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Feed efficiency and growth performance are economically important traits in 
pigs. Precious studies have been revealed that both genetics and gut microbes 
could influence host phenotypes, however, the mechanisms by which they 
affect pig growth and feed efficiency remain poorly understood. In this study, 
361 crossbred Duroc × (Landrace × Yorkshire) commercial pigs were genotyped 
using GeneSeek Porcine SNP50K BeadChip, and the microbiotas from fecal 
samples were acquired using microbial 16S rRNA gene sequencing technology 
to investigate the impact of host genetics and gut microorganisms on growth and 
feed efficiency. The results showed that the heritability and enterobacterial force 
ranged from 0.27 to 0.46 and 0 to 0.03, respectively. Genome-wide association 
studies (GWAS) identified seven significant SNPs to be associated with growth and 
feed efficiency, and several genes, including AIF1L, ASS1, and QRFP were highlighted 
as candidates for the analyzed traits. Additionally, microbiome-genome-wide 
association studies GWAS revealed potential links between CCAR2, EGR3, GSTM3, 
and GPR61 genes and the abundance of microorganisms, such as Trueperella, 
Victivallis, and Erysipelatoclostridium. In addition, six microbial genera linked to 
growth and feed efficiency were identified as follows Lachnospiraceae_UCG-
005, Prevotellaceae_UCG-003, Prevotellaceae_NK3B31_group, Prevotella_1, 
Prevotella_9, and Veillonella. Our findings provide novel insights into the factors 
influencing host phenotypic complexity and identify potential microbial targets 
for enhancing pig feed efficiency through selective breeding. This could aid in the 
development of strategies to manipulate the gut microbiota to optimize growth 
rates and feed efficiency in pig breeding.
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1 Introduction

With the development of intensive pig farming, feed costs have become the main 
expense in raising livestock (Si et al., 2020). This transformation has made improving the 
growth rate and feed efficiency of pigs the core focus of breeding work. The feed conversion 
ratio (FCR) and residual feed intake (RFI) are two key traits used to assess feed efficiency 
(Davoudi et al., 2022). Significant genetic correlations have been demonstrated between 
these traits and average daily gain (ADG) as well as average daily feed intake (ADFI) (Do 
et al., 2013; Herrera-Cáceres et al., 2020), establishing them as critical indicators of feeding 
efficacy. Moreover, GWAS has been shown to be an effective approach for identifying loci 
associated with feed efficiency and related quantitative trait loci (QTL), along with candidate 
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genes in swine (Do et al., 2014; Horodyska et al., 2017; Ding et al., 
2018). Numerous single-nucleotide polymorphisms (SNPs) have 
been identified on SSC1, SSC4, SSC6, SSC7, and SSCX as being 
significantly correlated with FCR. Notably, the marker 
WU_10.2_7_18377044 on SSC7 is estimated to account for 
approximately 2.37% of the phenotypic variance in RFI; additionally, 
DRGA0001676 on SSC 1 has been shown to explain 3.22 and 5.46% 
of the phenotypic variance in FCR and RFI, respectively (Ding et al., 
2018). These findings are expected to facilitate advancements in 
genomic selection for both feed efficiency and its associated traits.

As scientific research deepens, the function of intestinal flora has 
attracted increasing attention. Tang et al. (2020) through 16S rRNA 
gene sequencing of microbial samples from different intestinal 
segments, found that the microbiota in the cecum and colon 
significantly affects body weight (BW) and ADG. Hu et al. (2018) 
conducted a study where they fed fecal microbiota suspensions from 
healthy adult Jinhua pigs to Duroc × (Landrace × Yorkshire) (DLY) 
piglets. The results indicated that piglets receiving fecal microbiota 
transplantation (FMT) showed increased ADG and a significantly 
lower incidence of diarrhea. This discovery underscores that 
exogenous FMT can modulate gut microbiota composition and 
positively influence growth performance, gut barrier function, and 
innate immunity in animals. It further confirms the critical role of gut 
microbiota in animal growth and health.

The gut microbiota of pigs is considered a crucial “organ” that plays 
a central role in nutrient processing and energy intake (Fouhse et al., 
2016; Ramayo-Caldas et al., 2016; Xiao et al., 2016). Quan et al. (2018) 
research indicates that pigs with high FCR have gut microbiota in the 
cecum and colon that may process dietary polysaccharides and 
proteins more efficiently than those with low FCR. These microbes 
produce short-chain fatty acids (SCFAs) and indole compounds during 
fermentation, which help improve feed efficiency and promote gut 
health in pigs. Several studies have shown that certain bacteria 
associated with higher feed efficiency (FE) can ferment various 
substrates, particularly those related to butyrate production. These 
bacteria primarily include Ruminococcaceae in the cecum and colon, 
as well as Butyricicoccus in the cecum and colon (Holman et al., 2017; 
Tan et al., 2017; Quan et al., 2018; Quan et al., 2020; Vigors et al., 2020). 
However, the relationship between host genetics and gut microbiota in 
relation to growth and feed efficiency remains poorly understood. A 
few recent studies have suggested that a significant portion of the 
variability in the gut microbial community is genetically controlled and 
has genetic links to feed efficiency (Aliakbari et al., 2021). Similarly, 
several studies in chickens have identified heritable microbiota 
associated with feed efficiency (Wen et al., 2021; Zhang et al., 2024). 
Nevertheless, it remains largely unclear whether host genetics influence 
feed efficiency by promoting a stable gut microbial community. 
Evidence from GWAS has identified several host genetic variations that 
affect gut microbiota. For instance, 50 single-nucleotide polymorphisms 
were found to be associated with two microbial taxa in chickens. Li 
et al. (2019) reported that 19 SNPs were associated with 14 rumen 
microbial taxa in cattle. However, potential host genotypes related to 
gut microbiota in pigs have not been well characterized. Recently, 
Wang Y. et al. (2022) reported the effect of host genetics and the gut 
microbiome on pig fat deposition traits, suggesting the possibility that 
host genetic variation may shape gut microbial composition in pigs.

