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Introduction: Liver cirrhosis (LC) and hepatocellular carcinoma (HCC) resulting

from chronic hepatitis B virus (HBV) infection are major health concerns.

Identifying critical biomarkers andmolecular targets is needed for early diagnosis,

prognosis, and therapy of these diseases.

Methods: In this study, we explored the gene expression and metabolism in the

liver tissues of LC, HCC, and healthy controls, to analyse and identify potential

biomarkers of disease progression. Mass spectrometry imaging was used to

evaluate the spatial distribution of key metabolites.

Results and discussion: The results revealed significant changes in gene

expression and metabolic pathways along with disease progression. The

upregulated genes were associated with extracellular matrix remodeling and

cancer pathways, including LAMC1-3, COL9A2, COL1A1, MYL9, MYH11, and

KAT2A. The downregulated genes were linked to immune response and fatty

acid metabolism. Metabolomic analysis showed major changes in lipid and

choline metabolism. Consistent changes in the expression of specific genes and

metabolites were correlated with clinical data. Notably, metabolites such as L-

acetylcarnitine, histamine, and 4-trimethylammoniobutanoic acid demonstrated

high accuracy (AUC > 0.85) in distinguishing between healthy, LC, and HCC

groups. This study identifies key gene and metabolite changes in HBV related

LC and HCC, highlighting critical pathways involved in disease progression.

Biomarkers like L-acetylcarnitine and KAT2A show promise for early diagnosis

and prognosis, potentially improving outcomes for hepatitis liver disease

patients.

KEYWORDS

hepatitis B virus, liver cirrhosis, hepatocellular carcinoma, transcriptomic,metabolomic,
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1 Introduction

Liver diseases, particularly liver cirrhosis (LC) and hepatocellular carcinoma (HCC),

represent significant global health challenges, with increasing morbidity and mortality

rates (Nartey et al., 2022). These conditions are often the result of chronic liver damage

due to various etiologies, including viral infections, excessive alcohol consumption, and

metabolic disorders (Wu X. N. et al., 2024). Among these, hepatitis B virus (HBV) infection
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is a predominant cause, especially in regions with high HBV

prevalence. According to the WHO, nearly 300 million people

worldwide are affected by HBV infection, which lead to severe liver

complications (Hsu et al., 2023). Liver cirrhosis is characterized

by widespread fibrosis, nodular regeneration, and the formation

of abnormal liver architecture, known as pseudolobules (Pinzani

et al., 2011). The progression from chronic hepatitis to cirrhosis

and ultimately to HCC is marked by significant alterations

in liver tissue architecture and cellular processes, including

proliferation, apoptosis, angiogenesis, and the immune response

(Llovet et al., 2021). Understanding the molecular mechanisms

underlying this progression is crucial for identifying potential

biomarkers and therapeutic targets to improve early diagnosis and

treatment outcomes.

Previous studies have highlighted the role of specific gene

expression changes and metabolic reprogramming in the

progression of liver diseases. Studies have identified distinct

metabolic signatures associated with this transition (Fan et al.,

2021). One notable change is the dysregulation of amino acid

metabolism, with increased levels of serine, glycine, and creatine

observed in HCC compared to liver cirrhosis (Xie et al., 2022).

Additionally, elevated levels of cystathionine and linoleic acid have

been reported in HCC relative to cirrhotic liver tissues (Cai et al.,

2020). These alterations are linked to the differential expression

of enzymes such as AGXT2, DAO, CTH, BPGM, CBS, PSPH,

and ACOT7, which play roles in amino acid metabolism (Cai

et al., 2020). Lipid metabolism also undergoes substantial changes

during the transition from cirrhosis to HCC, with dysregulation

of glycerolipid, glycerophospholipid, and fatty acid metabolism

pathways (He et al., 2022; Pu et al., 2023), aberrant activation of

signaling pathways such as the Wnt/β-catenin and Hedgehog, and

alterations in the extracellular matrix (ECM) have been implicated

in the pathogenesis of LC and HCC (Gajos-Michniewicz and

Czyz, 2024). The upregulation of enzymes involved in fatty

acid biosynthesis and lipogenesis, such as FASN and ACC, has

been observed in HBV-associated HCC (Cheng et al., 2024).

Furthermore, alterations in glycan biosynthesis and metabolism

pathways contribute to the metabolic reprogramming associated

with hepatocarcinogenesis (Cheng et al., 2024). These metabolic

shifts are closely intertwined with the dysregulation of key signaling

pathways, including PI3K/Akt, mTOR, and HIF-1α, which play

crucial roles in regulating cellular metabolism, proliferation, and

survival (Hoxhaj and Manning, 2020). However, there is still a

need for a more integrated analysis that combines transcriptomic

and metabolomic data to elucidate the interplay between genetic

and metabolic changes during disease progression.

