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Allergic rhinitis (AR) and asthma (AS) are two of the most common chronic respiratory 
diseases and a major public health concern. Multiple studies have demonstrated 
the role of the nasal bacteriome in AR and AS, but little is known about the airway 
mycobiome and its potential association to airway inflammatory diseases. Here 
we used the internal transcriber spacers (ITS) 1 and 2 and high-throughput sequencing 
to characterize the nasal mycobiome of 339 individuals with AR, AR with asthma 
(ARAS), AS and healthy controls (CT). Seven to ten of the 14 most abundant fungal 
genera (Malassezia, Alternaria, Cladosporium, Penicillium, Wallemia, Rhodotorula, 
Sporobolomyces, Naganishia, Vishniacozyma, and Filobasidium) in the nasal cavity 
differed significantly (p  ≤  0.049) between AS, AR or ARAS, and CT. However, none 
of the same genera varied significantly between the three respiratory disease 
groups. The nasal mycobiomes of AR and ARAS patients showed the highest intra-
group diversity, while CT showed the lowest. Alpha-diversity indices of microbial 
richness and evenness only varied significantly (p  ≤  0.024) between AR or ARAS 
and CT, while all disease groups showed significant differences (p  ≤  0.0004) in 
microbial structure (i.e., beta-diversity indices) when compared to CT samples. 
Thirty metabolic pathways (PICRUSt2) were differentially abundant (Wald’s test) 
between AR or ARAS and CT patients, but only three of them associated with 
5-aminoimidazole ribonucleotide (AIR) biosynthesis were over abundant (log2 Fold 
Change >0.75) in the ARAS group. AIR has been associated to fungal pathogenesis 
in plants. Spiec-Easi fungal networks varied among groups, but AR and ARAS 
showed more similar interactions among their members than with those in the 
CT mycobiome; this suggests chronic respiratory allergic diseases may disrupt 
fungal connectivity in the nasal cavity. This study contributes valuable fungal 
data and results to understand the relationships between the nasal mycobiome 
and allergy-related conditions. It demonstrates for the first time that the nasal 
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mycobiota varies during health and allergic rhinitis (with and without comorbid 
asthma) and reveals specific taxa, metabolic pathways and fungal interactions 
that may relate to chronic airway disease.
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1 Introduction

Allergic rhinitis and asthma are two of the most common chronic 
airway diseases in Western countries inflicting a relevant health and 
economic burden to society (Todo-Bom et al., 2007; Sa-Sousa et al., 
2012; Fonseca et  al., 2021). In Portugal, allergic rhinitis has a 
prevalence of 9–10% in children and adolescents and 26.1% in adults 
(Todo-Bom et al., 2007; Falcão et al., 2008; Muc et al., 2014); while 
asthma has a prevalence of 8.4% in children and adolescents and 6.8% 
in adults (Sa-Sousa et al., 2012; Muc et al., 2014; Ferreira-Magalhaes 
et al., 2016).

Allergic rhinitis is considered an inflammation of the nasal 
mucosa, characterized by sneezing, congestion, itching, and 
rhinorrhea (Steelant et al., 2016; Steelant et al., 2018; Acevedo-Prado 
et al., 2022; Savoure et al., 2022). Similarly, asthma is a multifactorial 
condition of the airways characterized by obstruction, inflammation, 
and mucous production (Mims, 2015; Licari et al., 2018; Dharmage 
et al., 2019). Allergic rhinitis and asthma frequently coexist (Compalati 
et al., 2010; Pite et al., 2014; Ferreira-Magalhaes et al., 2015; Small 
et al., 2018; Bousquet et al., 2019)—more than 46% of the Portuguese 
patients with asthma also show allergic rhinitis (Valero et al., 2009; 
Acevedo-Prado et al., 2022). This suggests that they may represent a 
combined airway inflammatory disease with several 
pathophysiological, epidemiological, and clinical connections within 
the concept of a united airway disease (Bergeron and Hamid, 2005; 
Pawankar, 2006; Kim et al., 2008; Compalati et al., 2010; Bousquet 
et al., 2023).

Multiple metataxonomic and metagenomic studies have already 
demonstrated that the upper airway bacteriome is a gatekeeper of 
respiratory health and plays a significant role in the onset, 
development, and severity of both allergic rhinitis (Lal et al., 2017; 
Bender et al., 2020; Gan et al., 2021; Chen et al., 2022; Kim et al., 2022; 
Azevedo et  al., 2023; Pérez-Losada et  al., 2023a,b) and asthma 
(Bogaert et al., 2011; Brar et al., 2012; Huang and Boushey, 2014; 
Castro-Nallar et al., 2015; Dickson and Huffnagle, 2015; Huang and 
Boushey, 2015; Pérez-Losada et  al., 2015; Teo et  al., 2015; Pérez-
Losada et al., 2016a,b; Pérez-Losada et al., 2017; Dinwiddie et al., 2018; 
Frati et al., 2018; Pérez-Losada et al., 2018; Hufnagl et al., 2020; Losol 
et al., 2021; Raita et al., 2021). These same studies have also shown that 
the nasal cavity is a major reservoir for opportunistic bacterial 
pathogens, which can spread to other sections of the respiratory tract 
and potentially induce respiratory illnesses (Garcia-Rodriguez and 
Fresnadillo Martinez, 2002; Hilty et al., 2010; Bogaert et al., 2011; 
Dickson et al., 2013; Biesbroek et al., 2014; Huang and Boushey, 2015; 
Pérez-Losada et al., 2015; Teo et al., 2015; Pérez-Losada et al., 2016b; 
Prevaes et al., 2016; Huang, 2017; Lal et al., 2017; Pérez-Losada et al., 
2017; Esposito and Principi, 2018; Pérez-Losada et al., 2018; Gan et al., 
2021; Chen et al., 2022; Kim et al., 2022).

