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Background: The ability of yaks to adapt to the extreme environment of low

temperatures and hypoxia at cold seasons on the Qinghai-Tibet Plateau (QTP)

is related to the host genome; however, the convergent evolution of rumen

microbiomes in host adaption is unknown.

Methods: Here, we conducted a multi-omics study on the rumen fluid of grazing

yaks from warm (July) and cold (December) seasons on the QTP to evaluate the

convergent evolution of rumen microbiomes in the adaptation of grazing yaks

to cold-seasons environments.

Results: The results showed that grazing yaks at cold seasons had higher

fibrolytic enzyme activities and volatile fatty acids (VFAs) concentrations, and the

relative abundance of Firmicutes and the ratio Firmicutes to Bacteroidetes was

significantly higher than that of yaks at warm seasons. Macrogenomic analyses

showed that genes involved in forming VFAs and arginine were significantly

enriched in cold-season yaks. Transcriptome analyses of the rumen epithelium

showed that 72 genes associated with VFAs absorption and transport were

significantly upregulated in cold-season yaks. Metabolomic analyses showed

that the levels of ornithine, related to efficient nitrogen utilization, were

significantly upregulated in cold-season yaks.

Conclusion: The synergistic role of rumen microbiomes in the adaptation of

grazing yaks to extreme environments at cold seasons was revealed by multi-

omics study.
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Introduction

The demanding conditions present in cold-season environments - low temperatures,
lack of oxygen, and limited food resources - present a significant challenge to the survival
of animal populations (Wang et al., 2024). The gastrointestinal microbiome offers crucial
functions to the host, including energy balance, regulation of immunity, food fermentation,
physical development, and prevention of diseases (Mao et al., 2015; Bai et al., 2022; Han
et al., 2022). The gastrointestinal microbiome is closely associated with host adaptation
(Huws et al., 2018; Guo et al., 2021; Mizrahi et al., 2021). Understanding the potential role of
gastrointestinal microbiota in animal adaptation to challenging cold-season environments
is crucial to investigate the convergent evolution of gastrointestinal microbiota.
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The variety and diversity of microbial colonization in the
gastrointestinal tract of animals are determined by natural selection
between the host and its living environment. Previous studies
on piglets, partridges, pikas, Tibetan chickens, Tibetan pigs, and
rhesus macaques have confirmed that gastrointestinal microbiomes
positively affect adaptation to harsh environments (Zhou et al.,
2016; Li et al., 2018; Liu et al., 2021; Zhang et al., 2022; Tang
et al., 2023; Zhao F. F. et al., 2023; Zhao J. S. et al., 2023). Volatile
fatty acids (VFAs) supplied by the gastrointestinal microbiome play
a vital role in host energy harvesting (Ganal-Vonarburg et al.,
2020; Kimura et al., 2020; Nilsen et al., 2020; Zietek et al., 2021).
Previous research suggests that alterations in the gastrointestinal
microbiome of animals can lead to changes in their function
(Huws et al., 2018; Sha et al., 2024); however, the function of
gastrointestinal microbiomes in response to extreme environments
is unknown.

The yak is an endemic breed that lives at high altitudes.
Approximately 90% of the world’s yaks live in the Qinghai-Tibet
Plateau (QTP) region of China, where they provide milk, meat,
wool, and fuel to the Tibetan people (Wang et al., 2024). Therefore,
local herders call them all-round livestock and plateau boats.
Previous research has demonstrated that the ruminal microbial
community composition in yaks is affected by diet, age, season,
activity area, and health status (Ahmad et al., 2020; Guo et al., 2021;
Han et al., 2022). However, no studies have yet reported on the
interactions between functional genes and metabolite composition
of the rumen microbiota of yaks during cold-season adaptation. In
addition, adaptation mechanisms for the genome and physiology
of grazing yaks at cold season have been widely reported (Ishizaki
et al., 2005; Shao et al., 2010; Qiu et al., 2012); however, the
convergent evolution of rumen microbiota in host adaptation is
currently unknown. Therefore, we conducted investigations on the
microbiome, macrogenome, and metabolome of rumen fluid and
the transcriptome of rumen epithelium from warm- and cold-
season grazing yaks on the QTP to evaluate the synergistic role
of rumen microbiomes in yak adaptation to harsh environments
at cold season. These findings offer fresh perspectives on the
convergent evolution of gut microbes in animals adapted to
extreme cold-season environments.

