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The effect of pesticide pollution on environmental microorganisms in soil has become 
the focus of widespread concern in society today. The response of earthworm 
gut and surrounding soil microbial functional diversity and enzyme activity to 
carbendazim (CBD) was studied in a soil-earthworm ecosystem amended with 
manure. In the experiment, CBD was added to the manured soil (MS). Meanwhile, the 
pesticide treatment without manure and the control treatment without pesticides 
were also set up. The activities of catalase (CAT) and acetylcholinesterase (AChE) 
were measured to evaluate the toxicity of CBD. The Biolog method was used to 
assess the functional diversity of the microbial community. In the 2  mg/kg CBD 
treatment, earthworm AChE activity decreased significantly in the MS after 14 d, 
which occurred earlier than in the un-manured soil (NS). The changes of earthworm 
CAT activity in the pesticide treatments showed a trend of initially increasing and 
then maintaining at a high activity level. However, the CAT activities at 28 d in the 
manured soils were clearly lower than that at 7 d for both the CBD treatments, 
while they remained stable in the control treatments. The carbon source utilization, 
Simpson index, Shannon index, and McIntosh index of soil microorganisms in 
the MS treatments were significantly higher than those in the NS treatments. 
The overall activity of earthworm gut microorganisms in the MS treated with 
2  mg/kg CBD was higher than that in the control. Also, CBD treatment (2  mg/kg) 
increased significantly the Simpson index and McIntosh index of earthworm gut 
microorganisms. The results indicated that the enzyme activities in the manured 
soils increased before 7 d for the pesticide treatments. Furthermore, exposure 
to CBD at a high concentration in the MS not only led to the earlier inhibition 
of earthworm enzyme activity but also significantly improved the overall activity 
of earthworm gut microorganisms and microbial functional diversity. This study 
revealed the ecotoxicological effects of earthworms in response to pesticide stress 
following the use of organic fertilizers under facility environmental conditions, 
which can provide a theoretical basis for the remediation of pesticide pollution 
in soil in the future.
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1 Introduction

Earthworms are the most typical soil animals among temperate, 
tropical, and subtropical terrestrial ecosystems. They play an 
irreplaceable role in many key soil processes and are often referred to 
as “ecosystem engineers” (Datta et al., 2016; Liu et al., 2019). The 
swallowing and digging behaviors of earthworms play an important 
ecological role in the formation of soil structure, nutrient cycle, and 
pollution remediation (Wang et  al., 2024; Liu et  al., 2025). Many 
ecological functions of earthworms are related to their gut 
microorganisms. The digestive function of the earthworm gut can 
affect the structure and function of the soil microbial community 
(Blouin et  al., 2013; Zhang et  al., 2022). Earthworm gut 
microorganisms and soil microorganisms are important components 
of the soil ecosystem, which play an important role in element cycling, 
organic matter decomposition, pollutant degradation, improving soil 
fertility, and enhancing crop yield (Drake and Horn, 2007; Ma et al., 
2016). However, pollutants such as pesticides, fertilizers, and heavy 
metals in the agricultural environment pose a threat to the ecosystem. 
As earthworms feed on organic matter in the soil, they come into 
contact with pollutants through their intestines, allowing these 
pollutants to enter into their bodies, where they accumulate in tissue 
and organs. This accumulation can produce certain negative effects on 
the survival, growth, and reproduction of earthworms (Liu et al., 2018; 
Qi et al., 2018; Wang et al., 2020).

In recent years, there has been increasing attention to the effect of 
adding exogenous organic fertilizer on soil fertility. There is a certain 
relationship between the use of organic fertilizer in soil and the 
microbial community structure in earthworms. Studies have shown 
that when various organic wastes in nature are fermented and contain 
a large number of microorganisms, which enter the digestive system 
of earthworms after being applied to the soil. Under the action of 
intestinal protease, lipase, fibrase, and amylase, organic matter is 
rapidly decomposed and transformed into nutrients that can be easily 
utilized by the earthworms themselves or other organisms (Van 
Groenigen et  al., 2019; Vidal et  al., 2023; Wu et  al., 2024). After 
digestion by earthworms, the number of beneficial bacteria increases 
exponentially, while pathogen populations dependent on nutrient are 
controlled. Also, its excrement can play a role in promoting soil 
microbial structure and pollution remediation (Ferris and Tuomisto, 
2015; Sułowicz et al., 2023; Chen et al., 2024).