The gut microbiota of pigs, often referred to as the “second genome”, 
plays a crucial role in the host nutrient digestion, energy intake, and 

disease resistance. Despite previous research (Bergamaschi et al., 2020a; 
Quan et al., 2020; Tang et al., 2020; Aliakbari et al., 2022; Déru et al., 
2022; Wang Y. et al., 2022), the mechanisms by which host genetics 
influence gut microbiota and interact with it to affect pig production and 
feed efficiency traits remain unclear. Understanding the relationship 
between host genetics and gut microbiota in production and feed 
utilization is essential for developing effective strategies to enhance 
production and improve feed efficiency. We used the GeneSeek Porcine 
SNP50K BeadChip to genotype 361 DLY pigs and obtained their 
microbiotas from fecal samples using 16S rRNA gene sequencing 
technology. Our aim was to screen for differential bacterial genera 
affecting feed efficiency and growth performance and to explore the 
mutual influence of host genotype and gut microbiota on host phenotype. 
This could help devise strategies to manipulate the gut microbiota, 
aiming to enhance growth rates and feed efficiency in pig breeding.

2 Materials and methods

2.1 Animals, phenotypes, and sample 
collection

Three hundred and sixty one DLY commercial pigs (187 males and 
174 females) were purchased from a pig farm in Guangxi. Male DLY 
piglets were castrated on the 6th to 7th day after birth. All pigs were 
raised under the same management conditions with free access to water 
and feed. An electronic feeding station was utilized to collect raw data, 
including pig weight and feed intake per feeding. In this study, electronic 
feeding stations were used to record the raw data of pigs’ body weight 
and feed intake from 30 to 100 kg. Pigs were slaughtered in the same 
commercial abattoir at 113 ± 5 days of age. Rectal contents were collected 
from pigs prior to slaughter. All samples were immediately frozen in 
liquid nitrogen and stored at −80°C until further processing.

ADFI, ADG, and FCR (Casey et al., 2005; Jiao et al., 2014) were 
calculated by quality-controlling the raw data on body weight, feed 
intake, and time. RFI was calculated according to the method 
described by Do et  al. (2014), using onset body weight (OnBW), 
ADG, and ADFI. The normality of all traits was assessed with the 
Shapiro–Wilk test in R (version 4.2.1). Final quality control of all 
phenotypic data was performed by excluding values beyond the 
mean ± 3 standard deviations.

2.2 Genotyping and quality control

DNA was extracted from ear tissue using the Genome Extraction 
Kit (Wuhan NanoMagBio Technology Co., Ltd., China). The quality 
of the DNA was assessed by measuring the optical absorption ratios 
(A260/280 and A260/230) to ensure concentrations ≥40 ng/μl. 
Genotyping of the genomic DNA was performed using the GeneSeek 
Porcine 50 K SNP Beadchip (GeneSeek, Lansing, MI, United States). 
Genotype imputation for missing data points was conducted using 
Beagle 5.2 (Browning et al., 2021). Quality control of the SNP data, 
both before and after imputation, was performed using PLINK 
software (Chang et al., 2015). The quality control parameters were as 
follows: SNP call rate > 0.95, minor allele frequency > 0.01, and 
individual genotype call rate > 0.95. After quality control, 43,580 
SNPs per pig were retained for further analysis.
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2.3 16S rRNA gene sequencing and analysis

Genomic DNA from fecal microbiota was extracted using the 
cetyltrimethylammonium bromide (CTAB) method. The V4-V5 region 
of the 16S rRNA gene was amplified using barcoded primers 
515F/907R. All PCR reactions were performed with the Phusion® High-
Fidelity PCR Master Mix with GC Buffer from New England Biolabs. The 
forward primer used was 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) 
and the reverse primer was 907R (5′-CCGTCAATTCCTTTGAGTTT-3′). 
To ensure amplification efficiency and accuracy, we used high-efficiency, 
high-fidelity enzymes for the PCR. The PCR was carried out on a 
Bio-Rad T100 gradient PCR machine. The PCR products were checked 
by electrophoresis on a 2% agarose gel. Qualifying PCR products were 
purified using the GeneJET Gel Extraction Kit (Thermo Scientific, 
United States). Library preparation was performed using the TruSeq 
DNA PCR-Free Library Preparation Kit (Illumina). The constructed 
libraries were quantified using Qubit and assessed for quality. Sequencing 
was carried out on the Illumina NovaSeq 6000 platform, with amplicon 
libraries sequenced on the Illumina MiSeq 2 × 250 platform, provided by 
Novogene (Beijing, China). Each sample generated approximately 95,354 
clean reads. Bioinformatics analysis of the amplicon sequencing was 
conducted using EasyAmplicon v1.0 (Liu et  al., 2021). Paired-end 
sequence data were merged, quality filtered, and dereplicated using 
VSEARCH v2.15 (Rognes et al., 2016) subcommands-fastq_mergepairs, 
−fastx_filter, and-derep_fulllength, respectively. Non-redundant 
sequences were then denoised into Operational Taxonomic Units 
(OTUs) using USEARCH v10.0 (Edgar, 2010). Chimeras were removed 
using VSEARCH-uchime_ref against the SLIVA (Quast et al., 2013) 
database. A feature table was created with VSEARCH-usearch_global, 
and species annotation was performed using the Greengenes (DeSantis 
et al., 2006) database gg_16s_13.5 sequences with the USEARCH-sintax 
algorithm. Diversity analysis was conducted using the vegan v2.4–6 
package, and visualizations were generated with ggplot2 v3.5.0. Linear 
discriminate analysis effect size (LEfSe) analysis was performed through 
the online platform ImageGP (Chen et al., 2022), the LEfSe’s threshold 
on the logarithmic score of LDA was set to 2.0, the remaining settings 
were default parameters. The functional profiles of microbial 
communities were predicted using PICRUSt (Langille et al., 2013) with 
the Greengenes database as the reference.