Less is known, however, about the human mycobiome and its 
role in chronic airway diseases (Goldman et al., 2018; Rick et al., 

2020; van Tilburg Bernardes et al., 2020; Oliveira et al., 2023). The 
recent inclusion of fungi in human microbiome research has revealed 
that they are also implicated in asthma onset and development in 
susceptible individuals (Carpagnano et al., 2016; Goldman et al., 
2018; Rick et al., 2020; van Tilburg Bernardes et al., 2020; Yuan et al., 
2023), although very few studies have surveyed the upper airways 
(Jung et al., 2015; Yuan et al., 2023). Similarly, to the best of our 
knowledge, only one study so far has characterized the airway 
mycobiome of patients with allergic rhinitis (Jung et  al., 2015); 
hence, the taxonomic composition and interactions, and functional 
diversity of the fungal communities inhabiting the nose remain 
unknown, or poorly understood at best, in both asthmatic and 
rhinitic patients.

In this study, we have used the internal transcriber spacer (ITS) 1 
and 2 and next-generation sequencing to characterize the nasal 
mycobiomes of children and adults with allergic rhinitis (with and 
without asthma comorbidity), asthma and healthy controls. 
We describe unique fungal taxonomic and functional profiles across 
those four clinical groups and compare their composition, structure, 
metabolism, and network interactions.

2 Materials and methods

2.1 Participants

All participants enrolled in this study were part of the 
ASMAPORT Project (PTDC/SAU-INF/27953/2017). This study was 
approved by the “Comissão de Ética para a Saúde” of the Centro 
Hospitalar Universitário São João/Faculdade de Medicina (Porto, 
Portugal) in March 2017, Parecer_58-17. Written consent was 
obtained from all independent participants or their legal guardians 
using the informed consent documents approved by the Comissão 
de Ética.

ASMAPORT was a cross-sectional study of Portuguese children 
and adults designed to investigate host-microbe during asthma and 
rhinitis. Participants were recruited from northern Portugal while 
attending the outpatient clinic of the Serviço de Imunoalergologia in 
the Centro Hospitalar Universitário São João from July 2018 to 
January 2020. Healthy volunteers from the Porto area with no history 
of respiratory illness were also enrolled but did not complete the 
questionnaire or provide clinical information. The diagnosis of allergic 
rhinitis was confirmed by an allergy specialist based on clinical criteria 
and a positive skin prick or specific IgE test to at least one clinically 
relevant inhalant allergen in the region (Pereira et al., 2006; Bousquet 
et al., 2009). Diagnosis of asthma was confirmed by the attending 
physician based in the presence of typical symptoms in the previous 
12 months or a positive bronchodilator responsiveness testing with 
salbutamol (Silva et al., 2019). Further details are provided in Pérez-
Losada et al. (2023a,b).
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2.2 Sampling

A total of 339 individuals participated in this study 
(Supplementary Table S1). They were categorized into four clinical 
groups: allergic rhinitis (AR = 47), allergic rhinitis with asthma 
(ARAS = 155), asthma (AS = 12), and healthy controls (CT = 125 
individuals). Samples were collected by swabbing the right and left 
nostrils. Further detail is provided in Pérez-Losada et al. (2023a). 
Because of the sample size of the AS group, we have only used AS in 
some of the pairwise comparisons and applied statistical tests that are 
moderately robust to small sample sizes (see below). Similar 
considerations were also implemented in other microbiome studies of 
asthma and rhinitis including small groups or cohorts (Hilty et al., 
2010; Castro-Nallar et al., 2015; Pérez-Losada et al., 2015; Lal et al., 
2017; Fazlollahi et al., 2018; Pérez-Losada et al., 2023a,b).

