectrometer (ICP-MS) was used to analyze the 
soil sample following acid digestion. Metagenomics was used to 
analyze bacterial community at the end of the experiment.

Phytotoxicity assay

The phytotoxicity analysis was conducted to determine the 
toxicity of the treated/untreated contaminated soil on Vigna radiata 
(SathishKumar et al., 2017). A total of 10 seeds of Vigna radiata were 
planted into the EK-treated/untreated soil. The seed germination 
studies were conducted at room temperature, and the length of the 
root and shoot from the seed was tracked throughout (Sarankumar 
et al., 2020).

Result and discussion

Biosurfactant screening

The P. stutzeri NA3 and B. cereus EN6 were found to be good 
producers of biosurfactants, which were confirmed by their 
biosurfactant production through multiple sub-culturing and 
screening procedures. All biosurfactant screening techniques yielded 
immediate positive findings for these isolates. In particular, drops 
collapsing within 30 s confirmed that a higher amount of the 
biosurfactant was present in the solution. For initial screening, the 
emulsification index was 80 and 78% for P. stutzeri NA3 and B. cereus 
EN6, respectively. Biosurfactants generated by different 
microorganisms are substrate-specific, emulsifying a wide range of 
hydrocarbons at varying speeds (Ilori et al., 2005; Parthipan et al., 
2017). In oil displacement analysis, a clear zone of 2.4 cm and 2.1 cm 
was observed for P. stutzeri NA3 and B. cereus EN6, respectively. These 
findings show that the cell-free culture contains biosurfactants.

Biosurfactant characterization

FTIR analysis was performed to determine the presence of a 
functional group in the biosurfactant (Figure 1). The distinctive bands 
at 3,309 cm−1 correspond to −OH bonds (Aparna et al., 2012). The 
peaks observed at 2,359 cm−1, 1,631 cm−1, and 1,436 cm−1 correspond 
to the P–H2 stretch of phosphines in phosphoserine and ester carbonyl 
groups (–C=O bond in COOH) (Bayoumi et al., 2010; Parthipan et al., 

FIGURE 2 (Continued)
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2017). The absorption peaks at 1,057 cm−1 and 534 cm−1 show the 
presence of the O–H (carboxylic acids) and C–I (carbon-iodine) 
bonds, respectively. Based on this observation, P. stutzeri NA3 and 
B. cereus EN6 were produced as biosurfactants, which is also 
supported by the findings of Rodrigues et al. (2006).

GC-MS analysis

The finding from the gas chromatography study revealed (Figure 2) 
that the biosurfactant extracted from both bacterial strains contains 
hexadecanoic acid and methyl ester (a fatty acid). According to Kiran 
et al. (2010) and Hien et al. (2013), P. stutzeri NA3 and B. cereus EN6 
included fatty acids, such as hexadecanoic acid, pentanoic acid, and 
methyl ester with retention times (RTs) of 17.77, 19.37, and 19.50 and 

MWs of 256, 254, and 184, respectively. According to Deshmukh et al. 
(2012), Bacillus developed a biosurfactant that was essentially 
lipopeptide in nature. Tsui et al. (2022) state that many organic acids 
and metabolic products are produced by microorganisms; these 
chemicals stay in the solution (electrolyte) and contribute to its high 
conductivity. Because of this, microbes may effectively reduce the pH 
of the anode and create organic acids, which can combine with heavy 
metals to enhance their mobility.

Electrokinetic remediation

EK experiment for Cr (VI) remediation was conducted in the 
customized cell setup as mentioned above. The ICP-MS technique was 
used to evaluate the residual amounts of total Cr by EK. The level was 

FIGURE 2

GC-MS spectrum of the biosurfactant isolated from P. stutzeri NA3 and B. cereus EN6.
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found to decrease from 44,615 mg/kg to 13,523 mg/kg (70%) and 
11,390 mg/kg (75%) for P. stutzeri NA3 and B. cereus EN6, respectively. 
As previously reported, 63.34% of Cr was removed from the soil 
sections by using distilled water (Yan et al., 2023). The obtained results 
showed that 75% was reduced by electrolytes (NA3 biosurfactant) in 
the approach. The results revealed that Cr removal was enhanced using 
biosurfactant as an electrolyte, indicating that the biosurfactant binds 
to Cr (chelation) to form micelles, which enhances the electromigration 
process to remove this heavy metal from the soil. It is important to note 
that synthetic surfactants may have irreversible effects on soil toward 
the loss of essential nutrients and organic matter. However, this 
biosurfactant can overcome this disadvantage and it also has an added 
advantage of using eco-friendly, biodegradable material for the 
removal of heavy metals. Researchers have identified several 
microorganisms as potential biosurfactants that operate extremely well 
in removing heavy metals (Ayangbenro and Babalola, 2020; Lopes 
et  al., 2021; Ravindran et  al., 2020). Earlier studies reported that 
biosurfactants contain both carboxyl and hydroxyl groups, which were 
able to form stable complexes with heavy metal ions, complexes such 
as these facilitate heavy metal mobilization and migration.