Recent advances in high-throughput technologies, such as

transcriptomics and metabolomics, have provided comprehensive

insights into the molecular changes associated with liver diseases

(Liang and Song, 2023). Transcriptomic analysis allows for the

examination of gene expression profiles, revealing key regulatory

pathways and gene networks involved in disease progression.

Metabolomics, on the other hand, provides a detailed snapshot of

metabolic alterations, reflecting the functional state of cells and

tissues. However, traditional metabolomics studies mainly provide

bulk information of metabolites in specific samples, which often

lack spatial characteristics within organs as diseases progression.

Understanding the spatial distribution of metabolites and the

underlying signaling pathways is essential for elucidating the

heterogeneity of HBV-related liver diseases and for constructing a

comprehensive spatial metabolic network within the liver.

The metabolic reprogramming observed during the transition

from HBV-induced liver cirrhosis to HCC provides potential

biomarkers for early detection and therapeutic targets. In this

context, the integration of transcriptomic and metabolomic data

offers a synergistic approach to comprehensively characterize

the molecular changes occurring during the transition from

HBV-induced liver cirrhosis to HCC. By correlating gene

expression patterns with metabolic alterations, researchers can

identify potential biomarkers for early detection and targets for

therapeutic intervention, ultimately improving clinical outcomes

for patients with chronic HBV infection. In this study, we aimed

to investigate the molecular and metabolite alterations using a

combined transcriptomic and untargeted metabolomic approach.

By analyzing liver tissue samples from the healthy control,

liver cirrhosis and hepatocellular carcinoma groups, we sought

to identify key genes and metabolic pathways associated with

disease progression. In addition, mass spectrometry imaging was

further applied to elucidate the spatial distribution of metabolites

during disease progression. Moreover, the predictive value of

key metabolites and genes was also evaluated to uncover the

potential biomarkers role for early detection, and to explore new

therapeutic targets.

2 Materials and methods

2.1 Sample collection and preparation

Liver tissues from 15 patients with HBV related liver cirrhosis

(LC), eight patients with HBV related hepatocellular carcinoma

(HCC), and eight healthy controls (HC) were collected postsurgery

at Shenzhen People’s Hospital from January 2022 to July 2023. The

study complied with the ethical guidelines of the Declaration of

Helsinki and received ethical approval from the ethics committees

of Shenzhen People’s Hospital (LL-KY-2021723), and informed

consent was obtained from all participants. The clinical data

for all participants are presented in Figure 1. All patients tested

positive for HBV infection, which was confirmed by detecting

the HBV copy number and Hepatitis B surface antigen (HBsAg).

For mass spectrometry imaging, the samples were embedded

in OCT and sectioned into 10µm thick slides using a Leica

CM1950 cryostat microtome. At least three slides designated for

hematoxylin and eosin (H&E) staining, positive ionization mode,

and negative ionization mode of MSI were generated for each

sample. For LC-MS/MS, samples were homogenized and extracted

using an isotope-labeled internal standard mixture extraction

solution (acetonitrile: methanol= 1:1).

2.2 AFAI-MSI

Mass spectrometry imaging (MSI) assays were performed using

a custom-made AFAI ion source coupled with a Q-Exactive mass

spectrometer (Thermo Fisher Scientific). The spray solvent mixed

with acetonitrile and water (8:2, v/v) and additional added 0.1%
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formic acid at a flow rate of 5 µL/min. Nitrogen was used as the

spray gas at a rate of 45 L/min, and the capillary temperature was

set at 350◦C. The MSI was performed by scanning the tissue slides

at 200 and 100µm in the x-direction and y-direction, respectively.

2.3 Untargeted metabolomic study

The LC-MS/MS analysis was executed using a Vanquish

UHPLC system (Thermo Fisher Scientific), coupled to an Orbitrap

Exploris 120 mass spectrometer (Thermo Fisher Scientific).

Chromatography was performed in gradient mode and solvent

A consisted of 25 mmol/L ammonium acetate and 25 mmol/L

ammonia in water, while solvent B was acetonitrile. The injection

volume was 2 µL and the flow rate was set at 0.5 mL/min. The

column temperature was set at 30◦C and the auto-sampler was

maintained at 4◦C. The initial gradient was 95% solvent B for

0.5min, then decreased from 95 to 65% over 0.5–7min, further

decreased to 40% over 7–8min, held at 40% B for 8–9min, and

reverted back to 95% B over 9–12 min.