2.3 High-throughput sequencing

Total DNA was extracted from swabs using the ZymoBIOMICS™ 
DNA Miniprep Kit D4300. DNA extractions were prepared for 
sequencing using the Schloss’ MiSeq_WetLab_SOP protocol in Kozich 
et al. (2013). DNA samples were amplified and sequenced for the 
ITS1-ITS2 region (~230 bp) following the protocols used in the Earth 
Microbiome Project (Thompson et al., 2017) and primer ITS1F Fwd: 
CTTGGTCATTTAGAGGAAGTAA and primer ITS2 Rev: 
GCTGCGTTCTTCATCGATGC—https://earthmicrobiome.org. All 
samples were sequenced in a single run of the Illumina MiSeq 
sequencing platform at the University of Michigan Medical School. 
Negative controls processed as above showed no PCR band on an 
agarose gel. We used eight water and reagent negative controls and five 
mock communities (i.e., reference samples with a known composition) 
to detect contaminating microbial DNA within reagents and measure 
the sequencing error rate. We did not find evidence of contamination 
and our sequencing error rate was as low as 0.0051%.

2.4 Mycobiome analyses

Internal transcriber spacer amplicon sequence variants (ASV) in 
each sample were inferred using dada2 version 1.18 (Callahan et al., 
2016) and following author’s recommendations for the ITS region.1 
Reads were filtered using standard parameters, with no uncalled bases, 
maximum of two expected errors and truncating reads at a quality 
score of 2 or less. Forward and reverse reads were merged and 
chimeras were identified. Taxonomic assignment was performed 
against the UNITE v9.0 2023-07-18 database (Nilsson et al., 2019) 
using the implementation of the RDP naive Bayesian classifier 
available in the dada2 R package (Wang et al., 2007; Quast et al., 2013). 
ASV sequences were aligned in MAFFT (Katoh and Standley, 2013) 
and used to build a tree with FastTree (Price et al., 2010). The resulting 
ASV tables and phylogenetic tree were imported into phyloseq 
(McMurdie and Holmes, 2013) for further analysis. Sequence files and 
associated metadata and BioSample attributes for all samples used in 

1 https://benjjneb.github.io/dada2/ITS_workflow.html

this study have been deposited in the NCBI (PRJNA1107919). 
Metadata and ASV abundances with corresponding taxonomic 
classifications are presented in Supplementary Tables S1, S2, 
respectively.

We normalized our samples using the negative binomial 
distribution (McMurdie and Holmes, 2014) implemented in the 
Bioconductor package DESeq2 (Love et  al., 2014). This approach 
simultaneously accounts for library size differences and biological 
variability and has increased sensitivity if groups include less than 20 
samples (Weiss et  al., 2017). Taxonomic and phylogenetic alpha-
diversity (within-sample) were estimated using Chao1 richness and 
Shannon, Abundance-based Coverage Estimator (ACE), and 
Phylogenetic Diversity (PD) indices. Beta-diversity (between-sample) 
was estimated using phylogenetic Unifrac (unweighted and weighted), 
Bray–Curtis and Jaccard distances, and dissimilarity between samples 
was explored using principal coordinates analysis (PCoA).

Differences in taxonomic composition (phyla and genera) and 
alpha-diversity indices between disease groups (AR, ARAS, and AS) 
and healthy individuals (CT) were assessed using linear models 
(mixed and standard) analysis to account for the non-independence 
of subjects (random effect)—lmer4 R package (Bates et al., 2015). 
We also included age, season and sex as covariables in all our initial 
model comparisons. Lineal models with randomized subjects were not 
better than those without random effects, as suggested by their similar 
or lower scores for the Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC). Additionally, none of the 
covariables were significant for any of the taxonomic and diversity 
indices compared. Beta-diversity indices were compared using 
permutational multivariate ANOVA (adonis)—vegan R package 
(Dixon, 2003). We  applied the Benjamini–Hochberg method at 
alpha = 0.05 to correct for multiple hypotheses testing (Cook, 1977; 
Benjamini and Hochberg, 1995). All the analyses were performed in 
R (R Development Core Team, 2008) and RStudio (RStudio 
Team, 2015).

2.5 Functional analyses

Metabolic pathways were predicted by imputation of gene families 
and genomes as implemented in PICRUSt2 (Douglas et al., 2020). 
Briefly, we used the fungi ITS reference database provided by the 
developers to align our ITS sequences (minimum alignment 0.6) and 
then place them onto an ITS phylogenetic tree. Using ASV abundances 
obtained in dada2, we predicted gene family profiles and ultimately 
sample pathway abundances. Pathways were annotated using the 
MetaCyc database (Caspi et  al., 2020) and differential pathway 
abundance among groups was determined in DESeq2 (Wald test; 
adjusted p value <0.01). Statistical analyses and visualization were 
conducted using functions in the ggpicrust R package (Yang 
et al., 2023).

2.6 Network analyses

Changes in fungal community structure were explored using 
covariation network analysis as implemented in Spiec-Easi (Kurtz 
et al., 2015). We estimated networks for AR, ARAS, and CT at the 
genus level (abundance filter threshold = 0.0005; mb method; 
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greedy clustering). Network estimation, statistics, and 
visualization was carried out in the microeco R package (Liu 
et al., 2021).