2.4 Construction of host genetic 
relationship matrix and microbial 
relationship matrix

Through quality control, a total of 43,580 SNPs were selected for 
principal component analysis (PCA) and the construction of the 
genetic relationship matrix (GRM) using GCTA (ver 1.91.1) (Yang 
et al., 2011):
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Here, ijg  represents the estimated genetic relationship between 
DLY individuals i and j; ivx  and jvx  are the counts of the reference 
allele for individuals i and j respectively; vp  is the frequency of the 
reference allele in the population; and N is the number of variant sites.

We construct the microbial relationship matrix (MRM) based on 
the relative abundance of OTU using R script, the formula is 
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(Camarinha-Silva et al., 2017). Each element of matrix P is the relative 
abundance of OTUj in animal i (plus 1). Matrix P is used to compute 
matrix X, which is calculated as follows:
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Where Pj is the j column vector of the matrix P.

2.5 Interaction between host genetics and 
gut microbiota

The following multiple random effects model was established to 
estimate variance components of the target traits using HIBLUP 
software (Wang Y. et al., 2022; Yin et al., 2023).

 1 2 31 g m ay Z Z Z eµ= + + + +

y is the vector of phenotypes (ADG, ADFI, FCR, RFI); µ  is the 
overall mean; ( )2~ 0, gg N Gσ  is the vector of host genetic random 

effect, where G and 2
gσ  are the GRM and host genetic variance;

 

( )2~ 0, mm N Mσ  is the vector of gut microbiome random effect, where 

M and 2
mσ are the MRM and gut microbiome variance; ( )2~ 0, aa N Aσ  

is the vector of interactions between host genetics and gut microbiome 
random effect, where A and 2

aσ are the GRM MRM×  and variance of 
interactions between host genetics and gut microbiome; e is the 
residual effect; 1Z , 2Z , 3Z  are, respectively, the corresponding incidence 
matrices of g, m, and a.

2.6 Estimating the effects of host genetics 
and gut microbiota on growth and feed 
efficiency

Since the D (LY) commercial pigs used in this study lack pedigree 
information, the heritability of the target traits was estimated based 
on SNPs using the following model:

 [ ]y Kc g e A= + +

y is the vector of phenotypes (ADG, ADFI, FCR, RFI); c is the 
vector of fixed covariates, including the effects of sex (2 level), pen (2 
level), initial body weight (81 level) (Xiang et al., 2024), and the first 
three principal components of host genetics; K is the matrix 
corresponding to c; g is the vector of total SNP effects, which follows 
a ∼ N (0, 2

AGσ ), where G is the host genetic relationship matrix (GRM) 

and 
2
AGσ  is the polygenic genetic variance; e is the residual effect. 

Heritability is defined as 
2

2
2
g

p
h
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= , where 

2
pσ  is the phenotypic variance.
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Additionally, we included microorganisms with a detection rate greater 
than 60% in the sample as a quantitative trait, while those present in 
30–60% of the samples were treated as binary traits. Microorganisms 
detected in less than 30% of the samples were excluded from the 
analysis (Zierer et al., 2018).

Microbiability, the proportion of phenotypic variance explained 

by gut microbiota variance, is defined as: 
2

2
2
m

p
m σ

σ
= , where 

2
mσ  is the

 

microbial variance and 2
pσ  is the phenotypic variance. Microbiability 

( 2m ) was estimated using the following model in GCTA (ver 1.91.1):

 [ ]y Kc m e B= + +

In which y, K, c, and e are defined the same as in the previous model 
[A]. m represents the gut microbiota effect, which follows a multivariate 

normal distribution ( )2~ N 0,M mm σ  is the microbial relationship 

matrix (MRM) calculated using the aforementioned formula. We used 
the MRM in place of the GRM to estimate 2m  with GCTA.

Microbial genera with significant heritability were also included 
in the scope of investigation. Thus, we  further performed GWAS 
analysis to detect significant host genetic markers affecting the 
phenotypes and microbial genera using the following linear mixed 
model in GEMMA (ver 0.98.1) (Zhou and Stephens, 2012):

 [ ]y Q g e Cα β= + Χ + +

In which y is the vector of individual phenotypes (ADG, ADFI, 
FCR, RFI, the abundance or presence/absence of heritable genera); Q 
is the matrix of covariates, including sex (2 level), pen (2 level), initial 
body weight (81 level), and the first three principal components of 
host genetics; α is the vector of covariate effects, including the 
intercept; X is the vector of allele counts (0, 1, 2); β is the SNP effect. g 
is the vector of polygenic effects following a normal distribution N (0, 

2G gσ ), where G is the genetic relationship matrix calculated from 
genome-wide marker information and 2

gσ  is the polygenic additive 
variance. e is the residual effect. To reduce the number of false 
negatives, the FDR method was used to determine the significance 
threshold, defined as ( )0.01 /P n i= × , where n represents the number 
of SNPs in the GEMMA-based GWAS results with p < 0.01, and i is 
the total number of eligible SNPs.

2.7 Identification of specific microbiota 
associated with growth and feed efficiency

Due to the low information content of taxa with low detection 
rates for association analysis, we only retained taxa that appeared in 
more than 30% of the specific sample types. The association analysis 
between qualifying taxa and growth and feed efficiency traits was 
conducted using a two-part model, as described by Fu et al. (2015) 
with a custom R script. This model considers both binary traits 
(presence and absence) and quantitative traits, as detailed below:
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In this model, y represents the phenotypic value, 1β  denotes the 
estimated effect of the binary model, b is the binary trait, and e is the 
residual. For quantitative analysis, the model 2qy eβ= +  was used to 
test the association between microbial abundance and phenotype. 
p-values were obtained from the two-part model association analysis. 
If the p-value from the binary model is less than 0.05, the presence or 
absence of the microorganism is considered to influence the 
phenotype. If the p-value from the quantitative model is less than 0.05, 
the phenotype is considered to be  associated with the relative 
abundance of the microorganism. If both models have p-values less 
than 0.05, the phenotype is considered to be associated with both the 
presence/absence and the relative abundance of the microorganism.