The MS/MS spectra were managed with Xcalibur 4.4

acquisition software (Thermo Fisher Scientific). The sheath gas and

auxiliary gas flow rates were at 50 Arb and 15 Arb, respectively. The

capillary temperature was set at 320◦C. The full MS resolution was

at 60,000, the MS/MS resolution was at 15,000, and the collision

energy set at 10/30/60 in NCE mode. The spray voltage was set to

3.8 kV for positive mode and−3.4 kV for negative mode.

2.4 RNA extraction and library construction

Total RNA was extracted from tissues using TRIzol (Life

Technologies) according to the manufacturer’s instructions. RNA

concentration and quality were measured with an Agilent 2100

Bioanalyzer. The samples with an RNA integrity number (RIN) >

5.0 were used for RNA-seq library preparation. The cDNA library

was constructed using the TruSeq RNA Library Preparation Kit

following themanufacturer’s instructions (Illumina, SanDiego, CA,

USA) and checked with an Agilent 2100 Bioanalyzer. Subsequently,

the Illumina HiSeq 2500 sequencing platform was used to sequence

the library.

2.5 Real time quantitative PCR

To validate target gene expression in tissue samples, addition

4 HC, 6 LC, and 6 HCC samples were included for q-PCR.

Briefly, total RNA was extracted using TRIzol (Life Technologies)

according to the manufacturer’s instructions. RNA concentration

and quality were measured with Nanodrop one (Thermo

Scientific). The reverse transcription reaction was performed with

a cDNA synthesis kit (Transgen, AT341) for 15min at 42◦C.

The q-PCR reaction was prepared following the manufacturer’s

instruction (Transgen, AQ601) and the value was calculated by

the 2-11CT method. The primer sequences for AGXT2, CFHR4,

KAT2A, MYL9 and GAPDH genes used in q-PCR are listed in

Supplementary Table S1.

2.6 Data analysis

2.6.1 Transcriptomic data analysis
Raw sequencing data in FASTQ format were firstly processed

through in-house perl scripts. In this step, clean data (clean reads)

were obtained by removing reads containing adapters, reads

with poly-N sequences, and low-quality reads from the raw data.

Simultaneously, Q20, Q30, GC content, and sequence duplication

levels of the clean data were calculated. All downstream analyses

were performed using high-quality clean data. The Homo sapiens

GRCh38 reference genome (ftp://ftp.ensembl.org/pub/release87/

fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.toplevel.fa.

gz) was utilized as the reference for aligning the clean reads. Gene

expression levels were quantified using fragments per kilobase of

transcript per million fragments (FPKM) mapped. Differentially

expressed genes (DEGs) were identified with p-value < 0.05

and |log2(fold change)|>1. Enrichment analysis of DEGs was

performed using Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG). The Gene Set Enrichment Analysis

(GSEA) was employed for the enrichment analysis of all genes.

These analyses were conducted utilizing the enrichplot package

in R.

2.6.2 Metabolomic data analysis
The raw data were converted to the mzXML format using

ProteoWizard and processed with an in-house program, which was

developed using R and was based on XCMS, for peak detection,

extraction, alignment, and integration. Metabolite annotation was

carried out using databases such as HMDB, MONA, METLIN,

and an in-house MS2 database (BiotreeDB, Shanghai), with a cut-

off score set at 0.3. Differentially abundant metabolites (DAMs)

were selected based on a p < 0.05 (Student’s t-test) and VIP >1

from orthogonal partial least squares discriminant analysis (OPLS-

DA). Enrichment analysis of DAMs was performed using Kyoto

Encyclopedia of Genes and Genomes (KEGG) by ggplot2 package

in R.

For mass spectrometry imaging (MSI), the raw data files

were converted into.cdf format and analyzed using homemade

imaging software (MassImager, Beijing, China), following a

previously reported method (He et al., 2018). Metabolites were

annotated using the pySM pipeline and an in-house SmetDB

database (Lumingbio, Shanghai). OPLS-DA and partial least-

squares discriminant analysis were used to identification and

selection of DAMs, based on p < 0.05 (Student’s t-test and one-

way ANOVA Dunnett’s test) and VIP > 1. Enrichment analysis

of DAMs was performed using Kyoto Encyclopedia of Genes and

Genomes (KEGG) by ggplot2 package in R.

2.6.3 Statistical analysis
All statistical analyses were conducted using GraphPad Prism

9.0 (San Diego, CA, USA) and R software (v4.1.0). Quantitative

results are expressed as the mean ± standard deviation. Student’s

t-test was utilized for comparisons between two groups, while

one-way ANOVA was employed for multiple group comparisons.