3 Results

We collected nasal swabs from a cohort of 339 participants (214 
individuals with respiratory disease and 125 healthy controls) from 
northern Portugal comprised mainly of children and young adults 
(Supplementary Table S1). The median age of the participants was 
12.5 ± 5.0 years and 53.7% were female. Subjects with respiratory 
disease were subdivided into three groups: AR (47), ARAS (155), and 
AS (12 subjects). We sequenced the ITS1-ITS2 gene to characterize 
the nasal mycobiome of each participant. Twenty-two samples (i.e., 
technical replicates) from the following groups were sequenced twice 
due to seemingly faint PCR bands in agarose gels: AR (seven samples), 
ARAS (13 samples), and CT (two samples). ASV singletons and 
samples with <1,014 reads were eliminated, rendering a final data set 
of 306 samples with the following distribution: AR (42 samples from 
36 individuals), ARAS (142 samples from 130 individuals), AS (12 
samples from 12 individuals), and CT (110 samples from 
108 individuals).

3.1 Mycobiome taxonomic diversity and 
structure

Our nasal mycobiome (306 samples after quality control) dataset 
comprised 6,145,342 clean reads, ranging from 1,014 to 223,989 
sequences per sample (mean = 20,082.8) and a total of 5,635 ASVs 
(Supplementary Table S2). AR samples had 570 unique ASVs, ARAS 
samples had 2,202, AS samples had 138 and CT samples had 1,615 
(Supplementary Figure 1). The four groups shared 122 ASVs, the 
disease groups shared 78 ASVs, while other pairs and trios shared a 
variable number, ranging from 1 to 323 ASVs (Supplementary Figure 1).

The nasal mycobiome sequences across all 306 filtered samples 
were classified into two dominant (>1% abundance) Phyla: 
Ascomycota (54.0%) and Basidiomycota (44.9%) (Table 1). Those 
Phyla comprised 14 dominant (>1%) genera (Table 1; Figure 1), being 
the most abundant Cladosporium (23.0%), Wallemia (8.9%), 
Malassezia (8.3%), and Rhodotorula (8.2%). All the other detected 
phyla and genera accounted for <1% of the total ITS sequences each.

ASV2 of the genus Cladosporium comprised the nasal core 
microbiome (prevalence ≥90%) of the respiratory disease patients and 
accounted for 12.8% of their total reads. No core mycobiome was 
detected for the control samples. ASV2 may represent the more stable 
and consistent member of the nasal mycobiomes (Backhed et al., 2012; 
Shade and Handelsman, 2012) in the disease patients.

We also compared the mean relative abundance of specific taxa in 
subjects with respiratory disease and healthy controls. None of the two 
dominant fungal phyla (Ascomycota and Basidiomycota) comprising 
the nasal microbiome showed significant differences in their mean 
relative proportions between the groups compared (Table 1). Of the 
14 dominant fungal genera comprising the nasal microbiome 
(Figure 1; Table 1), 7–10 genera showed significant differences in their 
mean relative proportions between all respiratory disease group (AS, 
AR or ARAS) and CT after FDR correction. However, none of the 

same genera varied significantly between the three respiratory disease 
groups (Table 1).

Alpha-diversity indices (Shannon, Chao1, ACE, and PD) of 
microbial community richness and evenness varied among clinical 
groups (Figure 2; Supplementary Table S3). AR and ARAS showed the 
highest diversity for all indices, while CT showed the lowest. ARAS–
CT and AR–CT comparisons were significantly distinct for Shannon, 
Chao1, and ACE after FDR correction (Wilcoxon test; p ≤ 0.024). All 
the other pairwise comparisons, including those of PD estimates, were 
not significant.

To characterize the structure of the nasal mycobiomes (beta 
diversity), we  applied principal coordinates analysis (PCoAs) to 
Unifrac (unweighted and weighted), Bray–Curtis and Jaccard distance 
matrices. All the PCoAs showed partial segregation of the mycobiotas 
from each clinical group (Figure 3). Subsequently, adonis analyses 
detected significant differences (p ≤ 0.0004) in beta-diversity between 
each of the respiratory disease groups (AS, AR and ARAS) and the 
healthy controls for all the distances. None of the pairwise comparisons 
between respiratory disease groups resulted significant. This suggests 
that the nasal mycobiomes of AS, AR and ARAS participants may 
differ from those of healthy individuals in a similar 
compositional manner.

3.2 Mycobiome functional diversity

To understand whether different disease groups exhibited 
differences in the nasal mycobiome functional capabilities, we inferred 
the functional potential of AR, ARAS, and CT groups. We  found 
significant differences (adjusted p-value <0.01) in abundance in 30 
pathways (MetaCyc annotated) between AR and CT or ARAS 
(Figure 4). Most changes in pathway abundance represented pathways 
enriched in CT compared to AR or ARAS with negative or nearly zero 
log2 Fold Change (FC). Only three pathways associated with 
5-aminoimidazole ribonucleotide biosynthesis were over abundant 
(log2 FC > 0.75) in ARAS patients (Figure 4B). These pathways are 
associated with the de novo biosynthesis of purine nucleotides and of 
thiamin (PWY-6121; PWY-6122; PWY-6277). Interestingly, the 
comparison AR versus ARAS yielded no significant results (p-value 
>0.1), suggesting both conditions share a similar nasal mycobiome 
functional signature.