To identify specific microbes that significantly impact the 
phenotypes under study, we performed an analysis of variance (ANOVA) 
to test for phenotypic differences between pigs with the highest (N = 36) 
and lowest (N = 36) abundances of a given microbe. Additionally, a 
Wilcoxon rank-sum test was conducted to determine the relative 
abundance differences of each taxon between pigs with the highest 
(N = 36) and lowest (N = 36) phenotypic rankings. A microbe was 
considered significant if the adjusted p-values from the two-part model 
association analysis, ANOVA, and Wilcoxon rank-sum test were all less 
than 0.05. Furthermore, we calculated the Pearson correlation between 
phenotypes and microbial genera using the psych package in R (|r| > 0.1). 
A correlation was deemed significant if the p-value was less than 0.05.

3 Results

3.1 Descriptive statistics of host 
phenotypes with genotypic sequencing 
results

Table 1 presents the descriptive statistics for host feed efficiency-
related traits. In all the phenotypes studied, the coefficient of variation 
was below 15%. The correlation between ADG and RFI was negligible, 
but FCR and RFI showed a strong phenotypic correlation (r = 0.79, 
p < 0.001) (Supplementary Figure S1).

3.2 Fecal microbial sequencing results and 
correlation analysis

The analysis of fecal microbiota data revealed a total of 36,320,886 
sequences, with an average of 96,087 sequences per sample. These 
sequences were clustered into 3,568 OTUs at a 97% similarity 
threshold, encompassing 50 phyla, 99 classes, 194 orders, 326 families, 
and 699 genera.

TABLE 1 Summary of feed efficiency traits in the resource population.

Trait N Mean SD CV (%) Max Min

RFI 361 0.36 0.16 – 0.89 −0.09

FCR 361 2.48 0.22 9.02 3.71 1.88

ADFI (Kg/d) 361 2.34 0.24 10.32 3.10 1.63

ADG (Kg) 361 0.95 0.10 10.93 1.38 0.50

N is the number of non-missing values; SD is standard deviation; CV is variation coefficient; 
RFI is the residual feed intake; FCR is the feed conversion ratio; ADFI is the average daily 
feed intake; ADG is the average daily gain.
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In this study, we ranked the phenotypic values of RFI and selected 
the top and bottom 20% to form high (HRFI) and low (LRFI) groups 
for differential analysis from a gut microbiota perspective. The species 
richness in both HRFI and LRFI groups plateaued at around 700, 
indicating adequate sample detection rates (Figure 1A). PCoA analysis 
using the Bray-Curtis distance method showed no significant difference 
in beta diversity between the high and low RFI groups (p > 0.05, 
Figure 1B). The stacked bar chart of the relative abundance of dominant 
genera at the genus level showed that the top seven dominant genera 
were Prevotella_9, Campylobacter, Methylobacterium, Bacteroides, 
Porphyromonas, Fusobacterium, and Prevotellaceae_NK3B31_group 
(Figure 1C). LEfSe analysis of microbial differences between phenotypic 
groups revealed that at the genus level (Figures 1D,E), Bacteroides was 
mainly enriched in the HRFI, while Clostridium, Lactobacillus, 
Methylobacterium, Methanobacterium, and Alcaligenes were enriched 
in the LRFI, with Bacteroides having the highest score.

3.3 Influence of host genotype and gut 
microbial interactions on traits related to 
growth performance and feed efficiency in 
pigs

Table 2 shows that ADG is independently influenced by host 
genetic effects and microbiome effects, while the other three traits are 

influenced by host genetic effects, microbiome effects, and their 
interactions. The independent effects of host genetics and gut 
microbiota on ADG were 0.37 and 0.12, respectively. Previous studies 
have shown that, considering other environmental factors, host 
genetic effects are higher than gut microbiota effects, which is 
consistent with our findings. ADFI and FCR exhibited genetic effects 
of 0.31 and 0.19, microbiome effects of 0.01 and 0.02, and host 
genetic and gut microbiota interaction effects of 0.26 and 0.15, 
respectively. Notably, the interaction effect for RFI was 0.5, the 
highest among all traits, indicating that the interaction between host 
genotype and gut microbiome may play a crucial role in improving 
feed efficiency.

3.4 Heritability and enterobacterial power 
of traits related to feed efficiency

In this study, the SNP-based heritability estimates for feed 
efficiency traits ranged from 0.27 to 0.46, indicating medium to 
high heritability levels (Supplementary Table S6). This suggests 
that host genetics play a significant role in regulating feed 
efficiency. Consequently, we conducted GWAS for these traits. The 
phenotypic data conformed to a normal distribution, and the 
corresponding Manhattan and QQ diagrams are shown in Figure 2. 
We identified 48 significant SNPs, seven of which were associated 

FIGURE 1

The microbiota composition between the high RFI and low RFI groups. (A) The α-diversity index richness compared between the two groups. 
(B) The Principal Coordinates Analysis at the OTU level. (C) Composition of fecal microbiota in the two groups. (D,E) LEfSe analysis results for high 
and low RFI groups.
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with growth performance and feed efficiency 
(Supplementary Table S1). The SNP MARC0079871 was a 
significant locus for ADG, located near the genes Cyclin Y (CCNY) 
and Cullin 2 (CUL2), with pigs of the TT genotype having 
significantly higher average daily gain compared to the other two 
genotypes (Figures 2A,E). Regarding ADFI, the SNP ALGA0000120 
was located near the genes C-C Motif Chemokine Receptor 6 
(CCR6) and Ribosomal Protein S6 Kinase A2 (RPS6KA2). The 
variation at this locus was likely due to base inversion (A/C), with 
pigs of the predominant AA genotype showing higher average daily 
feed intake than the other two genotypes (Figures 2B,F). In RFI, 
the SNP H3GA0055161 was found near the genes Allograft 
Inflammatory Factor 1 Like (AIF1L), Argininosuccinate Synthase 
1 (ASS1), and Pyroglutamylated RFamide Peptide (QRFP). Pigs 
with the TT genotype exhibited significantly higher feed efficiency 
compared to the other genotypes, with average RFIs of 0.62, 0.69, 
and 0.74 for TT, GT, and GG genotypes, respectively 
(Figures 2C,G). For FCR, four SNPs were found to be associated 
with this trait. ASGA0027069 and ASGA0070978 were located near 
the genes Acyl-CoA Synthetase Short Chain Family Member 3 
(ACSS3), Adaptor Related Protein Complex 1 Subunit Sigma 3 
(AP1S3), Cullin 3 (CUL3), and Mitochondrial Ribosomal Protein 
L44 (MRPL44). ASGA0105274 was located near the genes Glycine-
N-Acyltransferase Like 2 (GLYATL2) and Lactate Dehydrogenase 
B (LDHB). Notably, ASGA0105274 and MARC0067088 were both 
located near the genes Olfactory Receptor Family 5 Subfamily B 
Member 21 (OR5B21), Olfactory Receptor Family 5 Subfamily B 
Member 3 (OR5B3), Olfactory Receptor Family 9 Subfamily 
I Member 1 (OR9I1), Olfactory Receptor Family 9 Subfamily Q 
Member 1 (OR9Q1), and Olfactory Receptor Family 9 Subfamily 
Q Member 2 (OR9Q2), all of which belong to the OR family, and 
showed strong associations. At the ASGA0105274 locus, pigs with 
the AA genotypes had significantly higher feed efficiency than 
those with the GA genotype. At the MARC0067088 locus, pigs 
with the TT genotypes had significantly higher feed efficiency than 
those with the CT genotype (Figures 2D,H).