Statistical significance is indicated by p < 0.05.
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3 Results

3.1 Characteristics of recruited participants

This study included 12 liver cirrhosis (LC), eight hepatocellular

carcinoma (HCC), and seven healthy control liver tissue samples

for transcriptomic and untargeted metabolomic studies. Clinical

data for these participants are summarized in Figures 1D–F. All

participants tested positive for HBsAg or HBV copy number,

indicating that HBV infection was a key risk factor for liver

cirrhosis and cancer. Elevated levels of alanine transaminase

(ALT), aspartate aminotransferase (AST) and total bile acid

(TB) level were observed in most patients. Notably, the

carcinoembryonic antigen (CEA) and α-fetoprotein (AFP)

levels increased in the HCC group. Conversely, total protein

(TP) and cholinesterase (CHE) levels significantly decreased in

most patients. The Child-Pugh and MELD scores calculated

based on clinical data and ultrasound results, demonstrated the

liver condition of the participants and confirmed cirrhosis and

tumor formation.

3.2 Alternation of gene expression in liver
cirrhosis

Liver tissue samples from the HC, LC and HCC groups were

subjected to transcriptomic studies, as shown in the workflow in

Figure 1A. Principal component analysis (PCA) results revealed

three distinct clusters for each group, with the HC group clearly

separated from the LC and HCC groups (Figure 1B), validating

the accuracy of sequencing and the differing conditions among

the groups. Most of the detected genes were shared among the

three groups (17,485), with only a few hundred genes unique to

each group (Figure 1C). Based on the |Log2FC| > 1 and p <

0.05, DEGs were identified in LC and HCC groups compared to

the HC group. In the LC group, 1,087 genes were significantly

upregulated and 816 were downregulated (Figure 2A). The KEGG

enrichment analysis of all DEGs indicated that the pathways

were mainly enriched in metabolism, including the biosynthesis

of unsaturated fatty acids, fatty acid degradation and steroid

biosynthesis (Figure 2B). Both upregulated and downregulated

genes were primarily enriched in KEGG classifications related to

lipid metabolism cancer overview and viral infection (Figure 2C;

Supplementary Figure S1A). The top enriched pathways for

upregulated genes included focal adhesion, regulation of actin

cytoskeleton, ECM-receptor interaction and pathway in cancer,

indicating changes in liver structure from the normal hepatic

lobule to the pseudo lobule (Figures 2D, E). Highly expressed

genes in the LC group included COL9A2, LAMC2, LAMC3,

and MYL9, which are related to ECM formation (Figure 2F).

In contrast downregulated genes were enriched in complement

and coagulation cascades, biosynthesis of unsaturated fatty acids

and fatty acid degradation pathways (Supplementary Figure S1B).

The key downregulated genes included the CFHR family genes

(CFHR3-5), which are involved in complement activation, and

ACSL1, ACSL3, and ACSL4, which regulate fatty acid synthesis

and also metabolite profile-associated enzyme AGXT2, ACSS2, and

ACSS3. The gene set enrichment analysis (GSEA) also highlighted

focal adhesion and Hedgehog signaling pathways, which are

associated with tumorigenesis. Overall, gene alternations in the

LC group facilitated disease progression and the formation of

pseudo lobule.

3.3 Gene expression alternation participate
tumorigenesis

To assess whether gene expression changes in HCC followed

a similar trend, we compared DEGs and enrichment pathways in

the HCC group. In HCC, 340 genes were upregulated and 460

were downregulated (Figure 3A). KEGG enrichment analysis of all

DEGs revealed that the pathways related to metabolism, including

biosynthesis of unsaturated fatty acids, fatty acid degradation

and steroid biosynthesis, were similarly enriched in HCC group

(Figure 3B). The top KEGG classifications for both upregulated

and downregulated genes were lipid metabolism, cancer overview

and viral infection, similar to those enriched in the LC group

(Figure 3C; Supplementary Figure S2A). These findings suggest

that continued HBV infection plays a key role in tumorigenesis.

The top enriched pathways for the upregulated genes included

focal adhesion, regulation of actin cytoskeleton and pathway

in cancer (Figure 3D), as well as the key upregulated genes

included LAMC1, MYL9, COL1A, and KAT2A which, regulate

ECM formation and actin skeleton (Figures 3E, F). Downregulated

genes included CFHR family genes (CFHR3-4) and complement

family genes (C4A-B, C6, C9), which are involved in complement

and coagulation cascades (Supplementary Figures S2C, D). The q-

PCR validation indicated the significant upregulation of MYL9 and

KAT2A expression and downregulation of CHFR4 and AGXT2

(Supplementary Figure S3).