3.3 Mycobiome interactions

We further wanted to investigate potential direct or indirect 
interactions among fungal groups. We inferred inverse covariance 
networks using the Spiec-Easi model to compare the structure and 
connectivity of the nasal mycobiome. In the CT network, we identified 
seven modules of interacting fungi (Figure  5) with a degree of 
connectivity between 1 and 2, indicating very low connectivity. 
Likewise, betweenness centrality, a measure of importance of a node 
in a network, was also low (range 0–2). In turn, in the ARAS network 
(Figure 5), degree of connectivity ranged between 1 and 7, indicating 
higher connectivity. Some fungal genera were connected up to other 
7 genera, and of those, Cystobasidium, Pseudopithomyces, Peniophora, 
and Debaryomyces, presented high betweenness centrality (e.g., 
Peniophora > 90), highlighting their role as hubs in the ARAS 
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mycobiome. The AR network showed a degree of connectivity and 
betweenness centrality of 1–4 and 0–30, respectively (Figure 5). It 
shared similarities with the ARAS network, where Phlebia and 
Debaryomyces were also highly connected (4 and 5 in AR; 2 and 5 in 
ARAS). Node overlap between the three networks varied; ARAS and 
AR shared 23.6% of the nodes, ARAS and CT shared 14.6% and AR 
and CT shared 9.1%. Edge overlap was limited between networks 
(<5%), suggesting the overall structure of the networks is different.

4 Discussion

The role of the fungal communities residing in the upper airways 
in allergic rhinitis and asthma is practically unknown (Jung et al., 
2015; Yuan et al., 2023). Here we present the results of a cross-sectional 
study comparing the nasal mycobiome of 339 individuals with allergic 
rhinitis (with and without comorbid asthma), asthma and 
healthy controls.

The nasal mycobiomes were composed of basically two phyla 
(Ascomycota and Basidiomycota) and 14 genera (Figure 1; Table 1). 
These two phyla and all dominant genera have been previously 
described in the airways of both healthy, asthmatic and rhinitic 
individuals, although with different abundances (Jung et al., 2015; 
Carpagnano et al., 2016; Goldman et al., 2018; Rick et al., 2020; van 
Tilburg Bernardes et al., 2020; Yuan et al., 2023). We detected common 
opportunistic pathogenic fungi like Malassezia, Aspergillus, Candida, 
and Penicillium (Badiee and Hashemizadeh, 2014). Moreover, 
exposure to Alternaria spores has been associated with AR symptoms 

(Andersson et al., 2003; Oliveira et al., 2023). This confirms at fungal 
level what is already known for bacteria, that the nasal cavity is a 
major reservoir for opportunistic pathogens that can cause allergic 
rhinitis and asthma (Garcia-Rodriguez and Fresnadillo Martinez, 
2002; Hilty et  al., 2010; Bogaert et  al., 2011; Dickson et  al., 2013; 
Biesbroek et al., 2014; Huang and Boushey, 2015; Pérez-Losada et al., 
2015; Teo et al., 2015; Pérez-Losada et al., 2016b; Prevaes et al., 2016; 
Huang, 2017; Lal et al., 2017; Pérez-Losada et al., 2017; Esposito and 
Principi, 2018; Pérez-Losada et al., 2018; Gan et al., 2021; Chen et al., 
2022; Kim et al., 2022; Pérez-Losada et al., 2023a).

Healthy participants differed greatly in fungal composition from 
those with chronic respiratory illnesses. The nasal mycobiome of 
healthy controls contained 28.7% unique ASVs, while the AR, ARAS 
and AS mycobiomes contained 10.1, 39.1, and 2.4% unique ASVs, 
respectively (Supplementary Table S2; Supplementary Figure 1). These 
ASVs are potential biomarkers of disease for each group. Further 
metataxonomic and metagenomic studies are needed to confirm these 
results and their potential as therapeutic targets for rhinitis and 
asthma (Castro-Nallar et al., 2015; Pérez-Losada et al., 2015; Pérez-
Losada et al., 2023a,b).

Fungal phyla (Ascomycota and Basidiomycota) did not vary 
significantly in their mean relative proportions between groups, but 
up to 71% of the dominant genera varied significantly between healthy 
samples and respiratory disease groups (Table 1). The most striking 
differences were observed between AR or ARAS and CT, where 10 of 
14 genera varied in their mean relative abundances, respectively. 
Alternaria, Cladosporium, Penicillium, Wallemia, Rhodotorula, 
Sporobolomyces, Naganishia, Vishniacozyma and Filobasidium were 

TABLE 1 Mean relative proportions (%) of fungal phyla and genera in the nasal mycobiome of participants with allergic rhinitis (AR), AR with comorbid 
asthma (ARAS), asthma (AS) and healthy controls (CT).