At present, the effect of carbendazim (CBD) on earthworm 
enzyme activity and soil microbial functional diversity has been 
reported (Chuang et al., 2021; Guo et al., 2023; Kenko Nkontcheu 
et al., 2023; Zhou et al., 2023; Gautam et al., 2024). However, there are 
few studies focusing on earthworm enzyme activity and microbial 
functional diversity under the stress of CBD in manured soil (MS). 
Studies have shown that the stress of pesticides, heavy metals, and 
other pollutants can induce earthworm to produce reactive oxygen 
species (ROS) such as NO, H2O2, O2·−, and ·OH− (Yang et al., 2022; Xu 
et al., 2023; Lee et al., 2024; Yan et al., 2024). These ROS may activate 
the active oxygen scavenging system and lead to changes in some 
physiological and biochemical indices in earthworms (such as 
antioxidant enzyme system and non-antioxidant enzyme system). 
Such changes in these biochemical indicators can indicate pollutant 
toxicity and serve as an early warning system for soil pollution (Liu 
et al., 2017; Li et al., 2018; Zhang et al., 2021). Catalase (CAT) is a key 
enzyme in the biological antioxidant enzyme system, which defends 

organisms against antioxidant damage by catalyzing the 
decomposition of H2O2 into H2O and O2, thus preventing cell 
peroxidation. Under the combined action of superoxide dismutase 
and CAT, O2·− is eventually converted into H2O (Wu et al., 2012; Hu 
et al., 2016). Acetylcholinesterase (AChE) is a key enzyme in biological 
nerve conduction and can hydrolyze acetylcholine into choline and 
acetic acid to ensure the normal transmission of nerve signals (Calisi 
et al., 2013). CAT and AChE are sensitive to pollutants and are widely 
used to evaluate the pollutant toxicity.

The Biolog method is widely used in the study of environmental 
microbial ecology which is simple and does not require isolating and 
culturing microorganisms (Huang et al., 2024). This technique can 
obtain the metabolic fingerprint of the microbial community in a 
short time, characterize differences in physiological characteristics, 
and reflect the functional diversity of microbial community by 
measuring the variations in microbial utilization of different carbon 
sources (Gryta et al., 2014; Koner et al., 2022). This study will be more 
accurate, intuitive, and scientific in reflecting the effects of organic 
fertilizers on enzyme activities and microbial functional diversity in 
earthworms, in order to reveal the ecotoxicological effects of 
earthworms under pesticide stress from the perspective of 
microorganisms. Meanwhile, the results can provide reference and 
theoretical basis for the remediation of pesticide pollution in soil 
under facility environment.

2 Materials and methods

2.1 Chemicals and reagents

The protein quantitative determination kit (Coomassie brilliant 
blue method), acetylcholinesterase (AChE) test kit, and catalase 
(CAT) test kit (ammonium molybdate method) were provided by 
Nanjing Jiancheng Bioengineering Research Institute (Nanjing, China).