Figure 3 shows the XRD analysis of the untreated (control) and 
treated (P. stutzeri NA3 and B. cereus EN6) soil samples. Cr (VI) in 
the form of CrOCl, KCr3O8, and C4H16Cr2CuN4O7 was found in the 
untreated sample (initial) according to the XRD pattern. In contrast, 
the EK-treated soil samples (P. stutzeri NA3) show a decreased 
intensity of peaks and the presence of some other additional peaks 
when compared to the control and B. cereus EN6 due to ions that 
may be extracted with acid and dissolved soil components (Xue 
et al., 2017). From this analysis, more contaminants were found to 
be dissolved, and electro-kinetic remediation was found to be more 
suitable for acid- and water-soluble ions.

The FTIR spectrum of the before and after EK analysis (control, 
P. stutzeri NA3, and B. cereus EN6) of the soil is shown in Figure 4. 
In treated soil, the peak at 2,982 cm−1 corresponds to the presence of 
the carboxylic (C–O) group, which was due to alcohol groups being 
transformed into carboxylic groups during the reduction of Cr (VI) 
to Cr (III) (Bandara et al., 2020; Santhosh et al., 2024; Abilaji et al., 
2023a,b). The peak at 1,986 cm−1 may be  related to the soil’s clay 
mineral composition. The C–F stretch of the alkyl halide has a peak 
at 1,506 cm−1. A metal oxide hydroxide is indicated by narrow peaks 
at 964 and 599 cm−1 (Anandaraj et  al., 2017). Conversely, the 
untreated control soil’s absorption peaks demonstrated a significant 
variation in peak intensities when compared to the treated soil, 
indicating that the Cr remediation process facilitated by the P. stutzeri 
NA3 and B. cereus EN6 bacterial surfactants was successful. 
Functional groups of lipopeptide biosurfactant bind to the Cr heavy 
metal ion through chelation, complexation, and electrostatic 
adsorption mechanisms. First, the heavy metal gets detached from 
the contaminated soil, which then associates with biosurfactants to 
form micelles (Peng et al., 2009). As a result of their low toxicity, 
biodegradable nature, and low environmental footprint, 
biosurfactants are gaining a great deal of attention worldwide.

Bacterial diversity analysis

Figure 5 illustrates the relative abundance of different bacterial 
phyla in two samples, labeled as initial and sample 1 (Biosurfactant 
EK treatment). The plot indicates a comparison of microbial 
community composition before and after EK treatment. The 
initial sample shows the most abundant phylum as Proteobacteria, 

FIGURE 4

FTIR patterns of the soil before and after the EK experiment.

FIGURE 3

X-ray diffraction patterns of the soil before and after the EK 
experiment *CrOCl, #KCr3O8, and $C4H16Cr2CuN4O7.
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followed by Actinobacteriota, Patescibacteria, and others. 
Firmicutes and other phyla (Bacteroidota, Nanoarchaeota, 
Chloroflexi, etc.) were found to be present in smaller proportions. 
Sample 1 shows there was a noticeable shift in the microbial 
community composition. Proteobacteria and Firmicutes show 
significant changes, with Firmicutes becoming much more 
dominant in sample 1. Other phyla, such as Actinobacteriota and 
Patescibacteria, exhibit variations in their relative abundances. 
Bio-electrokinetic remediation is an emerging technology that 
combines bioremediation and EKs to enhance the removal of 
heavy metals, such as Cr, from contaminated soils. This approach 
leverages microbial activity and the application of electric fields 
to mobilize and degrade contaminants. The observed changes in 

microbial community structure between the initial and BEK 
samples were crucial for understanding the effectiveness of 
bio-electrokinetic remediation. Specific bacterial phyla, such as 
Proteobacteria and Firmicutes, were known to play vital roles in 
metal reduction and detoxification processes. Studies have shown 
that certain strains of Proteobacteria can reduce Cr(VI) to the less 
toxic Cr(III), facilitating its removal from the soil (Zhu et  al., 
2017). The application of an electric field can increase the mobility 
of Cr ions in the soil, making them more accessible to microbial 
degradation. This process can also enhance the transport of 
nutrients and electron donors to the microbial populations, 
boosting their activity and efficiency (Acar and Alshawabkeh, 
1993, Arulpraksh et al., 2021). The integration of bioremediation 

FIGURE 5

Relative abundance of bacterial diversity at phylum, class, order, family, genus, and species level in the initial and treated (EK). (A) Phylum. (B) Family. 
(C) Genus. (D) Species. (E) Order. (F) Class.
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with EK techniques can result in synergistic effects, leading to 
improved remediation outcomes compared to traditional methods.

In the class level of bacterial diversity, the initial sample was found 
to have the most abundant class as Gammaproteobacteria, followed by 
Alphaproteobacteria, Bacilli, and others. Clostridia, Saccharimonadia, 
and other classes (Acidimicrobiia, Actinobacteria, etc.) were present in 
smaller proportions. In sample 1, there was a noticeable shift in the 
microbial community composition. Alphaproteobacteria and Bacilli 
show significant changes, with Bacilli becoming more dominant in 
sample 1. Other classes, such as Clostridia and Saccharimonadia, 
exhibit variations in their relative abundances.