Materials and methods

Experimental design and sampling

All trial procedures of this study have been approved by the
Animal Ethics Committee of Gansu Agricultural University (GAU-
LC-2020-27). The 12 healthy male yaks, aged five years and with
an average body weight of 236.17 ± 7.36 kg, were sourced from
a grazing area situated at an altitude of 3,100 m on the QTP. The
yaks were managed using traditional natural grazing techniques.
They were allocated randomly into two cohorts to reflect seasonal
variations-warm (July) and cold (December), with each group
consisting of six yaks. These animals grazed together in the same
field. Sample collections occurred in July and December. Yaks were
subsequently slaughtered and rumen fluid and rumen epithelial
tissues were collected. The rumen content (70 mL) was collected
from each yak and filtered using four layers of gauze. The collected

rumen fluid was divided into three parts: one part was placed into
a 10 mL lyophilized tube for DNA extraction, another part was
loaded into a 10 mL lyophilized tube for metabolite identification,
and the third part was placed into a 50 mL centrifuge tube
to determine rumen fermentation parameters. Following sample
dispensing, the samples were transferred using liquid nitrogen
tanks to the laboratory where they were then stored in an ultra-
low temperature refrigerator (−80◦C) for subsequent analysis. The
tissue of the rumen ventral capsule was cut and promptly rinsed
with PBS buffer to separate the epithelial tissue, which was then
immediately stored in liquid nitrogen for the extraction of total
RNA from the ruminal epithelium. Furthermore, six test plots
measuring 0.5× 0.5 meters were randomly established within each
experimental area to document the plant species. Subsequently,
the vegetation in the plots was trimmed to 5 centimeters from
the ground level, gathered in cloth bags, and taken back to the
laboratory to assess the nutritional value of the forage.

Determination of rumen
histomorphology in grazing yaks

Five pieces of tissues measuring 2.5 × 2.5 cm were clipped
from the abdominal sac area of each yak separately. Rumen
ventral sac tissues were soaked in paraformaldehyde (4%) for 24 h,
subsequently dehydrated, made transparent, waxed, embedded,
sectioned, and stained. Hematoxylin (Wuhan Sevier Biotechnology
Co., Ltd.) and eosin (Hefei Bomei Biotechnology Co., Ltd.)
were used for the staining. The sections were observed using
a Pannoramic 250 (3DHISTECH) scanner. The following were
measured using the CaseViewer section analysis system: rumen
nipple height, nipple width, stratum corneum, granular layer,
spinous layer, base layer, and muscle thickness.

Determination of the nutritional quality
of herbage

Forage samples from two seasons were dried at 65◦C for 48 h
and reduced to approximately 1 mm size. The dry matter (DM),
crude protein (CP), ether extract (EE), neutral detergent fiber
(NDF), and acid detergent fiber (ADF) contents were determined
under laboratory conditions. The DM, CP, and EE contents were
analysed according to the method outlined by AOAC (2002), whilst
the NDF and ADF contents were evaluated through employment of
a fully automated ANKOM A2000i instrument.

Determination of VFAs and fibrolytic
enzyme activity

VFAs were analysed by means of gas chromatography
(chromatograph SP-3420A, Beifenrili Analyzer Associates, Beijing,
China), following the procedure outlined in Erwin et al. (1961).
Carboxymethyl cellulase, avicelase, xylanase, and acetylesterase
levels were measured using xylanase, CMCase, avicelase, and AE
enzyme immunoassay kits (Jiangsu Jingmei Bio-Technology Co.,
Ltd., 96T, 3 U/L–80 U/L), respectively.
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High-throughput sequencing and
analysis

DNA was extracted from yak rumen fluid using the E.Z.N.A. R©

Stool kit, in accordance with manufacturer instructions provided
by Omega BioTEK in Norcross, GA. The quality and purity
of the extracted DNA were evaluated via 1% agarose gel
electrophoresis and spectrophotometry, using Thermo Scientific’s
NanoDrop 2000C equipment. The bacterial 16S rRNA gene’s
V3-V4 region was amplified using the 338F primer (5′-
ACTCCTACGGGGAGGCAGCAG-3′) and the 806R primer (5′-
GGACTACHVGGGTWTCTAAT-3′). The PCR products were
subsequently observed by a 1% agarose gel electrophoresis and
purified utilizing an Agencourt R© AMPure R© XP (Beckman Coulter)
Nucleic Acid Kit. The sequencing libraries were constructed with
the PCR products, followed by high-throughput sequencing using
Illumina MiSeq PE300.