2.2 Experimental design and soil sampling

The sieved soils (3.5 kg dry weight) were weighed and then added 
3% manure and stirred evenly. Then CBD standard solution was 
added to the MS to reach 1 mg/kg and 2 mg/kg corresponding to the 
recommended doses and the double dose, respectively (Daam et al., 
2020). Meanwhile, sterile water was added to reach 60% of the soil’s 
maximum water holding capacity and the mixture was thoroughly 
stirred, passed the 2-mm sieve, and then transferred into plastic pots 
(upper diameter: 95 mm, height: 65 mm, bottom diameter: 70 mm). 
The mature earthworms (Eisenia fetida) were purchased from 
Shandong Agricultural University (Taian, China). Each plastic pot was 
filled with 150 g (dry weight) of soil, and 10 earthworms after clearing 
intestines were placed on the soil surface until they entered the soil 
actively. All treatments were performed in triplicate. Meanwhile, the 
pesticide treatments without manure and the control treatments 
without pesticide were set up including the un-manured control soil 
(NS-CK), the un-manured soil with 1 mg/kg CBD (NS-CBD1), the 
un-manured soil with 2 mg/kg CBD (NS-CBD2), the manured control 
soil (MS-CK), the manured soil with 1 mg/kg CBD (MS-CBD1), and 
the manured soil with 2 mg/kg CBD (MS-CBD2). All plastic pots were 
placed in the biochemical incubator at 20°C, 75% relative humidity, 
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and 400 lux with a light–dark cycle of 12 h each. The soil water content 
was adjusted by weighing method every 2 d. After exposure to 1 d, 3 
d, 7 d, 14 d, 21 d, and 28 d, 1–2 earthworms were taken out for the 
determination of enzyme activity. After exposure for 28 d, 5.0 g of soil 
sample and 0.3 g of earthworm gut tissue were collected for microbial 
functional analysis.

For earthworm gut dissection, several earthworms were taken out 
from each replicate and placed in a petri dish. The soil adhered to the 
earthworm surface was carefully removed. The earthworms were 
immersed in pure ethanol for 10 s to make them die quickly, and then 
washed with a 75% alcohol solution. In the clean bench, the earthworms 
were washed with sterile water 3 times and dried the earthworm’s 
surface water using the filter paper. Then the earthworm was fixed with 
pins on a foam board placed on filter paper and dissected with sterilized 
medical eye scissors. The body surface of the earthworm clitellum to 
the anus was cut off, and the gut tissue of the earthworm was carefully 
clamped out with sterilized tweezers, which was then weighed and 
placed into a 1.5 mL sterilized Eppendorf (EP) tube.

2.3 Determination of earthworm enzyme 
activity

Preparation of 5% earthworm tissue homogenate: 1–2 earthworms 
were taken from each treatment and placed in a petri dish padded 
with wet filter paper to clear the gut overnight. Nineteen times the 
volume of normal saline was added at the ratio of 1:19, homogenized 
in an ice water bath, centrifuged at 2500 rpm for 10 min, and the 
supernatant was taken for detection.

The enzyme activities were determined according to the 
manufacturer’s instructions for reagent kits (Jiancheng; China). The 
protein concentration of the sample was determined by the Coomassie 
brilliant blue method, and the protein content was determined based 
on the absorbance measured at 595 nm. The activity of CAT was 
calculated by measuring the absorbance of the light yellow complex 
formed by residual H2O2 and ammonium molybdate at 405 nm. The 
activity of AChE was detected by measuring the absorbance at 412 nm 
according to the color reaction of the TNB (symmetrical 
trinitrobenzene) yellow compound generated by choline and 
sulfhydryl chromogenic agents (Lin et al., 2016; Fang et al., 2022).

2.4 Microbial functional diversity in 
earthworm gut and soil

The overall functional diversity of microorganisms in the soil and 
gut after manured treatment was determined using Biolog® 
EcoPlates™ (Biolog Inc., Hayward, CA, United States) by referring to 
our previously used methods (Han et  al., 2020). The metabolic 
potential of microbial communities was assessed using 31 different 
carbon sources categorized into six groups, including seven 
carbohydrates, 10 carboxylic acids, six amino acids, four complex 
carbon sources, two phosphate carbon sources, and two amines 
(Preston-Mafham et al., 2002; Ge et al., 2018; Nagata et al., 2023).

0.3 g of earthworm gut tissue was weighed into a 100 mL conical 
flask, and 30 mL of 0.85% NaCl solution was added and homogenized 
for 30 s. 5.0 g (dry weight) of soil sample was weighed into a 100 mL 
conical flask, and 45 mL of the sterilized 0.85% NaCl solution was 

added, shaken in a shaker under the conditions of 25°C, 150 rpm in 
the dark, and then placed in a clean bench to stand for 30 min. 1 mL 
of earthworm gut suspension or soil suspension was diluted to 10−4 
diluents by the step-by-step dilution method. 150 μL of the diluent was 
inoculated into each well of the Biolog ECO plate with an 8-channel 
pipette. All plates were placed in an incubator at 25°C in the dark. 
After incubation for 4, 24, 48, 72, 96, 120, 144, and 168 h, all plates 
were read at 750 nm and 590 nm using a Biolog reader. All treatments 
were in triplicate.

