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Soil borne diseases are one of the most serious diseases which often results 
the decline of vegetables quality and loss of production. Moreover, it is difficult 
for plants to exhibit disease symptoms in the early stages attributing to strong 
concealment of soil borne pathogens. Therefore, early detection of pathogens 
and their physiological races plays an important role in reducing the harm of 
pathogens associated with diseases of vegetable crops. The traditional diagnostic 
techniques relied on the time consuming and less accurate methods like disease 
symptom observation, microscopic diagnosis, and culture techniques etc. The 
development of molecular biology technology has brought revolutionary changes 
to the diagnosis of vegetable soil borne diseases, improving the accuracy and 
efficiency of diagnosis. This paper reviews the various molecular detection techniques 
for vegetable soil borne pathogens (PCR, nested-PCR, multiplex PCR, etc.) and 
their physiological races (host identification, DNA molecular markers, transposon 
detection, etc.), explains the advantages and disadvantages of each detection 
technique. Furthermore, the paper comprehensively introduces the application 
of molecular detection technology for soil borne pathogen detection in soil, 
plants, and seeds. Finally, we put forward important perspectives for the future 
development of rapid detection methods, aiming to promote rapid diagnosis of soil 
pathogenic microorganisms and provide guidance for the control of biological risks.
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1 Introduction

Vegetables are among the essential foods in people’s daily diet and are also used in food, 
nutrition, healthcare, etc. (Willer et al., 2023). As per reports of the Food and Agriculture 
Organization (FAO), China is the first largest global producer of vegetables, with a planting 
area of 23.42 million·hm2 (FAO, 2023). However, with the continuous cultivation of vegetables 
for several years, soil borne pathogens have accumulated and cropping obstacles have become 
seriously increasing. The typical soil borne pathogens commonly found including fungi 
(Fusarium sp., Rhizoctonia sp., Phytophthora sp., etc) and bacteria (Ralstonia sp., Pectobacterium 
sp., Clavibacter sp., etc). The infected plants developed slowly, their leaves defoliated and 
wilted, their roots turned brown, with decayed cortical tissues that shriveled. Due to the long 
incubation period, complexity and rapid spread of soil borne pathogens, soil borne diseases 
cause huge economic losses to vegetables (Xie et al., 2024).
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The early detection of vegetable soil borne pathogens is 
arguably the most challenging task, mainly due to unclear disease 
symptoms in the early stages, their complex and diverse 
physiological races, and limitations of different detection methods. 
Notably, physiological races of vegetable soil borne pathogens are 
particularly difficult to detect due to their high similarity. 
Traditional techniques for detecting soil-borne pathogens, such as 
the use of selective media, are of great value because they are 
relatively inexpensive and not technically demanding. Microscopic 
diagnosis is a fast technique to identify the spores of soil borne 
fungal pathogens in vegetables. Traditional detection methods 
such as symptom observation, microscopic diagnosis, pathogen 
plate culture technology, are time consuming, laborious, low 
sensitivity and not suitable for the rapid as well as early diagnosis 
of soil borne diseases. New technologies, such as molecular biology 
detection technology, provide better means for the diagnosis as 
well as study of vegetable diseases causing pathogens and 
physiological race with high reliability, precision and accuracy.

This review focused on the various molecular detection 
techniques for vegetable soil borne pathogens (conventional PCR, 
nested-PCR, multiplex PCR, RT-qPCR, PMA-qPCR, LAMP, RPA/
CRISPR-Cas12a, genomics) and their physiological races (host 
identification, conventional PCR, DNA molecular markers, 
transposon, pathogenicity-related genes, genomics), also explained 
the advantages and disadvantages of each detection technique. 
Moreover, the new technology, both currently in use and under 
development were also described, for diagnosing soil borne 
diseases of vegetables, with an emphasis on the application of 
different detection techniques in different tissues (soil, plants, and 
seeds). This review is the comprehensive summary about the 
progress and application of recent molecular detection techniques 
for vegetable soil borne diseases. Moreover, providing the 
references for the further development and application of biology 
detection technology in the detection of pathogenic 
microorganisms for disease prevention and control.

2 Molecular detection techniques for 
soil borne pathogens in vegetables

2.1 Conventional PCR based detection 
technology

With the rapid development of modern biotechnology, 
detection methods based on molecular biology have widely 
adopted. At present, 16S rDNA, ITS sequences and other genes 
(RBP1, RBP2, TEF-1α, gyrB) are mainly used as templates to design 
specific primers for PCR amplification. The use of PCR based 
detection technology has been widely reported for vegetable soil 
borne pathogens (Fusarium oxysporum, R. solani, Verticillium 
dahliae, Phytophthora capsici, etc.) (Table 1). The advantages of 
PCR technology include the ability to detect single pathogens and 
non-culturable pathogens in complex mixed soil/plant samples 
(Shneyder et  al., 2022). Although the detection speed of 
conventional PCR is fast at low cost and sensitivity, thus, it can 
only be used for qualitative analysis. Moreover, the distribution of 
pathogens in soil is uneven, which can lead to false negatives in 
conventional PCR detection.

2.2 Nested-PCR based detection 
technology

The nested PCR technique uses two pairs of PCR primers to 
amplify the complete fragment (Koentjoro et al., 2023). The main 
advantage is that the results of the second amplification can change 
the erroneous fragments produced by the first amplification. Nested 
PCR techniques have been developed to detect latent infections 
caused by fungi (Mutasa et  al., 1996; Grote et  al., 2002; 
Mudiyanselage et al., 2021), bacteria (Liop et al., 2000) and viruses 
(Nair and Manimekalai, 2021) in host plants. A nested PCR assay 
developed for rapid detection of F. oxysporum f. sp. lactucae in 
lettuce seeds permitted the detection of the pathogen in seed lots 
with an infestation rate as low as 0.1% (Mbofung and Pryor, 2010). 
Klemsdal and Elen developed a nested PCR detection technique for 
Fusarium culmorum with a detection limit of 5–50 fg of purified 
target DNA, and its sensitivity is 100 times higher than that of 
conventional PCR (Klemsdal and Elen, 2006). Li et  al. (2014) 
established a nested PCR detection system for Phytophthora with 
detection limits of 100 fg of genomic DNA per 25-μL reaction. Qin 
et al. (2011) established a quick and accurate technique to detect 
infection of rape oil seed by S. sclerotiorum via a nested PCR 
technique, which can detect 50 fg of genomic DNA in approximately 
6 h. Jesús et al. (2002) designed specific primers based on the DNA 
(RAPD) marker sequence with a band size of 1958 bp and 
established a nested PCR technique for the detection of 
non-defoliating (ND) V. dahliae. However, detection technology 
based on nested PCR still has some shortcomings. First, this 
technique is time consuming, as it requires two PCRs followed by 
confirmation of the positive result by agarose gel electrophoresis. 
Second, in open environments where multiple samples are 
processed, nested PCR is more prone to contamination (Cordova 
et al., 2014). The above shortcomings often lead to false positives, 
thus reducing the efficiency of molecular diagnosis of pathogens 
associated with vegetable diseases (Youssef et al., 2017).