The raw sequences obtained were spliced and filtered using
QIIME1 (v.1.8.0), Pear (v.0.9.6), and Vsearch (v.2.7.1) softwares to
obtain high-quality data. Subsequently, the high-quality data were
compared with the Gold Database to obtain data that could be
used for subsequent analyses. Finally, we utilized Vsearch (v.2.7.1)
software to analyze the sequencing data and grouped the sequences
into a single class of OTUs based on a similarity threshold of over
97%. Using the RDP Classifier algorithm, each OTU was compared
with the Silva128 database to obtain classification information.
Finally, OTU data were standardized using the minimum draw flat
method for further microbial α-diversity indices.

Metagenomic sequencing and analysis

The DNA samples under test were randomly fragmented into
small pieces of roughly 300 bp using a Covaris M220. TruSeq DNA
Sample Preparation Kit (Illumina, San Diego, CA) was employed to
establish individual sequencing libraries, and bipartite sequencing
was performed using the Illumina NovaSeq PE150 Sequencing
Platform. The fastp v0.20.0 software was utilized to trim and
obtain high-quality sequences. All reads were aligned to yak DNA
sequences using BWA v0.7.9 to detect and exclude any reads with
significant similarity (Li et al., 2014). The optimized sequences were
spliced and assembled using MEGAHIT v1.1.2, and contigs with
lengths greater than 800 bp were filtered out for further analysis.1

ORF prediction of the filtered contigs was performed using
Prodigal (https://github.com/hyattpd/prodigal/wiki). The gene
sequences predicted from all samples were clustered using CD-
HIT v4.6.1,2 based on an identity greater than 95% and coverage
greater than 90%. The non-redundant gene set was constructed
using the longest sequences from each cluster as their representative
sequences. To determine gene abundance, quality-filtered sequence
reads were compared with those with > 95% identity using
Bowtie2 across each sample (Fu et al., 2012). The non-redundant
gene set’s representative sequences underwent alignment with
NR v2021.11, eggNOG v4.5.1, and KEGG v94.2 databases using

1 https://github.com/voutcn/megahit

2 http://www.bioinformatics.org/cd-hit/

Diamond v0.8.35. Subsequently, species abundance, gene-related
functions and KEGG functions were attained (Xie et al., 2011).
The abundance of carbohydrate-active enzymes (CAZymes) was
determined by aligning representative sequences from the non-
redundant gene set with the CAZy v5.0 database3 using hmmscan.

Transcriptome sequencing and analysis

RNA was extracted from grazing yaks’ rumen epithelial tissue
through the TRIzol technique (Invitrogen, CA). RNA quality
and purity were assessed using a spectrophotometer (NanoDrop
Thermo Scientific, DE), while extracted RNA integrity was
evaluated through an Agilent 2100 spectrophotometer (Agilent
Technologies, CA). The examined RNA samples were employed to
fabricate distinct cDNA collections with the VAHTS Universal V6
RNASEQ Library Prep Kit (Illumina) following the manufacturer’s
guidelines. The commodities were then refined with a VAHTSTM
DNA Clean Beads Kit (N411-03). The formed collections were
analysed using Illumina NovaSeq 6000 (PE150).

Firstly, raw sequences were filtered through in-house Perl
scripts. After this, the raw sequences were quality-clipped with
Trimmomatic v0.33, resulting in obtaining high-quality sequences.
Subsequently, the alignment of the yak genome was carried out
using STAR v2.5.2b. Cufflinks v2.1.1 was utilized to assemble
the comparison results. Measurement of transcription and gene
expression levels was performed using FPKM. Differential gene
expression was analysed using DESeq v1.10.1 data analysis
methods, adhering to fold change ≥ 2 and FDR < 0.01.
Subsequently, GOseq v1.22 was employed to conduct functional
enrichment analyses of GO and KEGG, specifically concerning
differentially expressed genes.