3.5 Microbiability and identification of host 
genome variants associated with gut 
microbiota

Similar to heritability, microbiability is defined as the proportion 
of phenotypic variance attributable to microbial variance, reflecting 
the extent to which host phenotypes are influenced by gut microbiota. 

The 2m  for RFI, FCR, and ADFI were 0.03, 0.01, and 0.03, respectively, 
while the estimate for ADG was nearly zero (Figure  3A) 
(Supplementary Table S7). Although the microbiability of these traits 
is relatively low, host genetics may influence a small subset of 
low-abundance microbes that contribute minimally to the overall 
microbial community.

The results showed that we estimated the heritability for a total 
of 205 microbial genera, with 143 quantitative traits and 62 binary 
traits (Figure 3B). Heritability estimates revealed that 19 microbial 
genera had significant heritability (Figure 3B). Of the 205 microbial 
genera, we  found that 13  in the Firmicutes, three in the 
Proteobacteria, and one each to Actinobacteria, Bacteroidetes, 
Fusobacteria, and Lentisphaerae, all exhibiting significant 
SNP-based heritability (p < 0.05) (Supplementary Table S8). Most 
of these heritable bacteria belonged to the Firmicutes and 
Proteobacteria phyla.

The mbGWAS identified 5, 11, and 6 significant genome-wide 
loci associated with Trueperella, Victivallis, and 
Erysipelatoclostridium, respectively (Supplementary Tables S2–S4). 
Genome-wide association analyses of the remaining bacterial 
genera are provided in Supplementary Figure S2. The most 
significant SNP controlling the relative abundance of Trueperella 
was ASGA0060896, located near the genes Cell Cycle And 
Apoptosis Regulator 2 (CCAR2) and Early Growth Response 3 
(EGR3), with a minor allele frequency (MAF) of 0.24. Substitution 
of the TC genotype with CC at ASGA0060896 significantly 
increased the abundance of Trueperella (Figures  3C,F). For 
Erysipelatoclostridium, the SNP ASGA0063163 was identified as a 
locus controlling its relative abundance, with an MAF of 0.24. This 
SNP was located near the gene Phosphatidylinositol Transfer 
Protein Beta (PITPNB). There was a significant difference in the 
relative abundance of Erysipelatoclostridium between the TC and 
CC at this locus (Figures  3D,G). In Victivallis, the SNPs 
ASGA0022077 and ALGA0033985 were located near Glutathione 
S-Transferase Mu 3 (GSTM3), G Protein-Coupled Receptor 61 
(GPR61), Colony Stimulating Factor 1 (CSF1), Adenosine 
Monophosphate Deaminase 2 (AMPD2), Myogenic Factor 5 
(MYF5), Myogenic Factor 6 (MYF6), Protein Tyrosine Phosphatase 
Receptor Type (PTPRQ), and Acyl-CoA Synthetase Short Chain 
Family Member 3 (ACSS3), with MAFs of 0.36 and 0.12, 
respectively. At the ASGA0022077 locus, the CA genotype had a 
higher relative abundance of Victivallis compared to the CC 
genotype, while at the ALGA0033985 locus, the AA genotype had 
a higher relative abundance of Victivallis compared to the CA 
genotype, likely due to base inversion (A/C) (Figures 3E,H,I).

TABLE 2 Host genetics and gut microbiome effects for feed efficiency traits.

Trait g m a

2σ g /2 2σ σg p p-value 2σm /2 2σ σm p p-value 2σa /2 2σ σa p p-value

RFI 0.0030 0.2007 0.3562 0.0007 0.0304 0.3920 0.0117 0.5087 0.0465

FCR 0.0076 0.1949 0.0847 0.0009 0.0231 0.5182 0.0058 0.1487 0.4709

ADFI 0.015 0.3125 0.01446 0.0006 0.0125 0.6281 0.0123 0.2562 0.2342

ADG 0.0048 0.3692 0.0006 0.0015 0.1154 0.1641 – – –

g, the effect of host genetics; m, the effect of gut microbiome; a, the effect of interactions between host genetics and gut microbiome; RFI residual feed intake; FCR feed conversion ratio; ADFI 
average daily feed intake; ADG average daily gain. The significant p-value bounds are p < 0.05.
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FIGURE 2

Genome-wide association analysis. (A,E) GWAS results of ADG and distribution of significant SNPs in different genotypes. (B,F) GWAS results of ADFI 
and distribution of significant SNPs in different genotypes. (C,G) GWAS results of RFI and distribution of significant SNPs in different genotypes. (D,H) 
GWAS results of FCR and distribution of significant SNPs in different genotypes.
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FIGURE 3