2.3 Multiplex PCR based detection 
technology

Multiplex PCR (M-PCR) is a variant of PCR in which two or 
more target sequences are simultaneously amplified in the same 
reaction, combining the advantages of conventional PCR and nested 
PCR (Israa et al., 2023). M-PCR is more practical in diagnostics and 
research in the vegetable crops thus, saves time and cost, as many 
pathogens often infect the same vegetable (Panno et  al., 2014). 
Notably, construction of the M-PCR system requires evaluation of 
the compatibility of specific primers of multiple pathogens. Ozdemir 
(2005) used dual PCR to detect tomato canker (Cmm) and scab 
(Xav). Gao et al. (2010) established an M-PCR detection technique 
for the pathogens Cladosporium cucumerinum, F. oxysporum and 
Mycosphaerella melonis in infected plant tissues. The M-PCR 
detection technology established by Quinterovásquez et al. (2010) 
can simultaneously detect Clavibacter and Fusarium in tomato 
which has high application value. Umesha and Avinash (2015) 
developed a dual PCR technology that can be used to detect bacterial 
wilt and scab in vegetables. Gao et al. (2016) established an M-PCR 
detection technology to successfully measure the levels of 
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Corynespora cassiicola, Colletotrichum orbiculare, and Pseudomonas 
syringae pv. lachrymans. Kang et al. (2018) designed specific primers 
for quadruple PCR detection of tomato soil borne pathogens. It is 
rapid and stable technique, including the detection of Pseudomonas 
syringae, C. michiganensis subsp. michiganensis, R. solanacearum, 
and Xanthomonas campestris (Kang et al., 2018). Liu et al. (2019) 
established M-PCR technology for simultaneous detection of 
P. aphanidermatum, F. oxysporum and V. dahliae in vegetable fields, 
with improved efficiency and reduction in the time to detect each 
pathogen. Moreover, the three soil borne pathogens R. solanacearum, 
V. dahliae and Sclerotium rolfsii were identified in eggplant, using 
this M-PCR technology with the detection rate (Zou et al., 2023). 

The disadvantage is that multiple primer pairs, templates, etc. are 
prone to non-specific amplification in the same reaction, leading to 
false positive detection results. Other obvious limitations are if the 
length difference of amplified fragments is limited by the resolution 
of agarose gel electrophoresis, it may affect the detection sensitivity. 
It was unable to ascertain the pathogenicity and infectivity of the 
organism detected using M-PCR technology. Furthermore, it was 
unable to infer data on microbial cell integrity, which has an impact 
on epidemiological assessment. Therefore, in designing primers, it 
is necessary to choose a consistent PCR amplification system, 
especially the annealing temperature. Only in this way can the 
efficiency of soil borne pathogens detection be improved.

TABLE 1 Primer information for common PCR detection of soil borne pathogens.

Disease Pathogen Primer sequence (5′-3′) Target 
gene

Fragment size 
(bp)

References

Root rot Fusarium sp. F8-1:GCTTCTCCCGAGTCCCA EF-1α 187 Chen et al. (2019)

F8-2:GCTCAGCGGCTTCCTAT

EF1:ATGGGTAAGGARGACAAGAC 639–683 O'Donnell et al. (2010)

EF2:GGARGTACCAGTSATCATG

Fa:CAYAARGARTCYATGATGGGWC RPB1 1,607

G2R:GTCATYTGDGTDGCDGGYTCDCC

5f2:GGGGWGAYCAGAAGAAGGC RPB2 1,700–1,742

7cr:CCCATRGCTTGYTTRCCCAT

Fusarium oxysporum FOR1-F:TTCCACAGCCAAGTGTGATCTTCAC EF-1α 610 Kim et al. (2017)

FOR1-

R:TTACTCGCGCTTTATCCCAGTAATAGC

Sheath blight Rhizoctonia solani F: CTCAAACAGGCATGCTC 28S 300 Matsumoto (2002)

R: AGGCAATAGGTTATTGGACC

Gummy stem blight Stagonosporopsis spp. DBF1: TCGAATGGCTCAGAGAAGGT RGI 559 Murolo et al. (2022)

DBR1: AAGTCCACGTCAGACCCATC

Sclerotinia rot Sclerotinia sp. Pg1R: TCTTGCAGCAGTCGAGAAGA Pg 495 Oliveira et al. (2010)

Pg1F: GTGTTGTGTCCGAGGGAGTT

Verticillium wilt Verticillium dahliae VActF: TAATTCACAATGGAGGGTAGG Actin 530 Gharbi et al. (2015)

VActR: GTAAGGATACCACGCTTGG

Anthracnose Colletotrichum spp. F: AACCCTTTGTGAACRTACCTA ITS 460 Martinez-Culebras 

et al. (2003)R: TTACTACGCAAAGGAGGC

Phytophthora blight Phytophthora capsici Pc1F: GTATAGCAGAGGTTTAGTGAA Ypt1 364 Lan et al. (2013)

Pc1R: ACTGAAGTTCTGCGTGCGTT

Late blight Phytophthora infestans Yph1F: CGACCATKGGTGTGGACTTT 203 Khan et al. (2017)

Yph2R: ACGTTCTCMCAGGCGTATCT

Damping-off Pythium aphanidermatum AsAPH2B: GCGCGTTGTTCACAATAAATTGC ITS 163 Asano et al. (2010)

AsPyF:CTGTTCTTTCCTTGAGGTG

Bacterial wilt Ralstonia solanacearum RS-1-F:ACTAACGAAGCAGAGATGCATTA 18S rRNA 716 Pastrik et al. (2002)

RS-3-R:TTCACGGCAAGATCGCTC

Bacterial soft rot Pectobacterium 

carotovorum subsp.

brasiliense

BR1f:GCGTGCCGGGTTTATGACCT 374 Duarte et al. (2004)

L1r:CARGGCATCCACCGT

Bacterial canker Clavibacter michiganensis 

sub sp. michiganensis

Fan1:GCATGTGCACCTCTCCTCTGTA 146 Wu et al. (2007)

Fan2:CCCCACAAGGAGGCGTACTA
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2.4 RT–qPCR based detection technology

Real-time quantitative PCR (RT–qPCR) is well developed 
detection technology. This technique uses fluorescence signals to 
monitor the amplification products of each cycle in the DNA 
replication process in real time in-vitro conditions. This technique 
allowing the quantitative and qualitative analysis of DNA templates, 
thus, has become the gold standard for vegetable disease diagnosis 
compared with conventional PCR technology (Chen et al., 2023). In 
particular, RT–qPCR can quantitatively detect non-culturable 
pathogens in vegetable tissues and pathogens that cannot 
be extracted from host tissue (Mirmajlessi et al., 2015; Abou-Jawdah 
et al., 2019). The use of RT–qPCR detection technology has been 
widely reported in research on soil borne vegetable diseases 
(Table  2). Vojvodic et  al. (2019) designed specific primers and 
developed an RT–qPCR technique for R. solani that was 100 times 

more sensitive than the conventional PCR technique. Chen et al. 
(2019) designed Fusarium-specific primers for the TEF gene and 
constructed an RT–qPCR detection system with the sensitivity 
10,000 times higher than that of conventional PCR. Yang et  al. 
(2022) designed specific primers and established an RT–qPCR 
technique for the detection of Colletotrichum spp. in strawberry with 
the detection limit of 10–105 copies. Cheng et al. (2018) established 
an RT–qPCR detection system for P. capsici using the YM2F/YM2R 
primers, with a sensitivity of 10−1 pg.·μL−1, 100 times more than that 
of conventional PCR. The advantages of RT–qPCR are as follows: (i) 
speed: compared with conventional PCR, the main advantage of RT–
qPCR is that the whole RT–qPCR runs can be performed in 1 to 2 h 
without complicated steps; (ii) sensitivity: RT–qPCR is 10 ~ 104 times 
more sensitive than conventional PCR; (iii) specificity: evaluation of 
specificity can be done by melting curve analysis during operation; 
(iv) quantification: compared with conventional PCR, fluorescence 

TABLE 2 Primer information for common RT-qPCR detection of soil borne pathogens.