Metabolomic analysis of rumen fluid

The samples of rumen fluid were removed from the ultra-low
temperature fridge (−80◦C) and left to thaw at room temperature
(4◦C). 500 µL of each sample was taken and a CAN:MeOH
(v:v = 1:1) solution was added. After 30 seconds of shaking
(using a vortex shaker), they were sonicated for 10 min (sonicator,
PS-60AL) and subsequently left to settle at −20◦C for 1 h.
The supernatant was then centrifuged at 13,000 rpm at 4◦C
for 15 min. The supernatant underwent a 15-min ultra-high-
performance liquid chromatography analysis (LC-30, Shimadzu).
The ACQUITY UPLC HSS T3 column with a dimension of
2.1 × 100 mm and a particle size of 1.8 µm was used with water
as the eluent. An injection volume of 2 µL was applied, and the
flow rate was set at 0.3 mL/min while the column temperature
was held at 50◦C. Rumen fluid samples were collected using
high-resolution mass spectrometry (Triple TOF 5600) in both
positive and negative ion modes. The raw data were processed
for peak detection, extraction, alignment, and integration using
the Allwegene Company program (Beijing, China) after being
converted to the mzML format using ProteoWizard. Metabolites

3 http://www.cazy.org/
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were identified using the Allwegene database with a threshold of
0.7. For further data analysis, the raw data underwent additional
steps. Firstly, peaks with missing values exceeding 50% of the
sample were eliminated. Secondly, the missing values in the raw
data were filled by half of the minimum value. Finally, the data
passed through quality control by excluding mass spectra with
metabolic profiles exhibiting a relative standard deviation of over
30%.4 Mapping of all differential metabolites to the biochemical
pathways in which they participated was performed by searching
the KEGG database, metabolite enrichment, and pathway analysis.

Statistical analysis

The data analysis was conducted using SAS 9.2 statistical
software. Forage nutritional quality, rumen fermentation
parameters, relative abundance of bacteria at the phylum and
genus levels, fibrolytic enzyme activities, abundance of CAZyme
genes, and rumen tissue structure parameters were analyzed using
the T-test. A significant difference was noted when P < 0.05, while
P > 0.05 was considered insignificant. The significant upregulation
of ruminal epithelial transcription genes was standardized at
P-adj < 0.05. The screening for significantly different metabolites
was at VIP ≥ 1, P < 0.05, and FC < 0.67 or > 1.5. Differentially
expressed genes in different metabolic pathways were compared
using the Wilcoxon test. Graphics were created using R software
(version 4.0.2).5

Results

Differences in the nutrient composition
of herbage at warm and cold seasons

The warm season herbage had a significantly higher CP and EE
contents compared to the cold season herbage (Table 1; P < 0.05).
In contrast, the NDF and ADF contents of cold season herbage were
significantly higher than those of warm season herbage (P < 0.05).
No notable difference in the DM and OM contents of herbage was
observed between warm and cold seasons (P > 0.05).

Differences in VFAs and fibrolytic enzyme
activities in yak rumen at warm and cold
seasons

The concentrations of TVFA and the proportions of acetate and
propionate in the rumens of yaks at cold season were significantly
higher than those at warm season (Table 2, P < 0.05). However,
the proportions of butyrate and isovalerate in the rumens of yaks
at warm season were significantly higher than those at cold season
(P < 0.05). Furthermore, the activities of avicelase, xylanase, and
carboxymethyl cellulase in the rumen of yaks at cold seasons were

4 https://fiehnlab.ucdavis.edu/projects/fiehnlib

5 https://CRAN.R-project.org

TABLE 1 Differences in herbage nutrient composition between warm
and cold seasons.

Item Season SEM P-value

W C

DM 92.8 93.26 0.2229 0.3178

CP 10.86 5.39 0.8527 <0.0001

EE 1.56 0.88 0.1055 <0.0001

NDF 42.91 58.73 2.4722 <0.0001

ADF 28.09 33.65 0.9997 0.0006

OM 89.72 89.62 0.1367 0.7416

Season: W, warm season; C, cold-season. CP, crude protein; EE, ether extract; NDF, neutral
detergent fiber; ADF, acid detergent fiber; DM, dry matter; OM, organic matter.

significantly higher than those at warm seasons (Table 2, P < 0.05).
The activities of acetylesterase in the rumen of yaks at warm and
cold seasons did not display significant differences (P > 0.05).

Differences in the rumen tissue structure
of yaks at warm and cold seasons

The nipple height, nipple width, stratum corneum thickness,
granular layer thickness, Spinous layer thickness, base layer
thickness, and muscle thickness of the yak rumen were significantly
higher at cold season than at warm season (Supplementary Table 1
and Supplementary Figure 1, P < 0.05).