2.5 Statistical analyses

Earthworm enzyme activity and microbial diversity index were 
analyzed by one-way analysis of variance (ANOVA) and carried out 
Duncan’s test with the IBM SPSS Statistics 26. The difference between 
OD590 and OD750 was used to represent the metabolic activity of 
microorganisms for subsequent data calculation and analysis. When 
the value was less than 0.06, it was treated as 0. The changes of microbial 
functional diversity index of earthworm gut and soil were analyzed by 
absorbance value of Biolog ECO plate after incubation for 72 h (Gryta 
et al., 2014; Fang et al., 2016; Urbaniak et al., 2024). The rate of substrate 
utilization by microorganisms was measured by calculating the average 
well color development (AWCD) using the following Equation 1:

 ( )CKAWCD A A / 31= ∑ −  (1)

Where A represents the difference of absorbance value between 
two bands for each well in Biolog ECO plate, ACK represents 
absorbance value of blank control well. Functional diversities assessed 
by the Shannon diversity index (H), Simpson index (1/D), and 
McIntosh index (U), were calculated using the Equations 2–4:

 ( )H pi ln pi= −∑  (2)
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Where pi represents the ratio of the relative absorbance value 
(A-ACK) of the well i to the sum of the relative absorbance value of the 
whole plate, ni represents the relative absorbance value (A-ACK) of the 
well i, N represents the sum of the relative absorbance value of the 
whole plate.

3 Results

3.1 Effect of CBD on AChE activity

The changes in acetylcholinesterase (AChE) activity of 
earthworms under CBD stress in un-manured soil are shown in 
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Figure 1. In the control treatment (NS-CK), the AChE activity of the 
earthworms remained stable. CBD stimulated the AChE activity of 
earthworms at the initial stage (0 to 7 days) and significantly inhibited 
the AChE activity at the later stage (21 to 28 days) with the extension 
of exposure time. On the 7th day, the AChE activities of earthworms 
in NS-CBD1 and NS-CBD2 were at the highest, which were 
significantly higher than that of the NS-CK. On the 21th-28th days, 
the AChE activities of earthworms were significantly lower than those 
of the control. The changes in earthworm AChE activity in the 
manured soil are shown in Figure  2. CBD initially increased 
earthworm enzyme activity, which then subsequently decreased. 
MS-CBD2 was significantly higher than MS-CK on the 3rd and 7th 
days, while MS-CBD1 was significantly higher than MS-CK on the 7th 
and 14th days. In the later stage of exposure (21 to 28 d), however, 

earthworm AChE activities were significantly lower than those in 
MS-CK. The response trend of earthworm AChE activity under CBD 
stress in manured soil (MS) and un-manured soil (NS) is generally 
similar. The difference was that earthworm enzyme activity in 
MS-CBD2 treatment peaked on the 3rd day and decreased 
significantly on the 14th day, while in the NS-CBD2 treatment, it 
peaked on the 7th day and was significantly inhibited on the 21st day.

3.2 Effect of CBD on CAT activity

The change of earthworm CAT activity under CBD stress in NS is 
shown in Figure 3. The CAT activities of earthworm in NS-CBD1 and 
NS-CBD2 were significantly higher than those in the NS-CK after 
3 days. With the extension of exposure time, the CAT activity reached 
the highest level on the 7th day, and then decreased slowly within 
7–28 days, but still maintained at a high level. The change of 
earthworm CAT activity in the MS is shown in Figure 4. The CAT 
activity of earthworms in the MS-CBD1 and MS-CBD2 increased 
significantly after 3 days, gradually reached to its peak after 7 days, and 
then slowly decreased between 14 to 28 days. Compared with MS-CK, 
CAT activity remained at a high level. In general, a similar trend was 
observed in both MS and NS: CBD treatment initially increased CAT 
activity and then maintained a high level. Furthermore, there were no 
significant difference in enzyme activity among different 
concentrations of treatment.