3.4 Disease progression and gene
expression patterns

After separately comparing gene expression alternations in the

LC and HCC groups, we conducted the time series analysis to

identify genes with continued rising or decreasing expression trend

to elucidate the effect of disease progression on gene expression

patterns. Time series analysis identified nine clusters of genes,

with cluster 6 (189 genes) showing a continued increase in

expression, and cluster 4 (109 genes) and cluster 9 (196 genes)

exhibiting a decreasing trend (Figure 4A). GO enrichment analysis

of the genes with increased expression indicated enrichment

in cellular component (CC) category with extracellular space,

collagen trimer, collagen-containing extracellular matrix pathways

(Supplementary Figure S4A). Combining the two continuously

decreasing clusters, the GO enrichment results revealed pathways

such as immune response and inflammatory response in the

biological process (BP) category (Supplementary Figure S4B).

Metascape analysis was used to identify protein-protein interaction

(PPI) and hub genes among genes with both increasing and

decreasing expression patterns. In the increasing expression

pattern, the enriched pathways included amino acid metabolism
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and secondary metabolic process (Figure 4B). Three MCODEs

are involved in the regulation of kinase activity, regulation of

transferase activity and peptidyl-tyrosine phosphorylation. Hub

gene such as KAT2A was also among the top increased genes

in both LC and HCC groups (Figure 4C). In clusters 4 and 9,

genes showed a decreasing expression trend, with GO enrichment

analysis indicating similar results concentrating on inflammatory

response, immune response and lipid metabolism (Figures 4D,

F). The MCODEs in cluster 4 were related to immune and

inflammatory response, while cluster 9 was associated with

steroid metabolism process and glucuronate metabolic process

(Figures 4E, G). The expression of several hub genes, such as

CXCR2 and TLR2 was correlated with immune response. To test

whether the gene expression pattern correlated with clinical data

and had the potential diagnostic value, we analyzed the correlation

between genes with increasing or decreasing trends and clinical

data. The top 10 correlated genes from increasing expression

pattern were mostly negatively correlated with prealbumin (PA)

and cholinesterase (CHE), and positively correlated with total

bile acid (TB). Additionally, APOE, NDUFA3 and GNAS were

positively correlated with CA153, CA199 and CA125 (Figure 4H).

Conversely, cluster 4 genes had less correlation with the clinical

data, while genes from cluster 9 had opposite correlations with PA,

CHE and TB (Figures 4I, J). These results demonstrated that disease

progression affects gene expression patterns, leading to continuous

alternation of key genes that regulate immune response and

metabolic processes.

3.5 Metabolic alternations in LC and HCC

The transcriptomic study indicated the alternations of several

metabolic pathways, including the biosynthesis of unsaturated

fatty acids, fatty acid degradation and amino acid metabolism.

Therefore, an untargeted metabolomic study was conducted to

determine changes in metabolic pathways and key metabolite

alternation patterns during disease progression and to elucidate

the correlation between metabolites and gene expression. In

total 599 metabolites were identified using LC-MS/MS and were

divided into 13 classes. The top two classes were organic acids

and derivatives (31.39%) and lipids and lipids-like molecules

(28.55%) (Figure 5A). These two classes were further divided into

7 and 9 subclasses, respectively, with amino acid, peptides and

analogs and glycerophosphocholines being the most abundant

(Figures 5B, C). Based on VIP > 1 and p < 0.05, differentially

abundant metabolites (DAMs) were selected for the LC and

HCC groups compared to the HC group. Differential abundance

scores (DA scores) were calculated for DAMs in the LC and

HCC groups. The results indicated significant upregulation in

the choline metabolism in cancer pathway for both the LC and

HCC groups, as well as glycerophospholipids metabolism in the

LC group (Figures 5D, F). The top 10 up- and downregulated

metabolites were amino acids and glycerophospholipids, such

as PC and LysoPC (Figures 5E, G). To evaluate whether the

metabolites had similar expression pattern to those of genes,

we conducted the time series analysis of the metabolites. The

results revealed that four clusters (clusters 1, 5, 7, and 10)

exhibited an increasing expression pattern, while one cluster

(cluster 9) exhibited a decreasing pattern. The metabolites with

increased expression pattern were PCs, lysoPCs and carnitines,

whereas those with decreased expression were mostly organic acids

(Figures 6A, B).

3.6 Correlation between gene expression
and metabolism

To investigate whether the gene expression patterns affected

metabolite expression, we analyzed correlations between up-and

downregulated genes and metabolites with similar expression

patterns, clustering correlation heatmaps and correlation network

maps were generated. The clustering correlation heatmap

with signs and correlation network were created using the

Cloud.oebiotech tools at https://cloud.oebiotech.com/#/bio/

tools. The clustering correlation heatmap was selected based on

Pearson’s r > 0.6. For the upregulated pattern, genes such as

NR2F6, APOE, NDUFS8, CYP2A7, ANGPTL4, and SLC43A1

were significantly positively correlated with several carnitine

metabolites, including L-acetylcarnitine, stearoylcarnitine,

trans-hexadec-2-enoylcarnitine and tetradecanoylcarnitine

(Figure 6C). Conversely, in the downregulated pattern, S100A8

and S100A9 were closely correlated with hippuric acid, and

NNMT, CES1, and F9 were positively correlated with uridine

(Figure 6E). A correlation network between gene and metabolite

expression was established based on Pearson’s r > 0.75 and

p < 0.05. For the upregulated pattern, the metabolites were

mainly carnitine, PC, lysoPC and histamine (Figure 6D). Organic

acids predominated in the downregulated network (Figure 6F).