Differences in the microbial community
composition of yak rumen at warm and
cold seasons

At the phylum level, rumen bacteria mainly included
Bacteroidetes, Firmicutes, Proteobacteria, Patescibacteria,
and Verrucomicrobia (Figure 1A). The relative abundance
of Firmicutes and the ratio Firmicutes to Bacteroidetes were
significantly higher at cold season than at warm season
(Supplementary Table 2, P < 0.05). The relative abundance
of Bacteroidetes was significantly higher at warm season than at
cold season (Supplementary Table 2, P < 0.05). At the genus level,
rumen bacteria mainly included Prevotella, Rikenellaceae RC9
gut group, Prevotellaceae UCG-001, and Prevotellaceae UCG-003
(Figure 1B). The relative abundance of Prevotella and Prevotellaceae
UCG-001 were significantly higher at warm season than at cold
season (Supplementary Table 2, P < 0.05). The relative abundance
of Lachnospiraceae XPB1014 group, Lachnospiraceae AC2044
group, and Clostridiales bacterium Firm 14 were significantly
higher at cold season than at warm season (P < 0.05).

Differences in CAZymes and KEGG
pathway of yak rumen at warm and cold
seasons

The relative abundance of carbohydrate-binding modules
(CBMs), glycoside hydrolases (GHs), glycosyltransferases (GTs),
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FIGURE 1

Differences in rumen bacterial community composition between yaks at warm and cold seasons. Relative abundance of rumen bacteria at the
phylum (A) and genus (B) level.

TABLE 2 Differences in rumen fermentation parameters and fibrolytic
enzyme activities between warm and cold seasons.

Item Season SEM P-value

W C

Rumen fermentation parameters

Total VFA (mmol/L) 42.08 73.58 4.813 <0.0001

Acetate (%) 59.96 63.01 0.7645 0.0384

Propionate (%) 19.18 23.15 0.8636 0.0124

Butyrate (%) 18.21 11.91 1.0437 <0.0001

Isobutyrate (%) 0.82 0.77 0.0434 0.5899

Valerate (%) 0.78 0.65 0.0405 0.1164

Isovalerate (%) 1.03 0.49 0.085 <0.0001

Fibrolytic enzyme activities

Avicelase (IU/L) 8.53 24.42 2.9328 0.0012

Xylanase (U/L) 32.11 38.94 1.7244 0.0405

Carboxymethyl
cellulase (IU/L)

170.54 244.02 11.8086 <0.0001

Acetylesterase (U/L) 43.85 39.67 2.5955 0.4474

VFA, volatile fatty acids. Season: W, warm season; C, cold-season.

polysaccharide lyases (PLs), and CAZymes in yak rumens at
cold season were significantly higher than that at warm season
(Supplementary Table 3, P < 0.05). The GH, GT, PL, and CBM
families associated with polysaccharide degradation were compared
(Supplementary Figure 2). The relative abundance of GH5, GH43,
GH66, GH101, GH6, GT9, GT30, PL21, and CBM5 in the yak rumen
at cold season were significantly higher than that at warm season
(P < 0.05). The relative abundance of GH26 in the yak rumen

at warm season was significantly higher than that at cold season
(P < 0.05).

At level 2 (Figure 2), Replication and repair, metabolism of
other amino acids, metabolism of terpenoids and polyketides,
lipid metabolism, nucleotide metabolism, biosynthesis of other
secondary metabolites, amino acid metabolism, drug resistance:
antimicrobial, glycan biosynthesis and metabolism, metabolism
of cofactors and vitamins, carbohydrate metabolism, xenobiotics
biodegradation and metabolism, cellular community-prokaryotes,
energy metabolism, and translation were enriched in the cold
season yaks (P < 0.05). Endocrine system, signal transduction,
neurodegenerative disease, cellular community-eukaryotes,
sensory system, infectious disease: bacterial, transcription, cancer:
overview, folding, sorting and degradation, infectious disease: viral,
infectious disease: parasitic, nervous system, aging, drug resistance:
antineoplastic, digestive system, environmental adaptation,
circulatory system, substance dependence, development and
regeneration, immune system, transport and catabolism, immune
disease, excretory system, cell growth and death, endocrine
and metabolic disease, cancer: specific types, cell motility, and
cardiovascular disease in warm season yaks (P < 0.05).

At level 3 (Supplementary Figure 3), 7 and 22 metabolic
pathways were enriched in the warm and cold season
yaks (P < 0.05), respectively. Endocytosis, pathways of
neurodegeneration_multiple diseases, autophagy_animal,
amyotrophic laterals clerosis, and coronavirus disease_COVID_19
were the top five pathways for warm season yaks; Ribosome,
aminoacyl_tRNAbiosynthesis, amino sugar and nucleotide sugar
metabolism, purineme tabolism, and homologous recombination
were the top five pathways for cold season yaks.