(A) Phenotypic heritability and microbiality. (B) Number of identified microbial genera and the number of significantly heritable microorganisms 
grouped by phyla. (C,F) Microbial genome-wide association studies results of Trueperella and distribution of significant SNPs in different genotypes. 
(D,G) Microbial genome-wide association studies results of Erysipelatoclostridium and distribution of significant SNPs in different genotypes. (E,H,I) 
Microbial genome-wide association studies results of Victivallis and distribution of significant.
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3.6 Fecal microorganisms associated with 
feed efficiency

Although host genetics can only influence a small portion of the 
gut microbiota, our findings indicate that both host genetics and gut 
microbiota can simultaneously affect feed efficiency in pigs. There may 
be  a connection between the two, or a specific combination of 
microbes may be responsible for the observed effects. We conducted 
a two-part model association analysis and a two-tailed test for 
microbial genera and the traits under study. The two-part model 
analysis identified 13 associations. The Wilcoxon rank-sum test and 
ANOVA revealed 262 and 43 microbial genera, respectively. Among 
these analyses, 41 genera were consistently found in both the 
association analysis and the significance tests (Figure  4A) 
(Supplementary Table S5).

Given that more than half of the microbial genera had low 
detection rates, we focused on 14 genera with detection rates greater 
than 90% (Figure  4B). Pigs in the lowest 10% for Prevotella_1 
abundance had significantly lower ADFI, ADG, and RFI compared to 
those in the highest 10% (Figures 4C–E). Pigs in the highest 10% for 
Prevotellaceae_NK3B31_group and Prevotellaceae_UCG_003 
abundance had significantly higher ADFI than those in the lowest 
10% (Figures 4F,G). Notably, pigs in the lowest 10% for Veillonella 
abundance had significantly higher ADFI and RFI than those in the 
highest 10% (Figures  4H,I). Pigs with higher abundance of 
Lachnospiraceae_UCG-005 and Prevotella_9 had higher ADFI and 
ADG than those with lower abundance (Figures 4J–M).

4 Discussion

In recent years, traits related to production and feed efficiency 
have had a significant impact on the sustainability of the pig farming 
industry due to their crucial economic and environmental 
importance (Ottosen et al., 2020; Soleimani and Gilbert, 2021). Feed 
efficiency is generally considered to be  stable, but there are 
significant differences in efficiency among individuals fed the same 
diet under identical conditions. This variation is largely due to 
factors that are not well understood. Host genetic variation is a key 
driver of phenotypic variability (Li et al., 2022; Wang K. et al., 2022). 
Several studies have previously attempted to elucidate the 
connections between host genetics, microbiome data, and feed 
efficiency (Bergamaschi et al., 2020a; Bergamaschi et al., 2020b). The 
gut microbiome is considered the host’s second genome and is 
crucial for its host. It provides numerous services, such as nutrient 
digestion, disease resistance, and the production of vitamins and 
beneficial metabolites. Additionally, it plays a role in modulating 
inflammation and stimulating the production of antimicrobial 
compounds (Broom and Kogut, 2018; Gardiner et al., 2020; Cullen 
et al., 2022).

Feed efficiency (FE) is a complex trait influenced by feed intake 
and daily weight gain. Previous studies have demonstrated a 
correlation between feed efficiency and the gut microbiome. There 
was no difference in alpha diversity between the HRFI and LRFI 
groups, consistent with earlier findings (Si et al., 2020). Similar 
results have been observed in chickens (He et al., 2023). However, 
in the PCoA analysis comparing the two groups, distinct clustering 
was observed, though the separation was minimal. This aligns with 

several studies (McCormack Ursula et al., 2017; Wen et al., 2019; 
Aliakbari et  al., 2021; Chen et  al., 2021; Wen et  al., 2021). 
We hypothesize that the minimal structural differences in the gut 
microbiome could be attributed to the pigs being under the same 
management, environmental, and nutritional conditions, resulting 
in only slight variations in the microbial community structure. In 
this study, the seven most abundant genera were Prevotella, 
Methylobacterium, Campylobacter, Phocaeicola, Bacteroides, 
Porphyromonas, and Fusobacterium. Prevotella was reported as a 
core bacterium in fecal samples at 80, 120, and 240 days of age (Ke 
et al., 2019). Among these, Prevotella-9 was the first genus to show 
a significant difference in abundance between the high and low 
groups, with its abundance being slightly higher in the LRFI group 
compared to the HRFI group (p < 0.05). This finding is consistent 
with previous research (Si et  al., 2020). Certain specific fecal 
microorganisms may be  related to feed efficiency in pigs. The 
LEfSe analysis revealed that the family Prevotellaceae and the 
genus Prevotella were significantly more abundant in LRFI pigs 
than in HRFI pigs, which is in line with prior studies (Yang 
et al., 2017).

In this study, the genomic heritability of growth and feed efficiency 
traits ranged from 0.27 to 0.46, which is consistent with previous 
findings (Miar et al., 2014; Willson et al., 2020; Li et al., 2022). These 
traits exhibit moderate to high heritability, indicating that growth and 
feed efficiency can be improved through genetic selection.

Two SNPs significantly associated with ADG and ADFI were 
identified. MARC0079871 is an important SNP related to ADG, 
located near the CUL2. Previous studies in mice have shown that 
CUL2 can influence the expression of PRDM16 target genes. The 
PRDM16 gene activates brown/beige fat-selective genetic programs 
and mitochondrial BCAA and fatty acid oxidation while suppressing 
adipose tissue inflammation and fibrosis (Wang Q. et  al., 2022). 
We  speculate that CUL2 may affect pig growth by indirectly 
influencing fatty acid oxidation. Additionally, we  identified SNP 
ALGA0000120, located near RPS6KA2, in ADFI (Martínez-Montes 
et al., 2018). Previous research has found that in chickens, RPS6KA2 
is associated with benzaldehyde and (E, E)-2,4-decadienal and is 
involved in the MAPK signaling pathway (Yuan et al., 2022). The 
MAPK and TGF-β signaling pathways interact with the PPAR 
pathway, regulating lipid metabolism during adipogenesis in 
chickens, thereby promoting growth (Cui et  al., 2012; Ma 
et al., 2021).