Whereas in the order level, in the initial sample, the most abundant 
order was “Others,” followed by Acidithiobacillales, Bacillales, and 
Pseudomonadales. Other orders, such as Saccharimonadales, 
Balneolales, and others, were present in smaller proportions. In sample 
1, there was a noticeable shift in the microbial community 
composition. Pseudomonadales and Bacillales show significant 
changes, with Pseudomonadales becoming much more dominant in 
sample 1. Other orders, such as Acidithiobacillales and 
Saccharimonadales, exhibit variations in their relative abundances. The 
observed changes in microbial community structure between the 
initial and EK samples are crucial for understanding the effects of 
specific treatments or environmental changes. This is particularly 
relevant in the context of bioremediation, where microbial 
communities play a vital role in degrading and detoxifying 
contaminants. The shift in microbial community composition suggests 
that the treatment or condition applied to sample 1 has influenced the 
relative abundance of different bacterial orders. Pseudomonadales, 
known for their versatile metabolic capabilities and resistance to heavy 
metals, have become more dominant in sample 1. This indicates their 
potential role in bioremediation processes (Mrozik et al., 2010). The 
decrease in Acidithiobacillales, which were typically associated with 
acidic environments and sulfur metabolism, might indicate a change 
in environmental conditions or the successful removal of specific 
contaminants that these bacteria thrive on Johnson and Hallberg 
(2009). Pseudomonadales: Pseudomonas species were well-known for 
their ability to degrade a wide range of organic pollutants and heavy 
metals. Their increased abundance in sample 1 suggests their active 
role in the bioremediation process. Recent studies have highlighted 
their effectiveness in Cr reduction and detoxification (Raja et  al., 
2020). Bacillales: The members of this order, including Bacillus species, 
were also important in bioremediation due to their ability to produce 
spores, which make them resilient in harsh conditions. They can also 
produce enzymes that degrade pollutants (Müller et al., 2012).

At the genus level, the results showed that in the initial sample, the 
most abundant group is “Others,” followed by TX1A-55, Bacillus, and 
Halomonas. Other genera, such as Alcanivorax, Aliidiomarina, and 
others, were present in smaller proportions. In sample 1, there was a 
noticeable shift in the microbial community composition. Bacillus and 
Halomonas show significant changes, with Bacillus becoming more 
dominant in sample 1. Other genera, such as TX1A-55 and 
Alcanivorax, exhibited variations in their relative abundances. 
Halomonas bacteria were known for their ability to survive in high-
salinity environments and their potential in bioremediation of saline 
and heavy metal-contaminated sites (Nieto et al., 1993).

At the species level, the most abundant group was Others, indicating 
a diverse set of species that were not individually listed. Specific species, 
such as Pseudomonas sp. S-6-2, Paenibacillus sp. and Polygonibacillus 

indicireducens, were present in smaller proportions. In sample 1, there 
was a noticeable shift in the microbial community composition. The 
diversity seems to decrease, with specific species, such as Polygonibacillus 
indicireducens, Pseudomonas sp. S-6-2, and Lysinibacillus sp. YS11, 
becoming more prominent. Lysinibacillus spp. known for their ability to 
produce spores and survive in harsh environments. Lysinibacillus 
species have shown potential in heavy metal bioremediation (Raja et al., 
2020). They can reduce toxic metals and facilitate their removal from 
contaminated environments. Paenibacillus spp. are known for their 
nitrogen-fixing abilities and production of antimicrobial compounds. 
They also play a crucial role in the degradation of organic pollutants and 
bioremediation (Grady et al., 2016).

Phytotoxicity assay

The phytotoxicity of untreated and treated plants was evaluated 
by Vigna radiata. The untreated soil showed no germination, 
whereas the P. stutzeri NA3 biosurfactant solution showed 95% 
germination, whereas 70% of the B. cereus EN6 solution did the 
same. This was confirmed by measuring the length of the shoot and 
root in the appropriate soil. It is confirmed that the treated P. stutzeri 
NA3 biosurfactant solution grows the seeds more effectively than 
the B. cereus EN6 and untreated soil because the treated soil was less 
hazardous. This method serves as a potential electrolyte for the EK 
process for the remediation of Cr from contaminated soil.

Conclusion

Biosurfactant was determined to be a novel electrolyte for removing 
Cr from soil through an EK process. The study’s findings showed that 
at the end (7 days) of the EK process, P. stutzeri NA3 biosurfactant 
exhibited significantly higher Cr removal efficiency (75%) than B. cereus 
EN6 (70%). From the phytotoxicity assay, P. stutzeri NA3 biosurfactant 
solution showed 95% seed germination. Hence, it can be  said that 
modifications to the microbial community structure result in an 
increase in the efficacy of heavy metal removal and that NA3 
biosurfactant may be  used as an electrolyte for EK applications. 
However, further investigation is required to determine whether 
biosurfactants can be used to remove other emerging pollutants.
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