3.3 Effect of CBD on carbon source 
utilization diversity

The changes of carbon source utilization diversity in earthworm 
gut and soil microorganisms under CBD stress are shown in Figure 5. 
In the MS and NS soils, the AWCD values of soil microorganisms in 
the 1 mg/kg carbendazim soil (CBD1) treatments were significantly 
lower than those in the control treatment, and the AWCD values of 
soil microorganisms in the 2 mg/kg carbendazim soil (CBD2) 
treatments were either slightly higher than or similar to those in the 
control soil. The AWCD values of soil microorganisms in all MS 
treatments were higher than those in the NS treatments. The AWCD 
values of earthworm gut microorganisms in the NS did not change 
significantly across all treatment groups, except for the NS-CBD2 
where AWCD values were lower than the control at 48–72 h, but then 
returned to the control level. The AWCD values of earthworm gut 
microorganisms in the MS-CBD1 were lower than those of the control 
between 48 and 120 h, and then the activity gradually recovered to the 
control level. However, the AWCD values of earthworm gut 
microorganisms in the MS-CBD2 were not significantly different from 
those of the control at 0–24 h but were significantly higher than those 
of the control at 48–120 h, and then gradually recovered to the 
control level.

3.4 Changes in the functional diversity 
indices of microorganisms

The changes in soil microbial functional diversity indices under 
CBD stress are shown in Figures  6–8. The 1/D and H of soil 

FIGURE 1

Effects of carbendazim on acetylcholinesterase activity of earthworm 
in the un-manured soil. NS-CK, NS-CBD1 and NS-CBD2 indicated 0, 
1 and 2  mg/kg carbendazim treatment in the un-manured soil, 
respectively. The different letters above the curves indicate a 
significant difference (p  <  0.05) based on variance analysis. The error 
bars represent the standard errors of the mean of triplicate samples.

FIGURE 2

Effects of carbendazim on acetylcholinesterase activity of earthworm 
in the manured soil. MS-CK, MS-CBD1 and MS-CBD2 indicated 0, 1 
and 2  mg/kg carbendazim treatment in the manured soil, 
respectively. The different letters above the curves indicate a 
significant difference (p  <  0.05) based on variance analysis. The error 
bars represent the standard errors of the mean of triplicate samples.
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microorganisms in the NS-CBD2 were significantly higher than those 
in the NS-CK, while the U showed no significant difference compared 
with the NS-CK (p < 0.05). In the NS-CBD1, there was no significant 
difference between the 1/D and H, while the U was significantly lower 
than the NS-CK (p < 0.05). In MS, the 1/D and H of soil 
microorganisms treated with carbendazim (1 mg/kg and 2 mg/kg, 
MS-CBD) showed no significant difference compared with the 
MS-CK. The U of soil microorganisms in MS-CBD2 was not 
significantly different from the MS-CK, while the U in MS-CBD1 was 
significantly lower than that of the MS-CK (p < 0.05).

The changes in the functional diversity index of earthworm gut 
microorganisms under CBD stress are shown in Figures 6–8. The 1/D 
and H of earthworm gut microorganisms were suppressed in NS-CBD, 
but the differences were not significant (p < 0.05) when compared with 
the NS-CK. The U of earthworm gut microorganisms in NS-CBD2 
was significantly lower than that in the NS-CK (p < 0.05), but there was 

no significant difference between NS-CBD1 and NS-CK. MS-CBD1 
resulted in a significant reduction in the 1/D, H, and U indices of 
earthworm gut microorganisms compared to MS-CK (p < 0.05). The 
MS-CBD2 showed no significant difference in 1/D and H, while the 
U was significantly higher than that of the MS-CK (p < 0.05). The 
diversity indices of earthworm gut microorganisms in the MS-CBD2 
were higher than those in the NS-CBD2.