Disease Pathogen Primer sequence (5′-3′) Target 
gene

Fragment size 
(bp)

References

Root rot Fusarium sp. F8-1:GCTTCTCCCGAGTCCCA EF-1α 187 Chen et al. (2019)

F8-2:GCTCAGCGGCTTCCTAT

F. oxysporum 18F:TAATGCTCGTAAGTCAGGTCAGGTCAG

GTTCA

172 Zhong et al. (2022)

18R:AGTTGGAGTCAGCGATTCAT

Aphanomyces 

cochlioides

AcF:TCCGGGCTAGCCGAAGGTT rRNA 96 Almquist et al. (2016)

AcR:ACAAGCAATCATTTCTGATGCTAGATA

G

Sheath blight Rhizoctonia solani AG-F:CACCTTTTGCTCTTTTTTTAATCCA ITS 150 Vojvodic et al. (2019)

AG-R:ATAAATTGGGTTTATATTAGAGTTGA

GTAGACA

Gummy stem blight Stagonosporopsis spp. DBF1:TCGAATGGCTCAGAGAAGGT RGI 208 Murolo et al. (2022)

DBR1:AAGTCCACGTCAGACCCATC

Sclerotinia rot Sclerotinia sp. Scl SF:CTCAAATCTCCGAAAGTT β-tubulin 237 Li et al. (2011)

Scl AF:TGCAGACGGGTAATATG

Verticillium wilt Verticillium dahliae VertBt-F:AACAACAGTCCGATGGATAATTC 115 Duressa et al. (2011)

VertBt-R:GTACCGGGCTCGAGATCG

Anthracnose Colletotrichum spp. cuti-F:AGAACCAGATCAAGGGCGTCGTG Cutinase 222 Tavernier and Coenye 

(2015)cuti-R:GCGTCCGCAATGTCGCAGTA

Phytophthora blight Phytophthora capsici YM2F:ATTCCTCCTGATAGATAG Actin 245 Nocker et al. (2006)

YM2R:CCCTCATCACAGAATGC

Late blight Phytophthora infestans qPCR F:CATCGGTGTTGACTTTGTG Ypt1 203 Khan et al. (2017)

qPCRR:TGAGCAATGTAATGGCAATC

Bacterial wilt Ralstonia solanacearum OLI-1:GGGGGTAGCTTGCTACCTGCC 16S rRNA 288 Ramesh et al. (2011)

Y2: CCCACTGCTGCCTCCCTAGGAGT

Bacterial fruit blotch Acidovorax citrulli Acf3: CCTCCACCAACCAATACGCT 550 Zhao et al. (2009)

Aacr2: TCGTCATTACTGAATTTCAACA

Bacterial canker Clavibacter 

michiganensis sub sp. 

michiganensis

Cmm141F: 

CAGGCGTCCGTCGGTGAGGTGGTC

pat-1 141 Cho et al. (2012)

Cmm141R: 

GCGGGAGAGCGGTGCGGGAATG
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PCR can be used to quantitatively measure the levels of vegetable 
pathogens through comparison with a standard curve. RT–qPCR 
technique is its inability to differentiate between live and dead cells 
of pathogens but identify their presence. Although this technology 
is efficient and applicable, there are limitations in the quantitative 
detection of soil borne pathogens. It is used mainly for research in 
the field of soil borne disease management. With the recognition of 
RT–qPCR detection technology by farmers, the demand for 
commercial detection is likely to increase.

2.5 PMA-qPCR based detection technology

PMA (Propidium Monoazide) is a special membrane impermeable 
dye so that can penetrate damaged cell membranes to emit fluorescent 
signals without direct impact on intact cells (Foteini et al., 2023). 
Following a specific duration of light reaction, PMA, after entering 
dead/ damaged cells, combines with their DNA. It causes the loss of 
fluorescence signals during bacterial DNA amplification and ignores 

the level of dead cells. The process of constructing a PMA-qPCR 
detection system for vegetable diseases includes screening the 
concentration of PMA and illumination time. PMA inhibit the PCR 
amplification of dead-cell DNA reducing the overestimation of cell 
count caused by dead-cell DNA in qPCR detection (Tavernier and 
Coenye, 2015). Since the first description by Nocker et al. (2006), 
PMA has been applied to a wide variety of microorganisms, including 
bacteria, viruses and fungi (Table 3). Chen L. et al. (2022) designed the 
specific primers F8-1/F8-2 based on the translation elongation factor 
(TEF) gene, screened PMA concentration (50 mmol·L−1) and 
illumination time (15 min). With this they established a PMA-qPCR 
technique to amplify and quantify living cells of Fusarium in soil. Xie 
X. W. et al. (2022) designed PMA-qPCR primers based on the SdhB 
sequence of the Corynespora blight pathogen, which effectively detect 
C. cassiicola in soil. Compared with its use to study vegetable-infecting, 
the application of PMA-qPCR detection technology in fungal research 
is relatively rare compared with studies on bacterial pathogens. This 
technology differentiate the dead and live cells of pathogens hence it 
is highly applicable in field disease control and drug screening. 

TABLE 3 Primer information for common PMA-qPCR detection of soil borne pathogens.

Disease Primer sequence (5′-3′) PMA 
concentration

Light 
time

Target 
gene

Fragment 
size (bp)

References

Root rot (Fusarium 

sp.)

F8-1:GCTTCTCCCGAGTCCCA 50 mmol·L−1 15 min EF-1α 187 Chen L. et al. (2022)

F8-2:GCTCAGCGGCTTCCTAT

Early blight 

(Alternaria spp.)