Given the significant correlation of several carnitine metabolites

with the upregulated expression pattern, all identified carnitine

metabolites were evaluated. Among the six identified carnitine

metabolites, L-acetylcarnitine, trans-hexadec-2-enoylcarnitine and

tetradecanoylcarnitine exhibited significantly increased expression

with disease progression (Figure 7A). Meanwhile, genes regulating

carnitine metabolism, such as CPT1A and CPT1C, exhibited a

similar increasing expression pattern (Supplementary Figure S5A).

To further validate expression patterns in relation to disease

progression, mass spectrometry imaging (MSI) was employed

to assess the spatial distribution of upregulated metabolites.

In combination with hematoxylin-eosin staining, regions

encompassing hepatic lobules, pseudo lobules, and tumor areas

were selected across HC, LC, and HCC groups. The four detected

metabolites L-acetylcarnitine, PC (16:0/16:0), histamine, and

4-trimethylammoniobutanoic acid exhibited a progressive increase

in concentration from hepatic lobules to tumor regions (Figure 7B;

Supplementary Figure S5B). These findings indicate that, with

disease progression, lesion areas demonstrate significant alterations

in the spatial distribution of these metabolites. The predictive value

of these four metabolites was evaluated using receiver operating

characteristic (ROC) curves to distinguish different disease

stages. With the exception of PC (16:0/16:0), three metabolites

achieved AUC > 0.85 for distinguishing the HC, LC and HCC

groups (Figure 7C). Additionally, KAT2A and CXCR2 selected

from up- and downregulated expression patterns and closely
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FIGURE 1

Study workflow and the clinical data of patients. (A) Overview of the study workflow. (B) PCA results for healthy controls (HCs), patients with HBV

related liver cirrhosis (LC) and hepatocellular carcinoma (HCC). (C) Overlap of genes among the three groups. (D-F) Clinical data for the HC (D), LC

(E), and HCC groups (F).
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FIGURE 2

Changes in gene expression in the HBV related liver cirrhosis. (A) Volcano plot of di�erentially expressed genes (DEGs) in liver cirrhosis. (B) Circos

map of DEGs. The circles from inside to outside represent the enrichment factor, the ratio of up- and downregulated genes, background genes,

p-value and KEGG level 1 classification. (C) KEGG pathway classification of upregulated genes in liver cirrhosis. (D) Top 20 KEGG enrichment items

for upregulated genes in liver cirrhosis. (E) Circos plot of the top upregulated genes and related KEGG pathways in liver cirrhosis. (F) Heatmap of

selected upregulated DEGs and key pathways involved in HBV related liver cirrhosis.
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FIGURE 3

DEG analysis in the HBV related HCC group. (A) Bar plot of DEGs in HCC group. (B) GO enrichment analysis of up- and downregulated genes in HCC

group. (C) Metascape analysis compared the signal pathways of DEGs in HCC group. (D) Top 20 KEGG enrichment items for upregulated genes in the

HCC group. (E) Circos plot of the top upregulated genes and related KEGG pathways in the HCC group. (F) Heatmap of selected upregulated DEGs

and key regulated pathways in the HCC.
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FIGURE 4

Gene expression pattern during disease progression and clinical correlation. (A) Time series analysis of gene expression patterns among the HC, LC

and HCC groups. (B) Metascape enrichment analysis of genes with increasing trends. (C) Protein-protein interaction (PPI) analysis highlighting hub

genes among the genes with increasing trends. (D, F) Metascape enrichment analysis of genes with decreasing trends. (E, G) PPI analysis of the hub

genes among the genes with decreasing trends. (H–J) Correlations of increasing (H) and decreasing (I, J) trend genes with clinical data. *P < 0.05,

**P < 0.01, ***P < 0.001.
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FIGURE 5

Metabolite distribution in the HBV related LC and HCC groups. (A) Total metabolites and their classification. (B) Subclassification of organic acids and

derivatives. (C) Subclassification of lipids and lipid-like molecules. (D, F) Di�erential abundance scores of metabolites in the LC (D) and HCC (F)

groups. (E, G) Analysis of the top regulated metabolites in the LC (E) and HCC (G) groups. *P < 0.05, **P < 0.01, ***P < 0.001.

correlated with metabolites, were evaluated for prognosis in HCC.