4 Discussion

The acetylcholine receptor is the target of the triazole fungicide 
carbendazim, which can interfere with the signal transmission of the 
central nervous system of the body, causing paralysis or even death. 
Whereas AChE can hydrolyze acetylcholine to ensure normal 
neurotransmission and maintain normal function of the nervous 
system (Goulson and Kleijn, 2013). After exposure to carbendazim, 
the AChE activity in earthworms initially increased with 
contamination concentration but gradually decreased over time. 
Similar to our results, Yang et al. (2018) found that the AChE activity 
of earthworms increased significantly on the 3rd and 7th d of exposure 
to 3-(2-chloroethyl) phosphate (1 mg/kg and 10 mg/kg), and decreased 
significantly on the 14th d. Hackenberger et al. (2018) found that the 
AChE activity of earthworm (Dendrobaenaveneta) increased 
significantly after 7 d of exposure to 2,160 μg/kg glyphosate, and 
returned to the control level after 28 d. This is due to the fact that 
AChE activity gradually recovers in the later stages of staining because 
the pesticide has a lower comprehensive toxic effect with the extension 
of exposure time and the cells develop an anti-stress repair mechanism. 
In the MS, stress response and recovery of AChE activity were more 
rapid under the high concentration of pollution, because organic 
matter increased the nutrition of earthworms and promoted the 
growth and development of earthworms. Moreover, the intake of 
organic fertilizer increased the types and quantities of beneficial 
microorganisms in the earthworm gut of earthworms, enhanced the 
symbiotic network between microorganisms and earthworms, and 
improved the ability to resist external risks and stress (Markad et al., 
2015; Chen et  al., 2017). However, some studies have reported 
different results that the AChE activity of earthworms can be inhibited 
by some insecticides, such as triazophos, chlorpyrifos, deltamethrin, 
and so on (Bednarska et  al., 2017; Singh et  al., 2019). When 
earthworms were exposed to the neonicotinoid guadipyr initially, 
AChE activity was significantly reduced, but during subsequent tests, 
AChE activity returned to the control level without significant 
difference (Wang et al., 2015). In addition, Yang et al. (2018) found 
that trimethylphenyl phosphate (0.1 mg/kg and 10 mg/kg) significantly 
inhibited AChE activity on the 3rd d of exposure, and then AChE 
activity gradually recovered with the extension of exposure time. Zhao 
et al. (2019) found that N-ethyl perfluorooctane sulfonamide ethanol 
treatment had no significant effect on AChE activity of earthworms. 
Due to the various mechanisms of action and complex effects of 
pesticides, their effects on AChE activity are also different. Therefore, 
when using AChE as an environmental biomarker, especially in 
environments contaminated with multiple classes of chemicals, it is 
important to assess the effect of contaminants on AChE activity 
(Frasco et al., 2005).

CAT is an important antioxidant enzyme and a major defense 
enzyme against ROS in the body. CBD exposure significantly increased 

FIGURE 4

Effects of carbendazim stress on catalase activity of earthworm in 
the manured soil. The different letters above the curves indicate a 
significant difference (p  <  0.05) based on variance analysis. The error 
bars represent the standard errors of the mean of triplicate samples.

FIGURE 3

Effects of carbendazim stress on catalase activity of earthworm in 
the un-manured soil. The different letters above the curves indicate a 
significant difference (p  <  0.05) based on variance analysis. The error 
bars represent the standard errors of the mean of triplicate samples.
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the CAT activity of earthworms, indicating that the antioxidant enzyme 
system of earthworms was activated in response to oxidative stress. 
Among them, SOD discriminates superoxide anion into H2O2, and 
CAT in turn catalyzes H2O2 into O2 and H2O (Lushchak, 2016), thus 
actively resisting oxidative damage caused by exogenous pollution. 
Similar to our results, different concentrations of fluoxastrobin (0.1, 
1.0, and 2.5 mg/kg) in soil induced the changes in earthworm CAT 
activity, and the values for CAT were lower on days 7, 14, and 28 and 
greater on day 21 compared to those of the controls (Zhang et al., 
2018). Xu et al. (2021) found that azoxystrobin (1.0 mg/kg and 2.5 mg/
kg) in black soil and red clay soil induced a significant increase in 
earthworm CAT, which remained significantly higher than the control 
treatment after 56 d. Our results also revealed that CAT activity slowly 
decreased on the 14th day after pollutant exposure in earthworms but 
remained significantly higher than the control, indicating that the 
oxidation of the body stimulates the antioxidant capacity of CAT. The 
increase of hydroxyl free radicals caused by exposure to pollutants 
would enhance CAT activity, leading to oxidative stress (Malev et al., 
2012). Zhu et al. (2020) found that the CAT activity of earthworms in 
red clay soil with 0.1 mg/kg and 1.0 mg/kg chlorpyrifos was higher than 