In addition, we analyzed the metabolic pathway from pyruvate
to acetate, propionate, and butyrate and found that the pathway
mainly involved 10 encoded enzymes (Figure 3). K00382, K00625,
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FIGURE 2

Differential KEGG pathways between yaks at warm and cold seasons at level 2. Season: W, warm season; C, cold-season.

and K00925 of the yak rumen were found to be significantly
enriched at cold season in the pyruvate-to-acetate metabolic
pathway (P < 0.05). K00023 and K17865 of the yak rumen were
significantly enriched at cold season in the pyruvate to butyrate
metabolic pathway (P < 0.05). K01960, K00024, K01676, K01847,
and K05606 of the yak rumen were significantly enriched at
cold season in the pyruvate to propionate metabolic pathway
(P < 0.05). The metabolic pathways of ornithine were further
analyzed (Figure 3), and we found that the pathways mainly
involved 7 encoded enzymes. In these pathways, K00930, K00145,
K01940, K00611, and K01755 of the yak rumen were significantly
enriched at cold season (P < 0.05).

Differences in VFAs transport and
absorption in the ruminal epithelium of
yaks at warm and cold seasons

Transcriptome analysis of the yak rumen epithelium revealed
that 72 genes associated with the transport and absorption of
VFAs were significantly upregulated at cold season (Figure 4
and Supplementary Table 4). Of these, 8 (CLCA1, SLC20A2,
CLIC2, ANKH, FGFR1, SFRP4, CLIC5, and WNK4), 48 (PTGES,
MPC2, OSR1, CLCA1, RIPK1, SLCO2A1, SLC38A5, SLC6A7, ACE,

SNCA, WNK4, SLC22A3, CLIC5, LDLR, AKT2, SLC4A3, SLC51B,
SLC4A2, CA4, SLC16A7, SLC27A1, SLC20A2, SLC43A1, SLC1A4,
SLC25A4, ABCC1, SLCO3A1, BDKRB2, ACSL1, ABCG2, SLC17A7,
TRPC4, SCARB1, IRS2, ATP10A, SLC16A2, ANKH, FGFR1,
SLC39A8, STC1, ABCD1, NFE2L1, SFRP4, EPM2A, ABCG1,
GOT2, CLIC2, and SLC4A5), and 16 genes (SLC38A5, SLCO2A1,
IRS2, TRPC4, BDKRB2, MPC2, ACSL1, PTGES, SLCO3A1, GOT2,
SLC27A1, SLC16A7, SLC51B, AKT2, ABCD1, and SLC22A3)
were significantly enriched in inorganic anion, anion, and
monocarboxylic acid transport, respectively.

Differences in yak rumen metabolites at
warm and cold seasons

The OPLS-DA model (Figure 5A) revealed a significant
difference (Supplementary Figure 4) in the rumen metabolites at
warm and cold seasons (R2X = 0.99, Q2 = 0.97). We found 581
significantly different metabolites (VIP ≥ 1, P value < 0.05 and
fold change < 0.67 or > 1.5) between warm and cold season
yaks, of which 220 metabolites were significantly upregulated and
361 metabolites were significantly downregulated (Figure 5B).
KEGG enrichment analysis was used to determine the metabolic
pathways of the significantly different metabolites (Figure 5C
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FIGURE 3

Reconstruction of the metabolic pathway associated with VFAs formation and arginine biosynthesis between warm and cold seasons. The red KO in
parentheses indicates enrichment in cold season yaks. The metabolic pathway for VFAs formation is referenced from Zhang et al. (2016). The
metabolic pathway for arginine biosynthesis is referenced from Guo et al. (2021).

FIGURE 4

Transcriptome analyses of genes related to VFAs transport and absorption across the ruminal epithelium in yaks at warm and cold seasons. The three
functional categories (anion, inorganic anion, and monocarboxylic acid transport) associated with VFAs transport and absorption were referred from
Georgi et al. (2014) and Aschenbach et al. (2011). The 72 genes associated with anion (purple circles), inorganic anion (brown circles), and
monocarboxylic acid transport (green circles) were significantly upregulated (q-value < 0.05; Supplementary Table 4).

and Supplementary Figure 5). The pathways for tuberculosis,
toxoplasmosis, protein digestion and absorption, mTOR signaling
pathway, mineral absorption, linoleic acid metabolism, and alpha-
inoleic acid metabolism were significantly upregulated in the warm
season yaks, and nucleotide metabolism and arachidonic acid
metabolism were significantly upregulated in the cold season yaks.
In addition, ornithine was significantly upregulated in the cold
season yaks (Figure 5D).