Mean relative proportions (%) Linear model test significance

All AR ARAS AS CT AR-CT ARAS-CT AS-CT AR-ARAS AR-AS ARAS-AS

Phylum

Ascomycota 54 49.2 56.2 79.2 48.6 ns ns ns ns ns ns

Basidiomycota 44.9 49.6 43.3 20.4 49.4 ns ns ns ns ns ns

Genus

Malassezia 8.3 0.3 1.3 0.2 23.7 <0.0001 <0.0001 <0.0001 ns ns ns

Alternaria 3.2 3.6 3.6 1.6 2.7 0.024 0.0003 ns ns ns ns

Cladosporium 23 23.3 28.6 63.6 7.5 <0.0001 <0.0001 <0.0001 ns ns ns

Penicillium 2.4 1.8 3.3 1.4 1.6 0.049 <0.0001 0.031 ns ns ns

Aspergillus 4 3.6 3.4 1.9 5.4 ns ns ns ns ns ns

Candida 4.7 4.2 4.7 4.6 5.2 ns ns ns ns ns ns

Aleurina 2.4 0.1 0.2 0.3 7 ns ns ns ns ns ns

Wallemia 8.9 15.8 11.8 2.7 2.5 <0.0001 <0.0001 0.0063 ns ns ns

Rhodotorula 8.2 12.2 12.1 3.5 1.6 <0.0001 <0.0001 0.0008 ns ns ns

Sporobolomyces 1.2 1.1 2 0.9 0.1 <0.0001 <0.0001 ns ns ns ns

Naganishia 1.4 2.9 1.2 0.4 1 0.016 0.0026 ns ns ns ns

Vishniacozyma 1.4 2.9 1.5 0.9 0.6 <0.0001 <0.0001 0.0023 ns ns ns

Sistotrema 1 0.5 0.6 1.5 1.7 ns ns ns ns ns ns

Filobasidium 1.4 1.5 1.4 2.8 1.1 0.0009 <0.0001 0.019 ns ns ns

p values for significant pairwise comparisons (linear model test) between groups are also displayed. ns, not significant.
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significantly more abundant in AR and ARAS, while Malassezia was 
significantly more abundant in healthy controls. A previous study of 
the nasal vestibule (Jung et al., 2015) in four patients with allergic 
rhinitis and four controls showed that Basidiomycota and Malassezia 
were highly abundant in all samples (>92%); nonetheless, no 
significant differences were reported among groups. This disagrees 
with our findings here and could result from the low sample size, 
fungal gene sequenced (i.e., large ribosomal subunit) or geographic 
region (i.e., Seoul metropolitan area) in Jung et al.’s study. Seven fungal 
genera varied significantly between AS and CT, despite the small 
sample size of this group. As before, Malassezia was also much more 
abundant in CT, while the other genera varied less in their mean 
relative abundances. Previous studies have also revealed significant 
differences in the mycobiota of asthmatic patients for Cladosporium, 
Rhodotorula, Malassezia or Penicillium (van Woerden et al., 2013; 
Goldman et  al., 2018; Sharma et  al., 2019; Yuan et  al., 2023). 
Compositional changes in these fungal groups may provide insights 
into the pathobiology of allergic rhinitis and asthma. Further studies 
are required to confirm our findings and untangle the relationship 
between fungal colonization, dysbiosis and chronic inflammatory 
disease (Nguyen et al., 2015; Goldman et al., 2018; Rick et al., 2020; 
van Tilburg Bernardes et al., 2020; Yuan et al., 2023).

Fungal alpha-diversity (species richness and evenness) was 
significantly higher in ARAS and AR compared to CT for all 

indices but PD (Figure  2). The only study that explored the 
diversity of the nasal mycobiota in individuals with rhinitis (Jung 
et al., 2015) also reported higher estimates of Shannon diversity 
for the AR group. If confirmed, this may suggest that allergic 
rhinitis (with or without asthma comorbidity) may increase 
microbial diversity in the upper airways, as seen in previous 
studies of the bacteriome (Choi et al., 2014; Gan et al., 2021; Kim 
et al., 2022; Pérez-Losada et al., 2023a,b).

AR, ARAS, and AS samples displayed significant differences in 
community structure (i.e., beta-diversity) compared to those of 
healthy controls (Figure  3). This pattern held for all the distance 
metrics used, whether accounting for phylogenetic diversity or not. 
No differences were observed between AR and ARAS groups. A 
previous study of the nasal mycobiota (Jung et al., 2015) has also 
revealed that AR and CT communities were considerably 
differentiated. Another study (2020) has also shown specific 
community structuring associated with distinct bacterial composition 
of the lung in AS vs. CT. Hence, as indicated before (Pérez-Losada 
et al., 2023a,b), these results suggest that fungal compositional shifts 
may be a reliable predictor of allergic rhinitis or asthma in the upper 
airways, given their lower stochasticity associated to dysbiosis (Ma 
et al., 2019; Ma, 2020).