FIGURE 5

Variations in the average well color development (AWCD) of earthworm gut (A,B) and soil (C,D) microorganisms under different treatments. The 
different letters above the curves indicate a significant difference (p  <  0.05) based on variance analysis. The error bars represent the standard errors of 
the mean of triplicate samples.

FIGURE 6

Changes in Simpson index of earthworm gut and soil 
microorganisms in different treatments. The different letters above 
the columns indicate a significant difference (p  <  0.05) based on 
variance analysis. The error bars represent the standard errors of the 
mean of triplicate samples.
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FIGURE 7

Changes in Shannon index of earthworm gut and soil microorganisms in different treatments. The different letters above the columns indicate a 
significant difference (p  <  0.05) based on variance analysis. The error bars represent the standard errors of the mean of triplicate samples.

FIGURE 8

Changes in McIntosh index of earthworm gut and soil microorganisms in different treatments. The different letters above the columns indicate a 
significant difference (p  <  0.05) based on variance analysis. The error bars represent the standard errors of the mean of triplicate samples.
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that in the control treatment during the whole exposure period (56 d). 
This may be  because the dynamic balance of SOD-H2O2 did not 
negatively affect CAT activity. Liu et al. (2021) also found that the CAT 
activity of earthworms exposed to 20 mg/kg R-acetochlor was 
significantly higher than that in the control treatment within 7–42 d. 
In contrast to our findings, there was a trend of stimulation followed 
by recovery or inhibition of earthworm CAT activity under some 
pollutant stresses with longer exposure times. Yin et al. (2021) found 
that the CAT activity of M.guillelmi increased and then decreased 
significantly after 7 d of exposure to 0.1–50 mg/kg tetracycline. Under 
the stress of 10 mg/kg ciprofloxacin, the CAT activity of earthworms 
was higher on the 7th and 14th d and returned to the control level with 
the extension of treatment time (Yang et al., 2020).

The AWCD in the Biolog-ECO disk reflects the overall capacity of 
soil microorganisms to utilize carbon sources and microbial activity, 
and can be used as an effective indicator of soil microbial activity, 
which is sensitive to soil environmental stress (O’Donnell et al., 2001; 
Han et al., 2020). The AWCD values of microorganisms in the MS 
were higher than that in the NS, which may be due to the fact that 
manure not only contains a large number of microorganisms, but also 
provides a large amount of carbon, nitrogen, and other nutrients for 
the growth and propagation of soil microorganisms (Fang et al., 2014; 
Han et al., 2019; Zeb et al., 2020). Similarly, Lin et al. (2016) reported 
that two earthworm species, Eisenia fetida and Amynthas robustus 
E. Perrier, stimulated the soil microbial utilization of amines, amino 
acids, carbohydrates, and carboxyl acids in pentachlorophenol-
contaminated soils. The AWCD values of the CBD2 were close to 
those of the control soil, which may be attributed to the fact that the 
higher concentration of carbendazim (2 mg/kg) stimulated the 
proliferation of more versatile microbial populations in the gut of the 
earthworms. This, in turn, affects the community structure of soil 
microorganisms around the earthworms and promoting the overall 
activity of soil microorganisms to maintain a high level (Han et al., 
2023). The NS-CBD2 can stimulate the adaptation of some 
microorganisms in soil at the absence of nutrients. The change rule of 
AWCD values in earthworm gut microorganisms was more 
complicated, but the AWCD values of earthworm gut microorganisms 
under the MS-CBD2 were significantly increased. This increase is 
because organic fertilizer can provide essential nutrients for 
earthworms, and the CBD-enriched residues in the body stimulate 
more functional bacteria in the gut, which can enhance the activity in 
the intestinal tract and optimize the earthworms’ ecological service 
function (Lin et al., 2018; Xiao et al., 2020; Han et al., 2023). Ning et al. 
(2019) studied the changes in the functional diversity of earthworm 
gut and soil microbial communities under cadmium stress by the 
Biolog method. It was found that earthworms not only regulate their 
physiological functions (such as microbial community structure and 
stress mechanism), but also influence the external soil microbial 
community structure to obtain the substances required for growth.