Discussion

During the cold season on the QTP, the CP content in forage
decreases, while the NDF and ADF content increase, further

limiting the nutritional supply of forage for yaks. Many species
of animals living at cold season have adapted to this extreme
environment by consuming more energy through accelerated
metabolism to maintain normal survival, compared to animals
living at warm season (Li et al., 2017; Liu et al., 2022). The rumen
of ruminants contains numerous microorganisms (Zhao et al.,
2017; Stewart et al., 2019). Ruminants rely on rumen microbes to
degrade cellulose, hemicellulose, and lignin in forage to produce
VFAs that provide energy (Gharechahi et al., 2021; Xue et al.,
2022). Therefore, we hypothesized that these adaptive evolutions
occurred in the yak rumen, with several microorganisms playing a
major role. To test this hypothesis, we analyzed cellulase activity,
VFAs concentration, and rumen microbiota of yaks at both warm
and cold seasons and found that the cellulase activity (avicelase,
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FIGURE 5

Abundance differences in rumen fluid metabolites annotated by the KEGG database between yaks at warm and cold seasons. (A) OPLS-DA analysis
showed that rumen metabolite profiles were distinct between yaks at warm and cold seasons. The ellipse borders represent 95% confidence interval.
(B) Volcano map of differential rumen metabolite profiles between yaks at warm and cold seasons; red and green indicate that the rumen metabolite
profiles were significantly upregulated at warm and cold seasons, respectively. (C) KEGG enrichment histogram of yaks at warm and cold seasons.
The numbers in the columns represent rich factors, and the rich factor represents the ratio of the number of differential metabolites in the pathway
to the number of metabolites annotated in the pathway. (D) Difference in the metabolic pathway of ornithine between yaks at warm and cold
seasons.

xylanase, and carboxymethyl cellulase) and VFAs concentration in
the rumen of yaks grazing at cold season were significantly higher.
In addition, the relative abundance of Firmicutes, Lachnospiraceae
XPB1014 group, Lachnospiraceae AC2044 group, and Clostridiales
bacterium Firm 14 significantly increased at cold season, whereas
the relative abundance of Bacteroidetes significantly decreased. The
Firmicutes are responsible for a number of essential functions
within the digestive system, including energy conversion and
harvesting. In contrast, the Bacteroidetes are involved in a range
of processes, including carbohydrate degradation and protein
hydrolysis (Turnbaugh et al., 2006; Chevalier et al., 2015). The
Lachnospiraceae XPB1014 group, Lachnospiraceae AC2044 group,
and Clostridiales bacterium Firm 14 were observed to produce
VFAs (Thomas et al., 2011; Xue et al., 2020; Sha et al., 2024). These
results suggest that, under cold-season grazing conditions, yak
rumen microorganisms can enhance the breakdown and utilization

efficiency of cellulose, enabling yaks to more effectively obtain
energy and adapt to extreme environmental conditions such as low
temperatures and low oxygen levels. The metabolic pathways for
the production of VFAs were further analyzed, and 8 enzymes in the
metabolic pathways from pyruvate to propionate and acetate were
found to be significantly enriched in the rumen of grazing yaks at
cold season, which contributed to the production of propionate and
acetate, which was consistent with the fact that the concentration
of propionate and acetate was significantly higher at cold season.
The findings indicated that rumen microorganisms in yak, which
graze during the cold season, produce a greater quantity of VFAs
to provide the host with additional energy, thereby enabling the
host to adapt to the extreme environmental conditions that prevail
during the cold season.