The functional component of the allergic rhinitis mycobiome is 
largely underexplored. Here, we  used an imputation method to 

FIGURE 1

Alpha-diversity estimates (Chao1, Shannon, ACE, and phylogenetic diversity) and statistical significance (linear model test) in nasal fungal communities 
from participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS), asthma (AS), and healthy controls (CT). ns, not significant; *p  ≤  0.05; 
****p  ≤  0.0001.
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indirectly explore the functional potential of the nasal mycobiome 
(Figure 4). We found modest yet significant differences in metabolic 
pathway abundance when comparing the AR to CT groups. Pathway 
relative overexpression was high for three pathways related to 
5-aminoimidazole ribonucleotide (AIR) biosynthesis in the ARAS 
group (log2 FC > 0.75). AIR is a key intermediate for purine nucleotide 
biosynthesis and a precursor to 4-amino-2-methyl-5-
hydroxymethylpyrimidine, the first product of pyrimidine 
biosynthesis. No studies so far have investigated AIR biosynthesis in 
the airway microbiome, but, interestingly, studies of the gut 
bacteriome have related AIR biosynthesis to several clinical conditions 
and diseases (hyperuricemia, inflammatory bowel disease and 
colorectal cancer) (Ma et al., 2021; Sheng et al., 2021). The impact (if 
any) of fungal AIR biosynthesis in human health has not been 
investigated. Purine metabolism is necessary to synthesize DNA and 
RNA, and in plant pathogenic fungi is associated with fungal growth 

and pathogenesis (Sun et al., 2024). Some authors (Chitty and Fraser, 
2017) have reviewed the literature regarding purine acquisition and 
synthesis in human pathogenic fungi, finding that purines are essential 
in diverse processes such as signal transduction, energy metabolism 
and DNA synthesis, turning AIR biosynthesis into a potential 
therapeutic target. More studies are needed to test whether AIR 
biosynthesis in the human airway mycobiome is associated with 
respiratory diseases such as allergic rhinitis or asthma.

We have also explored mycobiome interactions to better 
understand the role of fungi in the nasal cavity (Figure 5). Direct or 
indirect interactions are usually inferred based on co-occurrence or 
co-variation of microbes’ abundance. For instance, positive 
interactions might be indicative of syntrophy (a relationship in which 
one or both organisms benefit nutritionally from the presence of the 
other), while negative interactions may indicate competition. The CT 
and AR groups showed fewer significant interactions, all of which 

FIGURE 2

Bar plots of mean relative proportions of the top fungal genera in the nasal cavity of participants with allergic rhinitis (AR), AR with comorbid asthma 
(ARAS), asthma (AS), and healthy controls (CT).
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were positive, suggesting either similar roles of fungi in the community 
or syntrophy. In turn, the ARAS group exhibited more diverse 
relationships with multiple modules with positive and negative 
interactions among fungal taxa. Previous research has shown that 
these patterns of co-abundance and exclusion seem to be stable across 
body sites in the healthy human microbiome and that its alteration can 
be indicative of underlying disease processes (Faust et al., 2012). In 
previous studies of the bacteriome in patients with allergic rhinitis 
(Pérez-Losada et  al., 2018; Pérez-Losada et  al., 2023a,b) or of the 
mycobiome in asthmatics (Huang et  al., 2020; Liu et  al., 2020), 
co-occurrence networks in diseased participants exhibited different 
interactions than in healthy controls. Our novel analyses of the airway 
mycobiome in rhinitic patients seem to confirm those results, 
although with the allergic rhinitis and comorbid asthma group 
(ARAS) exhibiting a higher and more diverse mycobiome network. 
Interestingly, in spite of the multiple connections of rhinitis and 
asthma and the proposed concept of a united airway disease 

(Compalati et  al., 2010), recent omic data (Dizier et  al., 2007; 
Lemonnier et al., 2020) suggest that rhinitis alone and rhinitis with 
comorbid asthma may represent two distinct diseases with different 
allergen sensitization and disease onset (Siroux et al., 2018), rhinitis 
severity (Savoure et al., 2023) and treatment response (Sousa-Pinto 
et al., 2022). Moreover, the hypothesis that these two distinct diseases 
are possibly modulated by the microbiome has been recently proposed 
(Bousquet et al., 2023). Further research is needed to explore the role 
of fungi in chronic inflammation, particularly in allergic individuals.