Alt4:CTTTTGCGTACTTCTTGTTTCC 65 μmol·L−1 10 min ITSs 240 Crespo-Sempere 

et al. (2013)Alt5:CAGGCATGCCCTTTGGATAC

Corynespora blight 

(Corynespora 

cassiicola)

CC-F3:CAGGAAATCCTCGCCAAGCAG 80 μmol·L−1 10 min SdhB 109 Xie X. et al. (2022)

CC-R3:CGCCAGTGATACGGTTGAACGG

Clubroot 

(Plasmodiophora 

brassicae)

PBF3:TCTTGCGTGTCGCTGTATTC 4 μmol·L−1 10 min 16S rDNA ~150 Li et al. (2022)

PBR3:ATAGGTTGGGGTAACTTGGC

Bacterial speck 

(Pseudomonas 

syringae)

Pst3F:GCTGCGGATGGCAAGTC 10 μmol·L−1 10 min HrpZ 161 Chai et al. (2020)

Pst3R:CCGACACCCGAACCAGAAC

Bacterial wilt 

(Ralstonia 

solanacearum)

RS72F:ATGGATAAAGGGTTCGTGGTG 3 ng·μL−1 5 min 16S rDNA 241 Cao et al. (2015b)

RS312R:CAGGCTCAGCGAGATTGC

Bacterial fruit 

blotch (Acidovorax 

citrulli)

FP:CTGATAATCCTCGGCTCAACAA 3 μg·mL−1 5 min ArgA 121 Tian et al. (2016)

RP:TGAGCGCATTTCTGACGAG

Cucumber angular 

leaf spot 

(Pseudomonas 

syringae pv. 

lachrymans)

Pslgap1-F:TCGGCGACGCAATCAAT 60 μmol·L−1 10 min Gap1 162 Meng et al. (2016)

Pslgap1-R:GGTGGTTTCACGCTTCAGG

Bacterial canker 

(Clavibacter 

michiganensis sub 

sp. michiganensis)

Spm4f:TCAGGCGTCTGTTCTGGC 5 μmol·L−1 30 min ITS ~150 Luo et al. (2008)

Spm2r:CCCACCACCATCCACAAC

Black spot 

(Pseudomonas 

syringae)

PM1:GCGAAGCGACAQCAACAGTG 10 μg·mL−1 10 min FliC ~150 Yu et al. (2021)

PM3:CGAGTCGATAGCGGCAAC
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However, PMA is expensive and only suitable for professional 
laboratory personnel, not for field operation.

2.6 LAMP based detection technology

LAMP (loop-mediated isothermal amplification), an isothermal 
nucleic acid amplification platform devised by Notomi, has emerged 
as a popular tool for phytoplasma molecular detection (Khat et al., 
2024). The basic principle of this technique involves the design of four 
specific primers for six different regions on the target sequence, 
including a pair of internal primers (FIP and BIP), a pair of external 
primers (F3 and B3) and a pair of ring primers (LF and LB). The 
LAMP reaction can be simply carried out under isothermal conditions 
by using BstDNA polymerase with high displacement activity. LAMP 
technology has been widely used in the detection of soil borne 
pathogens in vegetables, such as bacteria (Gieroń et al., 2023), viruses 
(Supakitthanakorn et al., 2022), and oomycetes (Htun et al., 2020), 
because of its applicability in open field operations. In addition, there 
have also been widespread reports of the use of LAMP technology to 
detect soil borne pathogenic fungi in vegetables (Zeng et al., 2017; 
Achari et al., 2023; Xie X. W. et al., 2022). Peng et al. (2013) tested 8 
artificially inoculated samples and 85 field soil samples with the 
LAMP technique, and the detection limit for F. oxysporum was 103 
spores. Huang W. et al. (2016) established LAMP technology for the 
detection of R. solanacearum in vegetables, and its sensitivity was 10 
times higher than that of conventional PCR. Yao et  al. (2016) 
constructed a LAMP detection system for Didymella bryoniae; its 
sensitivity was 1,000 times that of conventional PCR, and the detection 
limit was 0.1 fg·μL−1. Almasi (2019) used LAMP to detect the DNA of 
F. oxysporum, and the detection efficiency was 100 times greater than 
that of conventional PCR. For Colletotrichum species, LAMP detection 
exhibits accuracy and strong sensitivity, for the detection of pathogen 
DNA at 100 pg.·μL−1 (Liu Y. et al., 2021). Lu et al. (2015) designed and 
screened specific primers based on the ITS sequence of R. solani for 
establishing the LAMP detection system which allowed successful as 
well as rapid diagnosis for this species. The advantages of LAMP are 
as follows: (1) high amplification efficiency, 10–1,000 times higher 
than that of conventional PCR; (2) high speed, the whole reaction can 
be completed within 30–60 min; (3) strong specificity, the four specific 
primers for LAMP are for six conserved sites in the target gene 
sequence, and DNA amplification cannot be performed if any site 
does not match; (4) simple operation and (5) low cost. The 
disadvantage of LAMP is that it can only be  used for qualitative 
analysis, not for quantitative detection. In addition, LAMP is prone to 
producing false positives due to its open operation, which affects 
the results.

2.7 RPA/CRISPR-Cas12a based detection 
technology

The clustered regularly inter spaced palindromic repeats/CRISPR-
associated proteins system technology is currently an emerging 
nucleic acid detection technology. The principle is that RPA rapidly 
amplify the nucleic acid fragment to be detected at 37°C to achieve the 
minimum detection limit of CRISPR/Cas12a (Kim et al., 2023). After 
activation of the RuvC cleavage site of Cas12a, it will exert its 

non-specific nuclease activity (Zetsche et al., 2015; Chen et al., 2018). 
Cas12a can release fluorescent signals released by Cas12a captured by 
qPCR equipment, and the presence of nucleic acid fragments can 
be observed with the naked eye under ultraviolet/blue light (Ding 
et al., 2020; Wang et al., 2020). Currently, The RPA-CRISPR/Cas12a 
detection system has been used in the research of mycoplasma (Wang 
et al., 2019), COVID-19 (Ding et al., 2020), transgenic crops (Liu 
H. et al., 2021), rice diseases (Kang et al., 2021), etc., but there is no 
relevant report on the detection of vegetable soil borne diseases. 
Kuang et al. (2022) established a rapid detection method of RPA/
CRISPR-Cas12a for specifically detecting black stem fungus by RPA 
reaction for 30 min under constant temperature 37°C and CRISPR-
Cas12a reaction for 20 min. Lei et al. (2022) designed specific primers 
based on the Ypt1 gene of Phytophthora syringae to established rapid 
detection methods using fluorescence and lateral flow chromatography 
strips. In this method gene was amplified at 37°C for 40 min and could 
specifically detect P. syringae with a sensitivity of 133 fg, which is 
equivalent to fluorescence quantitative PCR. Wei et  al. (2024) 
established a rapid detection system for F. pseudograminearum using 
RPA/CRISPR-Cas12a, which can detect the target pathogen within 
40 min under constant temperature conditions of 37°C and sensitivity 
can reach 10−3 pg.·μL−1. The detection results can be intuitively read 
through the color reaction of nucleic acid test strips. This system has 
the advantages of specificity, sensitivity, and speed (Wei et al., 2024). 
It is also simple operation, fast and flexible to operation, high 
throughput and automated, and does not require complex temperature 
control equipment. The test strip detection does not require 
fluorescence equipment such as excitation light sources, making it 
very suitable for developing on-site rapid detection platforms. 
However, the cost of RPA/CRISPR-Cas12a reagents is higher than 
PCR. Hence in the future, the cost can be reduced through innovation 
and optimization conditions, to have a broader application.