Most VFAs produced by fermentation in the rumen are directly
absorbed and transported across the rumen epithelium, playing a
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FIGURE 6

Study design and main results.

pivotal role in the regulation of host energy balance (Aschenbach
et al., 2011; Liu et al., 2020). In this study, VFAs concentration in
the rumen of grazing yaks at cold season significantly increased.
Therefore, we hypothesized that the rumen epithelium of grazing
yaks at cold season absorbs and transports VFAs more efficiently
to provide more energy to the host to adapt to the extreme
environments at cold seasons. A large number of keratinized
papillae are distributed on the rumen epithelium, and the presence
of keratinized papillae enlarges the contact area between the rumen
contents and rumen epithelium, which is beneficial for nutrient
absorption and ion transport (Sun et al., 2021). In this study, the
width and height of the rumen papillae of grazing yaks at cold
seasons were significantly increased, suggesting that the rumen
papillae of grazing yaks at cold seasons may more efficiently absorb
and transport VFAs. Zhang et al. (2016) investigated the uptake
and transport capacity of VFAs in yaks and cattle using rumen
epithelial transcriptome sequencing and found that 36 genes related
to the uptake and transport of VFAs in yaks were significantly
upregulated. In the present study, transcriptome analysis of rumen
epithelial tissue revealed a significant upregulation of 72 genes
related to the absorption and transport of VFAs in the rumen
epithelium of grazing yaks at cold seasons. Two forms of VFAs are
present in the rumen: the ionized form (VFA−) and the protonated
form (HVFA). The two types of VFAs have different absorption and
transport processes in the rumen epithelium, with the protonated
form being absorbed mainly by free diffusion and the ionized form
being absorbed mainly by active transport (Wu et al., 2022; Xu
et al., 2023). The absorption of VFA− during active transport occurs
via exchange with anions such as HCO3

− and Cl− (Georgi et al.,
2014). Gabel et al. (2001, 2002) showed that the absorption ability
of VFA− of the rumen epithelium is positively correlated with the

expression of anion (HCO3
− and Cl−) carriers. CLCA1 is a key

Cl− channel in the rumen epithelium that plays a vital role in the
exchange of VFA− with HCO3

− and Cl− (Guo et al., 2022). In
this study, CLCA1 was significantly enriched in cold-season yaks,
suggesting that the rumen epithelium of grazing yaks at cold season
may absorb and transport VFAs and provide more energy to the
host to adapt to the extreme environments at cold seasons.

We analyzed the functional enrichment of differential
metabolites at warm and cold seasons and found that the
enrichment scores of the arachidonic acid and nucleotide
metabolism pathways were higher in cold-seasons yaks. Previous
studies have demonstrated that arachidonic acid plays a critical
role in enhancing animals’ cold resistance, immune function,
skin and hair health, energy metabolism, fat mobilization, and
antioxidant capacity (Yang et al., 2020; He et al., 2021; Kaur et al.,
2022; Yan et al., 2022; Guo et al., 2023). In this study, we observed
a significant increase in the arachidonic acid content in the
rumen of yaks during the cold season. These findings suggest that
arachidonic acid aids yaks in adapting to cold-season challenges by
improving cold resistance, boosting immune function, promoting
energy mobilization, and maintaining skin and hair health. During
cold seasons, the enrichment of nucleotide metabolic pathways in
the yak rumen may facilitate the provision of additional substrates
necessary for DNA replication and repair (Zhao et al., 2022). In
addition, this study found that ornithine levels were significantly
upregulated in cold-season yaks. Functional enrichment analysis
of yak rumen microorganisms revealed that genes involved in
ornithine biosynthesis were significantly enriched in cold-season
grazing yaks. During the cold season, yaks graze on natural
grasslands with low nitrogen content of the pasture. Enrichment
of genes in the ornithine synthesis pathway was found, resulting
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in accelerated recirculation of urea and reduced excretion to the
outside of the body. The efficient nitrogen utilization mechanism
of yaks adapted to the cold season nutritional stress on the
QTP was further confirmed (Guo et al., 2021). Overall, the
rumen microbial metabolite changes were consistent with the
macrogenomic results, which confirmed the adaptation of yaks to
cold-season environments.

Conclusion

This study revealed the synergistic role of rumen microbes
in the adaptation of yaks to harsh environments at cold seasons
(Figure 6). Grazing yaks at cold seasons had higher fibrolytic
enzyme activities, and the relative abundance of microbes related
to fiber degradation and VFAs production was significantly higher
than that of yaks at warm seasons. Genes associated with VFAs
formation, absorption, and transport within the rumen epithelium
were significantly enriched in cold-season yaks. The provision of
these energy substrates enables the host to achieve enhanced energy
compensation during the cold seasons. Furthermore, our findings
indicate that the enrichment of genes in the arginine synthesis
pathway during the cold season resulted in the acceleration of urea
cycling and a reduction in excretion to the exterior of the body.
This provides further confirmation of the mechanism of efficient
nitrogen utilization in yaks adapted to the cold season nutrient
stress on the QTP.
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