Our study highlights significant differences in the nasal 
mycobiome composition, structure, and function between individuals 
with allergic rhinitis and asthma and healthy controls. These findings 
have profound implications for understanding innate and adaptive 
host immune responses to fungi in the airways (Bartemes and Kita, 
2018; Silva-Gomes et al., 2024). The nasal mycobiome can modulate 
the local immune environment. Fungal components, such as cell wall 
polysaccharides (e.g., β-glucans), are known to interact with pattern 

FIGURE 3

Principal coordinates analysis (PCoA) plots of beta-diversity estimates (Unifrac, Bray-Curtis and Jaccard indices) and statistical significance (Adonis test) 
in nasal fungal communities from participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS), asthma (AS), and healthy controls (CT). ns, 
not significant.
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FIGURE 4

Spiec-Easi networks of fungal taxa in the nasal mycobiomes of participants with allergic rhinitis (AR), AR with comorbid asthma (ARAS) and healthy 
controls (CT). Nodes represent taxa connected by edges whose width (0.1–0.4) is proportional to the strength of their association. Cyan and pink 
edges indicate positive and negative correlations, respectively.
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recognition receptors on immune cells, leading to the activation of 
various immune pathways (Brown et al., 2012; Bartemes and Kita, 
2018). This interaction can exacerbate or alleviate inflammation in the 
respiratory tract, influencing the severity of allergic reactions. Altered 
nasal mycobiome profiles, such as those revealed here, may contribute 
to allergic sensitization. Fungi can also produce potent allergens that 
trigger Th2-mediated immune responses, characterized by increased 
production of IgE and activation of mast cells and eosinophils (Noverr 
and Huffnagle, 2004; Noverr et al., 2004; Bartemes and Kita, 2018). 
This immune activation plays a critical role in the pathogenesis of 
allergic rhinitis and asthma. The nasal epithelial barrier’s integrity and 
the effectiveness of innate immune defenses are closely linked to 
mycobiome composition. Dysmycobiosis, i.e., imbalance in the fungal 
community, can compromise these defenses, making individuals more 
susceptible to infections and exacerbations of allergic conditions (Iliev 
and Leonardi, 2017). Our findings are supported by previous research 
demonstrating that distinct nasal mycobiome profiles can activate 
different immunological responses. For instance, van Woerden et al. 
(2013) showed that fungal dysbiosis in asthmatic patients correlates 
with altered immune responses, including increased airway 
inflammation. A recent review (Jafarlou, 2024) has highlighted that 
fungal diseases are emerging as a significant global health threat, with 
the potential to cause a pandemic with widespread outbreaks and 
significant morbidity and mortality. There is already growing evidence 
that the lung mycobiome has a significant impact on clinical outcome 
of chronic respiratory diseases such as asthma (Nguyen et al., 2015). 
Little is known, however, about allergic rhinitis or the role of the nasal 
cavity mycobiota (Jung et  al., 2015). We  showed that nasal 
dysmycobiosis may contribute to allergic rhinitis with or without 
asthma comorbidity and warrants further research to elucidate the 
relationship between the nasal mycobiota and airway pathology.

This study has several limitations. Metataxonomic approaches 
suffer from the inherent limitations of collecting sequence data from 
a single gene target (ITS here) (Hilton et al., 2016; Pérez-Losada et al., 
2022). PCR amplification biases can also impact microbial 
compositional assessments. ITS1-2 has limited resolution at the 

species and sometimes genus level for taxonomic assignment. 
Although the composition of the described nasal mycobiomes is 
similar to those reported by others in the nasal cavity of healthy and 
diseased individuals (Jung et  al., 2015; Carpagnano et  al., 2016; 
Goldman et al., 2018; Rick et al., 2020; van Tilburg Bernardes et al., 
2020; Yuan et al., 2023). The sample size of the asthmatic (AS) group 
is relatively small, although we have tried to account for it using 
statistical approaches moderately robust to small sample sizes. The 
metabolic potential of the mycobiomes was predicted by imputation 
of gene families and genomes in PICRUSt2 instead of inferred using 
shotgun metagenomics; hence functional profiles should 
be  interpreted with caution. This study focuses on a cohort of 
Portuguese individuals for whom we  have collected limited 
demographic and clinical data (i.e., heath status, season, age, and sex) 
for all the participants. It is uncertain to what extent our results can 
be  generalized to other countries and cohorts, but since clinical 
practices in Portugal for treating rhinitis and asthma follow 
international guidelines and recommendations and nasal 
mycobiomes characterized here resembled those described in other 
studies of cohorts from United States, Europe, and Asia, we feel like 
our insights are broadly applicable. Nonetheless, future research 
should address the impact of other demographic, clinical and 
environmental factors on the diversity of airway mycobiomes 
(Cavaleiro Rufo et al., 2017; Zhang et al., 2023; Paciencia et al., 2024). 
The relevance of detecting fungi associated with specific phenotypes 
of disease is unknown, dual-transcriptomic studies coupled with 
longitudinal sampling (as opposed to the cross-sectional sampling 
design used here) can help to clarify whether specific microbes are 
drivers or bystanders in rhinitic and asthmatic patients. Future 
microbiome research should address this issue.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 

FIGURE 5

Differential abundance analysis (Wald’s test; adjusted p value <0.01) of functional profiles in the nasal mycobiomes of participants with allergic rhinitis 
(AR) and healthy controls (CT) (A), and AR participants with comorbid asthma (ARAS) and CT (B).
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PRJNA1107919.
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