TCGA database analysis revealed that KAT2A expression was

significantly increased, while CXCR2 had the opposite expression

pattern (Supplementary Figure S5C). High KAT2A expression

in high-grade patients significantly reduced survival time from

a median of 6.9 years (low grade and low expression) to 1.1

years (Figure 7D). Conversely, high-grade patients with lower

CXCR2 expression exhibited shorter survival times, ranging

5.6–1.5 years (Figure 7E). Therefore, metabolites and genes with

up- or downregulated expression patterns have the potential

to predict clinical outcomes and can be further developed as

diagnostic markers for the early detection of HBV related LC

and HCC.

4 Discussion

In this study, we employed a multiomics approach to

comprehensively analyze the molecular landscape of liver cirrhosis

(LC) and hepatocellular carcinoma (HCC). Our transcriptomic

analysis revealed substantial differences in gene expression patterns

across the healthy control (HC) and disease groups. Most

genes were commonly expressed across all groups (17,485), and

each group exhibited unique gene expression profiles, indicating

dynamic alterations during disease progression. Differential

expression analysis identified 1,903 and 800 genes as significantly

altered in LC and HCC, respectively, with distinct upregulation

(e.g., 1,087 in LC and 340 in HCC) and downregulation patterns
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FIGURE 6

Metabolite expression patterns during disease progression and gene correlation. (A, B) Time series analysis of metabolite expression patterns among

the HC, LC and HCC groups, metabolites with increasing trends in expression metabolites (A), and metabolites with decreasing trends in expression

(B). (C, E) Correlations between metabolites and gene expression for increasing (C) and decreasing trends (E). (D, F) Interaction network between

metabolites and genes expression (R > 0.75), for increasing (D), and decreasing trends (F). *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 7

Metabolite spatial distribution changes during disease progression and the prediction value of selected metabolites and genes. (A) Expression of

carnitine metabolites with disease progression. (B) Spatial distribution of metabolites with increasing trends. (C) AUC curve of key metabolites. (D, E)

Expression and survival curves of increasing (D) and decreasing (E) trend genes from the TCGA database. ****P < 0.0001.
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(e.g., 816 in LC and 460 in HCC). These findings align with

previous studies highlighting the extensive transcriptional changes

associated with chronic hepatitis B infection (Yang et al., 2022).

Moreover, the DEGs from tissues general have larger number

compared to DEGs from plasmas (Kuang et al., 2024). Enrichment

analysis of KEGG class revealed that genes related to the immune

system, lipid metabolism, pathway in cancer and viral infection

were particularly affected, emphasizing their roles in tumor

development and the viral response. A study comparing chronic

hepatitis B (CHB) and acute-on-chronic liver failure (ACLF)

found that immunometabolism were significantly enriched in

downregulation pathways during the progression from CHB to

ACLF, including amino acid metabolism, fatty acid metabolism,

and peroxisome metabolism (Yang et al., 2022). Our results

revealed that the biosynthesis of unsaturated fatty acids, fatty

acids degradation and peroxisome pathways were also enriched

among the downregulated genes. In addition, many studies have

confirmed that liver cirrhosis is associated with decreased both

circulating lipid and hepatic lipid accumulation (Chrostek et al.,

2014; Meikle et al., 2015), as supported by the downregulation

of fatty acid biosynthesis pathways. It has been reported that

the liver produces most complement factors, such as C3 and

C4, which are produced by hepatocytes (Thorgersen et al.,

2019). Chronic hepatitis B infection disrupts both the innate

and adaptive immune systems (Albillos et al., 2022), which

contributes to liver cirrhosis due to decreased production of

complement proteins like C3 and C4. Notably, the complement

and coagulation cascade, critical for liver homeostasis, showed

downregulation in both LC and HCC, indicating impaired liver

function and disease progression. A broad range of CHB patients

with different disease severities showed a decreasing trend in C3

level with disease progression, suggesting that the liver injury

affects on complement system (Chen et al., 2023). The production

of complement proteins, such as albumin, can be reduced in

patients with HBV related liver cirrhosis (Homann et al., 1997).

Our clinical data corroborate these findings, showing reductions

in total protein, albumin, and globulin levels. In the contrast,

enrichment analysis revealed that upregulated genes in both LC

and HCC groups were enriched in pathways related to cell

adhesion, actin cytoskeleton regulation, and extracellular matrix

(ECM) interactions, which are crucial for ECM remodeling.