2.8 Genomics based detection technology

With the advent of high-throughput sequencing technology, the 
detection of soil borne pathogens in vegetables has advanced greatly. 
High-throughput second-generation sequencing and single-molecule 
long-read third-generation sequencing improved the accuracy of 
bacterial detection. Also this technique identify a variety of specific 
microbial populations, such as unknown bacteria, viruses and viroids. 
This technique does not require the design of primers for specific 
sequences of microorganisms or plate culture of microorganisms 
(Zhang X. et  al., 2023; Zhang Y. et  al., 2023), which is important 
because only approximately 10% of bacteria are culturable (Pace, 
1997). Next-generation sequencing (NGS, for which various platforms 
exist, such as Solexa, 454 Roche, Illumina and Ion Torrent), 
pyrosequencing and metagenomics have been widely used in research 
on soil borne vegetable diseases (Hopkins et al., 2013). At present, the 
use of sequencing technology to identify unknown pathogens costs 
$850 and takes approximately 2 weeks or longer (Olmos et al., 2013). 
Yuan et al. (2020) detected high levels of F. oxysporum, Gibberella, 
Bacillaceae, and Xanthomonadaceae in diseased soil and Streptomyces, 
Bradyrhizobiaceae, Comamonadaceae, and Mortierella in healthy soil 
using high-throughput sequencing technology. Previous reports have 
detected the oomycetes and fungi P. ultimum, P. irregulare, 
P. aphanidermatum, P. nicotianae, P. capsici, P. cinnamomi, R. solani, 
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and F. oxysporum in soil via genomics technology (Jambhulkar et al., 
2015; Huang C. H. et al., 2016). Genomic technology can be used to 
detect unknown soil bacteria, which is not suitable for common 
disease diagnosis. Metagenomics sequencing is the sequencing of all 
DNA in the environment. The cost of genome sequencing is relatively 
high, and the computational resources required for subsequent data 
analysis are also relatively high. With further research and over time, 
the cost of this technology will gradually decrease. In contrast, 
amplicon technology has become the main means of environmental 
microbiome research due to its low cost advantage. Amplicon 
sequencing mainly targets ribosomal RNA genes and functional 
genes. The former amplifies molecular markers such as bacteria, 
archaea, fungi, and ITS sequences, while the latter amplifies specific 
functional genes in microorganisms (such as those involved in carbon 
and nitrogen cycling).

3 Molecular detection techniques for 
physiological races of soil borne 
pathogens in vegetables

3.1 Host based identification technology

Each strain of pathogen normally infects one or a few host species, 
and the host-specific form called forma specialis which is further 
divided into physiological races depending on their cultivar specificity. 
The traditional biological identification techniques for specialized 
forms of pathogens (e.g., F. oxysporum, P. capsici, R. solanacearum, 
P. brassicae) mainly rely on the pathogenicity of the pathogen on 
different species, while the identification of physiological races mainly 
relies on the pathogenicity on different varieties of the same host, 
which is time-consuming and labor-intensive (Martyn and Netzer, 
1991; Geng et al., 2010; Ji et al., 2007; Williams, 1966; Buczack et al., 
1975; Jones et al., 1982). There are some differences between routine 
pathogen identification and physiological race identification in 
vegetables. The former only requires pathogenicity testing on plants 
of the same genus, while the latter requires pathogenicity testing on 
different cultivars of same hosts, which is time-consuming and labor-
intensive, and easily affected by different environmental conditions.

3.2 Conventional PCR based detection 
technology

Molecular biology identification techniques have the advantages 
of speed, high sensitivity, and high accuracy and thus have been 
applied in the identification of most physiological races of pathogenic 
bacteria (Rui et al., 2022; Fu et al., 2020). The ITS has been proposed 
as the barcode for fungal species identification. The TEF and the 
DNA-directed RNA polymerase II with their subumits via., largest 
subunit (RPBI) and second largest subunit (RPB2) are phylogenetically 
informative loci in Fusarium allowing for species identification 
(O'Donnell et  al., 2015). The TEF locus is also informative at the 
intraspecific level and can be  combined with others, such as the 
ribosomal intergenic spacer, to reveal the complex genetic diversity 
within F. oxysporum (Lecomte et al., 2016; Ortu et al., 2018). Generally, 
using ITS, TEF, β-tubulin, Actin, and RPB genes to design specific 
primers can effectively distinguish between genera or species of 

pathogens but cannot distinguish physiological races (Chang et al., 
2018). To compensate for the above shortcomings, four pairs of 
specific primers, uni, sp13, sp23, and sprl, were used to amplify the 
DNA of the tomato wilt pathogen, which can effectively identify Fol 1, 
Fol 2, Fol 3, and FORL of F. oxysporum (Hirano and Arie, 2006).

3.3 DNA based molecular markers based 
detection technology

At present, molecular detection techniques based on specific 
primers have been successfully applied to the identification of many 
physiological races of pathogens (Lin et al., 2008; Cabanás et al., 2011; 
Aruga et al., 2012; Manzanares-dauleux et al., 2000) (Table 4). Cao et al. 
(2015a) screened a pair of primers, RS72F/RS312R, from a subtractive 
gene library of R. solanacearum and used qPCR technology to 
specifically amplify its physiological race 5. Zhang et al. (2015) utilized 
the nonhousekeeping genes reported by NCBI to screen and obtain 
Cr811, which can specifically identify race 5 of P. brassicae. In 2018, 
Zheng et al. (2018) screened molecular marker genes that could identify 
several physiological races of P. brassicae. The molecular markers 
PBRA_007750 and PBRA_009348 used for distinguishing P11 from P4, 
P7, and P9; PBRA_009348 and Novel342 used for distinguishing P9 
from P4, P7, and P11; and PBRA_008439 and Novel342 could represent 
P4. Yi et al. (2020) screened two molecular marker genes, PBRA, based 
on previous transcriptome sequencing data_000030, and Novel00510, 
which can specifically identify the dominant physiological race 4 of 
P. brassicae. The polygalacturonase gene (pgx) is conserved, with high 
species specificity, has been widely used for the detection of 
physiological races of Fusarium (Lievens et al., 2009a). Ye et al. (2022) 
designed KASP-SNP primers based on the pgx4 gene locus of 
F. oxysporum and for the first time developed KASP-SNP molecular 
markers for physiological races of F. oxysporum. The KASP-SNP 
technique used to detect Fol 1, Fol 2, Fol 3, and FORL rapidly and 
accurately. In the early stages of vegetable disease, the following specific 
primers can be  used to identify the pathogen DNA, thus an early 
disease prevention and control plan can be formulated. The reading of 
KASP-SNP test data is completely automated, while the routine PCR 
test needs to be analyzed by agarose gel electrophoresis. The reading of 
test results are subjective, and errors are prone to occur in the judgment 
based on the clarity of the target strip. However, the above mentioned 
molecular marker techniques have drawbacks, such as requiring a large 
amount of DNA, poor repeatability, and complex operation.