FE is a crucial economic trait that significantly impacts the 
profitability of livestock industries. Identifying key genes regulating 
FE through molecular breeding techniques can enhance the 
efficiency of FE improvement. Previous studies have shown that 
biological processes such as fat deposition, appetite regulation, and 
energy metabolism can influence individual feed intake and, 
consequently, feed efficiency (Silva et al., 2019; Yang et al., 2020; Wu 
et al., 2021). Nitric oxide has been shown to play a crucial role in 
systemic metabolic regulation and insulin sensitivity (Jørgensen 
et al., 2005). It regulates mitochondrial aerobic respiration through 
mitochondrial activity and oxygen levels (Willens et al., 2014; Saxena 
et al., 2015). In this study, we identified ASS1, an enzyme responsible 
for mammalian citrulline metabolism. The argininosuccinate 
produced by ASS1 is a direct precursor of arginine, which is the 
primary substrate for intracellular NO synthesis (Pan et al., 2022). 
Gene QRFP significantly activates orexin/hypocretin neurons in the 
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FIGURE 4

Identification of microbiota associated with growth and feed efficiency. (A) Number of microbial genera associated with phenotypic detected by each 
test or association analysis and their overlaps. (B) Pearson’s correlations among the shared 14 microbial genera. Significant r values are filled in with “*.” 
(C–E) Differences in the ADFI, ADG, RFI between the two groups with the highest and lowest Prevotella_1 abundance. (F) Differences in the ADFI 
between the two groups with the highest and lowest Prevotellaceae_NK3B31_group abundance. (G) Differences in the ADFI between the two groups 
with the highest and lowest Prevotellaceae_UCG_003 abundance. (H,I) Differences in the ADFI and RFI between the two groups with the highest and 
lowest Veillonella abundance. (J,K) Differences in the ADG, ADFI between the two groups with the highest and lowest Lachnospiraceae_UCG-005 
abundance. (L,M) Differences in the ADG, ADFI between the two groups with the highest and lowest Prevotella_9 abundance.
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lateral hypothalamus, increasing arousal and appetite behaviors, 
which leads to increased food consumption (Cook et  al., 2022). 
We hypothesize that such regulation may stimulate appetite, thereby 
influencing feed intake and affecting feed efficiency Regarding feed 
conversion ratio, four SNPs associated with this trait were identified, 
located near the genes ACSS3, AP1S3, CUL3, MRPL44, GLYATL2, 
and LDHB, as well as the OR5B21, OR5B3, OR9I1, OR9Q2. Previous 
studies have shown that GLYATL2 facilitates the conjugation of 
medium-and long-chain fatty acids with glycine, promoting 
metabolism (Waluk et al., 2010; Xu et al., 2024). LDHB catalyzes the 
interconversion of pyruvate and lactate (Gong et al., 2023; Li R. et al., 
2023). It also mediates the conversion of NADH to NAD+ in the 
glycolytic pathway (Li D. et al., 2023), suggesting that LDHB might 
influence feed efficiency by affecting the pyruvate metabolism 
pathway in pigs. Interestingly, we identified SNPs ASGA0105274 and 
MARC0067088 near the OR5B21, OR5B3, OR9I1, OR9Q1, and 
OR9Q2. These genes belong to the OR family, which is involved in 
the production of G protein-coupled receptors that detect and 
transmit olfactory stimuli. Previous research has shown that OR9Q2 
is a key sensor for primary food odors (Haag et  al., 2023). It is 
suggested that the expression of these genes might enhance the pigs’ 
ability to smell the feed, stimulate their appetite, increase feed intake, 
and thereby improve feed efficiency.

The estimation of “microbiability” can be  used as a tool to 
quantify the impact of gut microbiota abundance on host phenotypes. 
Microbiability is defined as the fraction of phenotypic variance that 
can be inferred from the gut microbiome. This concept was initially 
proposed by Difford et al. (2016) and Difford et al. (2018) and has 
been applied to humans (Zhernakova et al., 2024), chickens (Wen 
et al., 2019), pigs (Yang et al., 2022), sheep (Wang et al., 2023), and 
cows (Difford et al., 2018; Xue et al., 2020). Aliakbari et al. (2022) 
found that the proportion of feed efficiency trait variation explained 
by the gut microbiome is lower than that explained by host genetics. 
Wen et al. (2021) explored the combined contributions of the gut 
microbiota and host genetics to feed efficiency in chickens, estimating 
the microbiability ( 2m ) of different gut segments, with fecal 2m  being 
0.01. Déru et al. (2022) investigated the impact of the gut microbiome 
and host genetics on the digestive and feed efficiency traits of 
growing pigs fed conventional and high-fiber diets. They used 
microbial association matrices constructed from different OTU 
counts and found varying m2 values. In Tang et al. study (Tang et al., 
2020), the rectal microbiability for growth and fat deposition traits 
ranged from 0.09 to 0.11. Our analysis suggests that the level of 
microbiability is influenced by several factors. Firstly, microbiability 
varies across different gut segments, with estimates based on fecal 
samples being lower than those from other segments. Secondly, the 
method used to construct the microbial similarity matrix also affects 
the 2m  (He et al., 2022). Additionally, the filtering criteria for OTUs 
differ significantly between studies. For example, some researchers 
retain OTUs present in more than 50% of samples (Difford et al., 
2016), while others retain OTUs found in at least 5% of samples 
(Verschuren et al., 2020).