The progression of cirrhosis changes the structure of the liver,

replacing normal cells with scar tissue (Pellicoro et al., 2014;

Albillos et al., 2022). Hepatic stellate cells (HSCs) play a crucial

role in the development of liver fibrosis and cirrhosis. When

the liver is injured, these cells become active and transform

into myofibroblast-like cells, which produce large amounts of

extracellular matrix (ECM), including proteins like collagen and

laminins (Hintermann and Christen, 2019). The deposition of

ECM proteins, leads to scar tissue formation and distorts the

liver’s structure, resulting in the characteristic pseudolobules

observed in cirrhosis (Cui et al., 2014). Overall, changes in

various pathways, such as decreased fatty acid metabolism and

complement production, along with increased ECM remodeling,

drive the structural changes in the liver, promoting cirrhosis and

tumor formation.

Further analysis focused on identifying key genes and pathways

associated with the transition from LC to HCC. Upregulated

genes in both conditions included ECM-related genes (COL1A1,

COL9A2, LAMC1, LAMC2, LAMC3), reinforcing their role in

ECM remodeling and disease progression. The downregulated

genes included those in the CFHR, complement, and acyl-CoA

synthetase long-chain families, indicating suppressed complement

function and fatty acid synthesis. Through time series analysis, we

identified clusters of genes with increasing or decreasing expression

patterns. Hub genes like KAT2A was prominent in the upregulated

clusters and were closely related to critical metabolic processes.

Several studies have indicated that KAT2A is overexpression in

multiple cancers compared with adjacent tissues, including liver

cancer (Majaz et al., 2016), colon adenocarcinoma tissues (Yin et al.,

2015), and non-small cell lung cancer tissues (Chen et al., 2013).

Conversely, decreasing KAT2A expression can significantly reduce

the proliferation and migration of cancer cells and the growth of

xenograft tumors (Zhao et al., 2018; Lin et al., 2022). In the present

study, KAT2A expression in the TCGA database indicated that

KAT2A overexpression in HCC was linked to poor survival time.

A study showed that KAT2A promotes HBV transcription through

covalently closed circular DNA (cccDNA)-bound succinylated

histone H3K79 (Qin et al., 2022). Taken together, these studies

suggest KAT2A can be potential as a prognostic biomarker for the

disease progression and needs further validation.

Metabolomic profiling identified key metabolites and pathways

altered in liver cirrhosis and hepatocellular carcinoma, provided

insights into the metabolic reprogramming associated with

diseases and complemented transcriptomic findings by identifying

significant alteration of metabolites. Our metabolomic profiling

revealed significant changes in metabolites associated with

organic acids and derivatives (31.39%) and lipids and lipids-

like molecules (28.55%). Key metabolic pathways, such as

choline metabolism and glycerophospholipid metabolism, were

prominently dysregulated in both LC and HCC, mirroring the

transcriptomic results and underscoring their importance in

disease pathogenesis. The expression patterns of metabolites

were evaluated and the networks between the same expression

patterns of metabolites and genes were established. We identified

key metabolites like carnitines, closely correlated with genes

such as KAT2A, CYP2A7, ANGPTL4, and SLC43A1. L-carnitine

is essential for fatty acid transport into mitochondria for

oxidation. Many studies have demonstrated stepwise changes

in either serum or plasma L-carnitine levels in patients with

HBV related cirrhosis and HCC (Gong et al., 2017; Gu

et al., 2021). Meanwhile, L-carnitine levels were positively

correlated with ALT, AST, and bilirubin levels (Gu et al.,

2021), indicating their potential as diagnostic markers for HBV-

related diseases.

At present, early diagnosis of HCC remains a difficult problem.

The commonly used tumor marker, AFP, has limited sensitivity

and specificity, with most patients being diagnosed at a late stage

(Toyoda et al., 2015). We identified four metabolites that increased

from LC to HCC and showed significant spatial distribution within

tissues as the potential biomarkers for diagnosis. Three metabolites

(L-acetylcarnitine, histamine, and 4-trimethylammoniobutanoic
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acid) show strong discrimination between LC, HCC, and healthy

controls (AUC > 0.9) and between LC and HCC (AUC >

0.85). Previous research has indicated that the levels of certain

unsaturated long-chain acylcarnitines (AC14:1 and AC18:1), such

as acetylcarnitine, rise as liver fibrosis and HCC progress and

acylcarnitine 10:2 isomer2 and acylcarnitine 12:2 isomer2 exhibit

high diagnostic capability with AUC > 0.95 (Abbass et al., 2024;

Wu L. J. Y. et al., 2024). In addition, high levels of histamine were

linked to circulatory dysfunction in advanced chronic liver disease

patients and independently associated with increased risks of acute-

on-chronic liver failure or liver-related death (Schwarz et al., 2024).

These findings suggest that multiple metabolites could effectively

differentiate between HBV related LC and HCC and further

investigations are needed to determine their diagnostic value.
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