3.4 Transposon based detection 
technology

Transposons are ubiquitous in all organisms and pathogens (Lievens 
et al., 2008). Based on the genomic flanking regions, Pasquali et al. 
(2004) constructed a molecular identification technique for F. oxysporum 
physiological races using a special insertion fragment (Mg5/Mg6) of the 
Fot 1 transposon. Pasquali et al. (2007) indicated that inter-retrotranspos 
on sequence-characterized amplified regions (IR-SCAR) was used to 
develop a specific set of PCR primers (Ha3F/Ha3R) utilized for 
differentiating F. oxysporum race 1 from other F. oxysporum isolates. 
López-Berges et al. (2009) demonstrated that the artificially modified 
Impala transposon has a decisive effect on the toxicity of F. oxysporum 
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on tomato by inserting it. Research has shown that the Fot 1 transposon 
can serve as a target sequence resource library for identifying specific 
physiological races (1, 2, 8) of F. oxysporum, while the Impala transposon 

can be used for identifying physiological race 4. Currently, the majority 
of their genomes have not been annotated for soil borne pathogens, and 
there is relatively little research on using transposon technology to 

TABLE 4 Primer information for physiological races of vegetable soil borne diseases.

Disease Marker name Primer sequence (5′-3′) Fragment size (bp)

Root rot (Fusarium sp.) Routine PCR uni-F:ATCATCTTGTGCCAACTTCAG 670

uni-R:GTTTGTGATCTTTGAGTTGCCA

sprl-F:GATGGTGGAACGGTATGACC 947

sprl-R:CCATCACACAAGAACACAGGA

sp13-F:GTCAGTCCATTGGCTCTCTC 445

sp13-R:TCCTTGACACCATCACAGAG

sp23-F:CCTCTTGTCTTTGTCTCACGA 518

sp23-R:GCAACAGGTCGTGGGGAAAA

Fo-1F:CTGCCCGCTGGGAACAAGCT 1873

Fo-3R:CTTAACCGTTGAACTTTCTAAC

ITS1:TCCGTAGGTGAACCTGCGG 544 ~ 568

ITS4:TCCTCCGCTTATTGATATGC

FORL_KASP FORL-FAM-f:GAAGGTGACCAAGTTCATGCTATGGTGGAACGGTATGACC

FORL-HEX-h:GAAGGTCGGAGTCAACGGATTATGGTGGAACGGTATGACT

FORL-c:AAGAATCTCCTTGCCGGCAAACTCTGCATA

FOLrace1_KASP FOLrace1-FAM-f:GAAGGTGACCAAGTTCATGCTCCTTGAACGAGATGTCCT

TGGCTAG

FOLrace1-HEX-h:GAAGGTCGGAGTCAACGGATTCCTTGAACGAGATGTCCT

TGGCTAC

FOLrace1-c:GTCGTCACCTGTAAGGAACCCT

FOLrace2_KASP FOLrace2-FAM-f:GAAGGTGACCAAGTTCATGCTGTCCTTGAAGTGAACTC

CC

FOLrace2-HEX-h:GAAGGTCGGAGTCAACGGATTGTCCTTGAAGTGAACTC

CT

FOLrace2-c:TCCGACCTATTCTGTTCTATGCT

FOLrace3_KASP FOLrace3-FAM-f:GAAGGTGACCAAGTTCATGCTTTGTGTTAGTGCTACTAGT

GCGGCA

FOLrace3-HEX-h:GAAGGTCGGAGTCAACGGATTTTGTGTTAGTGCTACTAG

TGCGGCG

FOLrace3-c:TAACCTTGAAAGGGCTCGCAGAAGCCTGAG

Bacterial wilt (Ralstonia 

solanacearum)

lpx C RS72F:ATGGATAAAGGGTTCGTGGTG 241

RS312R:CAGGCTCAGCGAGATTGC

Club root (Plasmodiophora 

brassicae)

Cr811 ActF:GGGACATCACCGACTACCTG 492

ActR:ACTGCTCCGAGTTGGACATC

PBRA 007750-1-F:CTTCGTGCTGACCGATTCCT 638

007750-1-R:ATAATGCTCTGCGTCAGCCA

009348-1-F:CACTGCTATCGTCTCCCTGG 509

009348-1-R:CCTGCAATGTTTCGCTGCAA

008439-1-F:TCGGCGACCTGAGCGAGAA 651

008439-1-R:TCAACATGCGCATAGTAC

l342-1-F:TCCTCTTGAACCGACACTGC 249

l342-1-R:CTTCTCTCGCACTAGCCAGG
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identify physiological races (Table 5). The problem encountered when 
using transposons for identification is that they can move back and forth 
across the genome after complete cleavage, which poses difficulties in 
finding stable molecular markers. The number of reads at the transposon 
insertion site can intuitively reflect the necessity of a gene. Therefore, 
read counts are an important parameter in Tn seq analysis. When read 
counts equals 0, it indicates that the gene is an essential gene for bacterial 
growth. The larger the read counts value, the smaller the impact of the 
gene on bacterial growth. For example, the transposon insertion density 
of gene A is relatively high, and most insertion sites have high read 
counts, while under condition B, the results are opposite, indicating that 
this type of gene is called a conditionally necessary gene 
(McDonald,1993). Designing primers based on essential genetic 
differences can effectively identify different types of pathogens.

3.5 Pathogenicity-related genes based 
detection technology

Usually, the ability of fungi to infect specific vegetables depends on 
the unique genes encoding the host, which play important roles in the 
process of fungal infection. The differential factors that determine the 
toxicity of pathogenic bacteria include small mutations in a specific gene 
in the genome that controls the production of toxins by pathogenic 
bacteria. One of the first such tools developed for the forma special is 

lycopersici, based on a host-specific virulence gene. The gene encodes a 
small protein secreted in the xylem (SIX) that confers virulence to the 
fungus. Fourteen SIX genes are currently known, and a few homologs 
have been found in other forma speciales, such as cepae, cubense, and 
conglutinans (Li et al., 2016; Taylor et al., 2016) (Table 6). PCR primers 
were designed from SIX sequences to discriminate forma speciales 
cubense and lycopersici from other forma speciales (Fraser-Smith et al., 
2014). Molecular markers based on other virulence factors were also 
designed for forma specialis phaseoli and for race 4 of forma specialis 
cubense (Aguayo et al., 2017). Lievens et al. (2009b) designed 7 pairs of 
tomato wilt pathogen-specific primers (SIX1 ~ SIX7) based on nontoxic 
genes, and all of them could amplify specific fragments in Fol 1 ~ 3 
(excluding SIX4 primers). In FORL, none of the 7 pairs of primers were 
amplified. Zhang X. et al. (2023) and Zhang Y. et al. (2023) designed a 
specific primer FrlDel30 F/R based on the mutation site in the first 
chromosome of the nontoxic genes (SIX1 ~ SIX7), which can effectively 
distinguish between root rot pathogens and it physiological races. 
Poueymiro et al. (2009) induced dual mutations in the non-toxic genes 
avrA and popP1, resulting different in pathogenic abilities of the bacterial 
strain (race 1), which is beneficial for distinguishing physiological races. 
Among them, popP1 and popP2 are located on the pathogenic island of 
79 kb, while popP3 is located on the pathogenic island of 83 kb (Xu et al., 
2011). Among the analyzed proteomes of different Phytophthora species, 
Shands et al. (2024) found several orthogonal groups with the highest 
number of shared proteins (OG7457), and the conserved positive group 

TABLE 5 Primer information for transposon detection technology of F. oxysporum.