Although the proportion of trait variance explained by fecal 
microbiota is small, we still aim to find evidence of host genetic 
influence on the microbiome. A common approach is to perform 
joint analysis of genetic loci and gut microbiome abundance. 
Previous studies have found significant associations between fat 
deposition, feed efficiency, and specific microbes in the pig gut 

(He et  al., 2016; Fang et  al., 2017). However, there is limited 
research on the impact of host genetics on the abundance of 
specific microbial taxa in pigs. In our study, we  identified 19 
genera with significant heritability. The next step is to identify the 
host genetic variants and genes associated with these heritable 
microbial taxa. In this study, we conducted a GWAS and identified 
four SNPs associated with three genera. Previous research has 
shown that Trueperella is associated with inflammation (Sun et al., 
2023; Kaura et al., 2024; Liu et al., 2024). However, we identified 
candidate genes CCAR2 and EGR3 associated with Trueperella. 
Victivallis is closely associated with obesity and hepatic steatosis 
(Rodriguez et al., 2020). Studies have shown that inulin treatment 
in mice fed a high-fat diet revealed a positive correlation between 
Victivallis and liver lipid accumulation and muscle steatosis. 
We  identified eight candidate genes associated with Victivallis 
abundance, with MYF5, MYF6, PTPRQ, and ACSS3 being the 
most promising. MYF5 and MYF6 are important members of the 
myogenic regulatory factor family, playing a crucial role in skeletal 
muscle development and maturation, satellite cell regulation, and 
muscle regeneration. Interestingly, they are primarily involved in 
muscle cell differentiation and have a subtle influence on mature 
muscle (Davegårdh et al., 2017; Zammit, 2017). Pezeshkian et al. 
(2022) identified PTPRQ as a potential key gene influencing feed 
efficiency in turkeys, involved in phosphatase activity and protein 
tyrosine phosphatase activity. ACSS3, a member of the acyl-CoA 
synthetase short-chain family, is involved in lipid and carbohydrate 
metabolism and has been identified as a key enzyme in propionate 
metabolism (Bidkhori et  al., 2018; Zhou et  al., 2021; Jia et  al., 
2022). In cattle, ACSS3 has been identified as a candidate gene for 
the C10:0 content in milk fat composition (Buitenhuis et  al., 
2014). The candidate gene associated with Erysipelatoclostridium 
is PITPNB, a single-domain protein with a hydrophobic cavity that 
binds phosphatidylinositol (PI) or phosphatidylcholine molecules, 
playing a role in glycerophospholipid biosynthesis and metabolism 
(Garner et al., 2012). Considering that certain gut microbes are 
influenced by host genes, these microbes can be regarded as a host 
trait from an animal breeding perspective. This underscores the 
potential of improving pig growth rates and feed conversion ratios 
by breeding to enhance microbial communities (Benson et al., 
2010). Although these studies have revealed important discoveries, 
there are also limitations. No equally significant SNPs were found 
in either GWAS or mbGWAS. This phenomenon may be due to 
the low-density GeneSeek Porcine SNP50K BeadChip, which 
provides a limited number of SNPs. Another reason might be the 
small sample size. In future studies, we  plan to address this 
limitation by utilizing higher-density chips for more 
comprehensive detection and increasing the population size (
Wang et al., 2023; Zhang et al., 2024).

Considering the impact of resident gut microbiota on pig 
growth and feed efficiency, we  conducted an in-depth study of 
microbial taxa significantly associated with these traits. Our research 
confirmed that Prevotella_1, Lachnospiraceae_UCG-005, 
Prevotella_9, Prevotellaceae_NK3B31_group, Prevotellaceae_
UCG_003, and Veillonella are related to pig growth and feed 
efficiency, consistent with previous studies. We  examined 14 
microbes with a detection rate of over 90% and found that 
Prevotella_1, Prevotellaceae_NK3B31_group, and Lachnospiraceae_
UCG-005 showed significant positive correlations with ADG, ADFI, 
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and RFI. Our study observed that pigs with higher ADG and ADFI 
had higher levels of Prevotella_1, while those with lower RFI had 
relatively lower abundances of Prevotella_1. This suggests that 
Prevotella_1 may enhance the host’s feed utilization efficiency, 
reflected in phenotypic traits like growth rate. Prevotella can ferment 
various substrates such as starch, peptides, proteins, and 
hemicellulose, which helps improve the host’s feed efficiency (Ellison 
et al., 2017; Delgado et al., 2020). By participating in the breakdown 
and fermentation of complex carbohydrates, Prevotella converts 
starch, cellulose, and other indigestible polysaccharides into more 
easily absorbable forms for pigs, thereby accelerating growth and 
improving feed efficiency. Additionally, Prevotella species produce 
short-chain fatty acids (SCFAs) such as butyrate and propionate 
during fermentation. These SCFAs are important energy sources for 
maintaining gut health in pigs, helping to preserve intestinal 
epithelial integrity and enhance immunity. Weishaar et al. (2020) 
reported that the abundance of OTUs from the Lachnospiraceae and 
Prevotellaceae families significantly impacts FCR and RFI, although 
the direction of these effects was not specified. Some genera within 
Lachnospiraceae are significantly positively correlated with dietary 
fiber intake in the pig colon. Lachnospiraceae are known to produce 
enzymes that degrade carbohydrates (Kaoutari et al., 2013). Xu et al. 
(2022) showed that a long-term high-energy diet (HED) can alter 
the gut microbiome, reducing the levels of butyrate-producing 
bacteria, including Lachnospiraceae. This indicates that high-energy 
diets decrease SCFA production. Our findings also highlight the 
positive role of Lachnospiraceae. We observed that pigs with higher 
ADG and ADFI had a significantly higher relative abundance of 
Lachnospiraceae_UCG-005 compared to the low group. This suggests 
that Lachnospiraceae promotes nutrient absorption, leading to 
increased body weight and feed intake. Bi et al. (2022) conducted an 
interesting study on weaned piglets. They found that enriching the 
social environment during lactation helps reduce stress in weaned 
piglets, significantly increasing the abundance of beneficial gut 
bacteria like Prevotella_9. This, in turn, positively impacts the piglets 
nutritional metabolism and growth.

5 Conclusion

In this study, seven SNPs related to ADG, ADFI, RFI, and FCR 
were identified. Additionally, six genera Prevotella_1, Lachnospiraceae_
UCG-005, Prevotella_9, Prevotellaceae_NK3B31_group, Prevotellaceae_
UCG_003, and Veillonella showed correlations with pig growth and 
feed efficiency. These findings collectively enhance our understanding 
of the interactions between host genetics and gut microbiota in relation 
to commercial pig growth and feed efficiency. They may also contribute 
to developing strategies to improve growth and feed efficiency.
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