The diversity indices actually reflect different aspects of the 
functional diversity of soil and gut microbial communities, with 1/D 
representing the most common dominant species in the community, 
H evaluating the community species richness, and U being a measure 
of community species homogeneity. The microbial 1/D, H, and U of 
MS treatments in soil were higher than those of NS treatments as a 
whole, indicating that organic fertilizer additions increased soil 
microbial dominance, abundance and homogeneity. Similar to our 
results, Urbaniak et al. (2024) showed that the implementation of NBS 

(Wild flower Meadow) had a positive influence on the values of 
Shannon-Weaver diversity (H′) in spring, H′ increased by 63% 
compared to pre-implementation stage. The substrate richness index 
(S) increased by 53% after NBS implementation in the spring season, 
while S values were lower in other locations. The change rule of 
earthworm gut microbial diversity indices in the MS was similar to 
that of soil microbial diversity index. With the increase of carbendazim 
concentration, microbial activity showed inhibition first and then 
increased, which is consistent with the previous research results (Fang 
et  al., 2014; Han et  al., 2019). Meanwhile, the microbial diversity 
indices in both gut and soil of the MS-CBD2 were higher than those 
in the NS-CBD2. This may be attributed to the fact that most of the 
microorganisms carried by manure were able to colonize the gut of 
earthworms, resulting in microbial community compositions of the 
gut microorganisms that were similar to those of the surrounding soil 
microorganisms to a certain extent (Gao et al., 2022; Lejoly et al., 2023; 
Ferlian et al., 2024), and such an effect has also been reported for CBD 
and glyphosate (Ratcliff et al., 2006; Tortella et al., 2013). Zhou et al. 
(2020) found that the Simpson index and Shannon Wiener index of 
earthworm gut microorganisms initially increased and then decreased 
with the increase of cadmium concentration, indicating that the 
richness and dominance of earthworm gut microbial community were 
significantly enhanced by pollutant within a certain concentration 
range. However, there was a significant difference between the gut 
microbial diversity index of earthworm and the soil microbial diversity 
index in the NS, indicating that the addition of organic fertilizers 
provides nutrients for microbial growth and reproduction, promotes 
the proliferation of functional gut bacteria, increases the diversity and 
function of soil microorganisms when they enter the soil, and 
promotes the remediation of pollutants together with the soil 
microorganisms, making the soil environment more stable (Vivas 
et al., 2009; Yakushev et al., 2009; Doan et al., 2013). At the same time, 
earthworms and their companion animals produce more secretions 
accompanied by humus production, which enriches the food chain in 
the ecosystem (Hale et al., 2005; Han et al., 2023).

5 Conclusion

The study focused on the enzyme activities and gut microbial of 
earthworms response to CBD under the treatment of manure. The 
results showed that the AChE activities of earthworms in NS-CBD 
were stimulated at the initial stage and significantly inhibited at the 
later stage with the extension of exposure time. The trends of 
earthworm AChE activity under MS-CBD were generally similar to 
those in NS-CBD, except that the stimulatory and inhibitory effects 
on earthworm AChE activity were advanced by the treatment of 
MS-CBD2. The trend of CAT activity of earthworms in MS was 
similar to that in NS, and the CBD treatment resulted in a tendency 
for CAT activity to initially increase and then remain at a higher 
activity. The AWCD values, 1/D, and H of earthworm gut 
microorganisms did not change significantly in the NS, but MS-CBD2 
resulted in significant increase in AWCD values, 1/D, H, and U of 
earthworm gut microorganisms. The dominance, abundance, and 
homogeneity of earthworm gut microorganisms in the MS-CBD2 
were significantly higher than those in the NS-CBD2. The results of 
this study can provide a data reference and theoretical basis for 
monitoring and remediation of pesticide pollution in soil environment.
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