Pathogen Primer sequence (5′-3′) Fragment size (bp)

F. oxysporum Mg5:GGGGTCGGTTACATGGGTG 166

Mg6:CAACAACAAGGCGAAGAGGG

Ha3F:CCCTCCAACATTCAACAACTG 187

Ha3R:ATTCACTGTACACCAACCTTTT

TABLE 6 Primer information for pathogenicity-related genes technology of F. oxysporum.

Pathogen Primer sequence (5′-3′) Fragment size (bp)

F. oxysporum SIX1-F:GTATCCCTCCGGATTTTGAGC 992

SIX1-R:AATAGAGCCTGCAAAGCATG

SIX2-F:CAACGCCGTTTGAATAAGCA 749

SIX2-R:TCTATCCGCTTTCTTCTCTC

SIX3-F:CCAGCCAGAAGGCCAGTTT 608

SIX3-R:GGCAATAACCACTCTGCC

SIX4-F:TCAGGCTTCACTTAGCATAC 967

SIX4-R:GCCGACCGAAAAACCCTAA

SIX5-F:ACACGCTCTACTACTCTTCA 667

SIX5-R:GAAAACCTCAACGCGGCAAA

SIX6-F:CTCTCCTGAACCATCAACTT 793

SIX6-R:CAAGACCAGGTGTAGGCATT

SIX7-F:CATCTTTTCGCCGACTTGGT 862

SIX7-R:CTTAGCACCCTTGAGTAACT

FrlDel30F:GAGCGGGAGTTGAATTCTTG 204

FrlDel30R:AAGAGCCTGCTCCA GTTGAA
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only existed in the Pc2113 and Pc2109 isolates. Interestingly, a larger 
proportion of differentially expressed (DE) effectors were found in these 
orthogonal groups after pathogen infection, indicating that some of 
these effectors may play a conservative role in the pathogenicity of 
Phytophthora. The routine pathogen identification designs specific 
primers based on the differential loci between different genera of the 
pathogen, which is easy to operate and has obvious differential 
sequences, while the physiological race identification requires comparing 
the differential loci of virulence genes of the pathogen to design primers. 
Although knowledge on these genetic determinants was scarce until 
recently, it has considerably improved in the last decade.

3.6 Genomics based detection technology

Recently, genomics technology has provided sequence 
information on dominant pathogenicity for the identification and 
analysis of physiological races of vegetable soil borne pathogens. A 
comparison of the entire genome suggests that the effect pool of 
each template may determine host specificity. However, comparative 
genomics is the next step to identify host specificity in F oxysporum 
(Van Dam et al., 2016). We performed whole genome sequencing 
of 45\u00B0F. oxysporum strains and managed to differentiate 
forma speciales cucumerinum, niveum, melonis, radicis-
cucumerinum, and lycopersici on the basis of their effector pattern. 
Two years later, Van Dam et al. (2018) designed PCR primers to 
discriminate the seven forma speciales that affect Cucurbitaceae 
based on candidate effectors extracted from 82 genome assemblies. 
Zhang et al. (2014) used comparative genomics technique to design 
specific primers based on genome sequencing data of physiological 
races 1 and 2 of Brassica oleracea. They also confirmed the indeed 
differences in genome sequences between the two physiological 
races of B. oleracea. There is no doubt that expanding access to 
whole-genome sequences will continuously improve F. oxysporum 
host range identification. Therefore, for developing a rapid 
identification method for physiological races of pathogens is an 
ideal approach from the the perspective of searching for unique 
genes or fragments of different physiological races (Lievens et al., 
2008). Meanwhile, the classification of physiological races of 
pathogens at the molecular level will be  a major trend in 
future development.

4 Application of molecular detection 
techniques to detect pathogen load in 
soil

4.1 Pathogens load in soil

Soil is the main site for the growth and propagation of 
pathogenic or nonpathogenic microorganisms, resulting in 
continuous outbreaks of vegetable diseases (Yuan et  al., 2020). 
Therefore, it is very important to identify and measure the levels of 
pathogens in soil. The occurrence and severity of diseases are 
positively related to the population of pathogens in soil; therefore, 
accurate measurement of the pathogen population in soil is the 
premise for disease forecasting and effective control. Huang 
C. H. et al. (2016) reported the design of a TaqMan probe and PCR 

primers for the DNA sequence of the species-specific virulence gene 
SIX1. Further results showed there was a significant positive 
correlation between the severity of soil borne disease and the 
concentration of F. oxysporum DNA in soil. Almquist et al. (2016) 
used RT–qPCR to quantitatively detect Aphanomyces cochlioides 
DNA in field soil samples and found that the bacterial content in clay 
was lower than that in sandy soil. Lastra et al. (2018) used RT–qPCR 
to determine that the DNA content of F. solani in diseased strawberry 
soil was between 16 and 190 pg.·mg−1, which became an effective tool 
for early warning and prevention of soil disease before plant 
transplantation. Zhong et al. (2022) developed an RT–qPCR assay 
for F. oxysporum, revealing that the total DNA of pathogens in soil 
after CaCN2 (240 and 300 mg·cm3) treatment decreased from 11.26 
and 10.55 pg.·ng−1 to 4.21 and 4.01 pg./ng, respectively. Chen L. et al. 
(2022) determined that the Fusarium content of 8 out of 18 soil 
samples with Fusarium was 104–106 spores/g via PMA–qPCR, which 
provided a basis for the prediction of natural soil borne diseases. 
Chen L. D. et  al. (2022) reported that fumigation with calcium 
cyanamide could lead to a relative reduction in the populations of 
soil pathogens, such as Acremonium, Alternaria, Fusarium, 
Penicillium, and Verticillium, using heterotrophic plate counts, PCR 
and MiSeq high-throughput sequencing. C. cassiicola is a potential 
pathogen in soil. The C. cassiicola content in soil after CaCN2 and 
plastic film treatment decreased from 107 to 103 spores·g−1 via 
PMA-qPCR detection method (Xie X. et al., 2022). Gu et al. (2022) 
revealed that tomato bacterial wilt was induced by isolation of the 
tomato rhizosphere microbial community. Disease diagnosis could 
be performed two weeks earlier based on the abundance of 
pathogenic bacteria causing tomato wilt in the rhizosphere microbial 
group using high-throughput sequencing technology.

4.2 Pathogens load in plants

Soil borne pathogen-infected vegetables showed root rot, 
browning, withering and root damage. The detection of pathogens 
in plants can be used in molecular biology research, such as for 
disease prediction, pathogen control and determination of pathogen 
interaction mechanisms. Gao et al. (2019) detected V. dahliae species 
and different metabolic substances in soil using macrogenomics 
technology, revealing the pathogenic mechanism underlying plant 
diseases. Meng et al. (2016) used RT–qPCR technology to detect 
P. amygdali pv. lachrymans in cucumber leaves, which allowed rapid 
and easy early assessment of angular leaf spot disease. Kuang et al. 
(2017) designed LAMP primers for B. gladioli pv. alliicola based on 
the ITS gene, which became an effective technique for detecting the 
pathogen in onion plants. Zhu et al. (2016) reported the development 
of an RT–qPCR assay based on the mitochondrial small subunit 
rDNA of F. commune, which will facilitate monitoring of the 
pathogen and improvised disease management. Kim et al. (2017) 
designed specific primers for F. oxysporum sp. raphani (FOR2-F/
FOR2-R) and confirmed that the markers For610 and For425 could 
distinguish pathogenic F. oxysporum isolates. Klosterman et  al. 
(2009) quantitatively detected the change in DNA content of 
Verticillium wilt V. dahliae by RNAseq technology and confirmed 
that V. dahliae infection was caused by wounds or cracks in the 
lateral roots of plants. Zhou et al. (2022) revealed that cross-kingdom 
(fungi and bacteria) synthetic communities (SynComs) were more 
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effective in suppressing soil borne Fusarium wilt disease (FWD) 
than fungal or bacterial SynComs alone by plate isolation and 
culturing, RT–qPCR and high-throughput sequencing. Ten putative 
effectors were identified within FOC, including 7 SIX genes first 
reported in F. oxysporum f. sp. lycopersici, which can identify the 
types of pathogens in onion (Taylor et  al., 2016). A specific 
combination of hydrolysis probes/primers has been developed using 
virulence genes, which can distinguish Foc race 4 (Aguayo et al., 
2017). This new detection method can be used for plant regulatory 
detection applications.

4.3 Pathogens load in seeds

At present, there is a high demand for commercial vegetable 
seeds, leading to a higher probability of seeds carrying pathogens 
or long-distance transmission. Unlike the diagnosis of plant 
diseases, it is difficult to determine whether seeds carry 
pathogens because in most cases, infected seeds have no obvious 
symptoms of disease. In addition, the proportion of diseased 
seeds is small, and the distribution is uneven. All quarantine 
seeds do not conform to the actual situation. PCR technology is 
usually used for qualitative testing of most vegetable seed 
pathogens because it can detect even low DNA content of 
pathogens in diseased seeds and being discarded by the farm. 
Regarding, the occurrence of disease outbreaks and epidemics 
depends mainly on the number of seed carriers, suitability of the 
environment and host plant type (Lievens et al., 2008). Therefore, 
a sensitive, accurate and quantitative detection technology is 
needed to determine whether vegetable seeds carry pathogens to 
control the infection and spread of diseases from the root (Glynn 
and Edwards, 2010). The detection of vegetable seed-borne 
disease carriers requires a real-time detection technique with 
high sensitivity. The nested PCR-based technique could detect 32 
conidia in 100 seeds within 4 h, which is suitable for commercial 
seed quarantine technology (Chiocchetti et  al., 2001). 
Konstantinova et al. (2002) designed primers and confirmed that 
pathogens in carrot seeds contained pathogens such as 
A. radicina, A. dauci, and A. alternata using a PCR detection 
technique, which provided a favorable basis for the control of 
seed-borne vegetable diseases. Recently, some researchers have 
confirmed the existence of A. brassicae in cabbage and radish 
seeds by PCR and RT–qPCR techniques, where the pathogen 
DNA content was relatively high (Guillemette et al., 2004). The 
quantitative detection of V. dahliae in spinach seeds based on 
RT–qPCR allows the evaluation of seed infection rate up to 1.3%, 
providing a good technology for seed carrier quarantine and 
improved seed screening (Duressa et al., 2011). Sensitivity is very 
important in the detection of vegetable seed borne diseases. A 
new detection technique developed by Webb et al. (2014) has a 
sensitivity of 10 fg of pathogen DNA. Sousa et al. (2015) used 
RT–qPCR to detect and quantify the content of F. oxysporum f. 
sp. phaseoli in bean seeds, adding value to research on the spread 
of seed-borne pathogens. Tomato canker is a widespread and 
serious disease in vegetable production, especially due to the 
long-distance transmission of seed carriers that infect healthy 
plants. Wang et al. (2014) detected CMM in tomato seeds based 
on the RT–qPCR technique with high specificity and sensitivity. 

Ahmed et  al. (2017) successfully isolated Cladosporium spp., 
F. semitectum, F. oxysporum, Rhizoctonia spp., and Alternaria 
from vegetable seeds by using standard blotter paper and the agar 
plate technique. This will be  helpful for seed treatment with 
appropriate fungicides before sowing to overcome the loss caused 
by seed-borne fungi. A specific set of PCR primers was developed 
using IR-SCAR, which could uniquely amplify F. oxysporum race 
1 from lettuce seeds in Italy, Portugal, the United States, Japan, 
and Taiwan (Sousa et al., 2015).

5 Conclusions and perspectives

Herein, we  reviewed the recent progress of various molecular 
detection techniques for vegetable soil borne pathogens (PCR, 
nested-PCR, multiplex PCR, etc.) and their physiological races (host 
identification, DNA molecular markers, transposon detection, etc.), 
explaining the advantages and disadvantages of each detection 
technique. Furthermore, the paper comprehensively introduces the 
application of molecular detection technology in soil borne pathogen 
detection of soil, plants, and seeds. This paper will provide a value 
reference for future detection technique development for disease 
prevention and management of vegetable soil borne pathogen.

However, the applicability of soil borne pathogen and their 
physiological races detection is determined by technique 
sensitivity, planting variety, actual local conditions, etc. If possible, 
comparative genomics technology will be used in the further to 
analyze the entire genome data of various physiological races of 
soil borne pathogens, identify specific fragments and design 
specific primers to identify target strains, which will overcome the 
difficulty of identifying different physiological races of soil borne 
pathogens. Moreover, nowadays most of vegetables usually only 
have resistance to a certain physiological race of the pathogen, and 
this resistance may be overcome by more virulent physiological 
races, leading to more severe disease symptoms in the host crop. 
In the future more hosts will be used for pathogenicity assessment 
to screen vegetable insensitive or less-sensitive varieties to local 
dominant physiological race pathogens, thereby reducing 
economic losses and also provide important materials for disease 
resistance breeding (Pang et  al., 2020; Schwelm and Ludwig-
Muller, 2021). Furthermore, the objects polymorphism and 
adaptability of complex detection environments still need to 
be  improved. It is necessary to focus on the ability of various 
detection methods to adapt to multi-objective and complex 
environments, improve the accuracy and efficiency. For 
researchers, the CRISPR/Cas12a method has its own advantages 
and good detection efficiency in detecting soil borne pathogens. 
For farmers, microscopic detection methods are more common 
and cost-effective. Therefore, precise detection of pathogens is not 
a single method. In practical applications, multiple methods need 
to be  combined to improve the accuracy and reliability of 
detection. For example, preliminary detection can be conducted 
through a microscope, followed by validation and confirmation 
using the CRISPR/Cas12a method. The rapid progress of 
molecular detection technique for vegetables soil borne diseases 
will continuously promote the improvement of vegetable yield and 
quality, providing new vitality for green and sustainable 
development of the vegetable industry.
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