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Proteomic and metabolomic 
profiling of plasma uncovers 
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Long COVID is an often-debilitating condition with severe, multisystem symptoms 
that can persist for weeks or months and increase the risk of various diseases. 
Currently, there is a lack of diagnostic tools for Long COVID in clinical practice. 
Therefore, this study utilizes plasma proteomics and metabolomics technologies 
to understand the molecular profile and pathophysiological mechanisms of Long 
COVID, providing clinical evidence for the development of potential biomarkers. 
This study included three age- and gender-matched cohorts: healthy controls 
(n = 18), COVID-19 recovered patients (n = 17), and Long COVID patients (n = 15). 
The proteomics results revealed significant differences in proteins between Long 
COVID-19 patients and COVID-19 recovered patients, with dysregulation mainly 
focused on pathways such as coagulation, platelets, complement cascade reactions, 
GPCR cell signal transduction, and substance transport, which can participate in 
regulating immune responses, inflammation, and tissue vascular repair. Metabolomics 
results showed that Long COVID patients and COVID-19 recovered patients have 
similar metabolic disorders, mainly involving dysregulation in lipid metabolites and 
fatty acid metabolism, such as glycerophospholipids, sphingolipid metabolism, and 
arachidonic acid metabolism processes. In summary, our study results indicate 
significant protein dysregulation and metabolic abnormalities in the plasma 
of Long COVID patients, leading to coagulation dysfunction, impaired energy 
metabolism, and chronic immune dysregulation, which are more pronounced 
than in COVID-19 recovered patients.
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1 Introduction

Post-acute sequelae of viral infection refer to the persistence of various degrees of physical, 
cognitive, and emotional impairments that may continue after recovery from an acute viral 
infection. Most people infected with COVID-19 fully recover, but existing evidence suggests 
that approximately 10–20% of individuals experience various mid- and long-term effects after 
recovering from the initial disease. These sequelae are referred to as “Long COVID” (Shah 
et al., 2021; Greenhalgh et al., 2020; Raveendran, 2021). The cumulative incidence of Long 
COVID is sixfold higher than similar viral infections (Lippi et  al., 2023). According to 

OPEN ACCESS

EDITED BY

Naveen Kumar,  
ICAR-National Institute of High Security 
Animal Diseases (ICAR-NIHSAD), India

REVIEWED BY

Victor Corasolla Carregari,  
State University of Campinas, Brazil
Flavia Dei Zotti,  
Columbia University, United States

*CORRESPONDENCE

Huan Zhao  
 zhaohuan0525@126.com  

Yanbin He  
 yanbinhe0911@163.com

RECEIVED 25 July 2024
ACCEPTED 19 November 2024
PUBLISHED 27 December 2024

CITATION

Wei Y, Gu H, Ma J, Mao X, Wang B, Wu W, 
Yu S, Wang J, Zhao H and He Y (2024) 
Proteomic and metabolomic profiling of 
plasma uncovers immune responses in 
patients with Long COVID-19.
Front. Microbiol. 15:1470193.
doi: 10.3389/fmicb.2024.1470193

COPYRIGHT

© 2024 Wei, Gu, Ma, Mao, Wang, Wu, Yu, 
Wang, Zhao and He. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 27 December 2024
DOI 10.3389/fmicb.2024.1470193

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2024.1470193&domain=pdf&date_stamp=2024-12-27
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1470193/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1470193/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1470193/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1470193/full
mailto:zhaohuan0525@126.com
mailto:yanbinhe0911@163.com
https://doi.org/10.3389/fmicb.2024.1470193
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2024.1470193


Wei et al. 10.3389/fmicb.2024.1470193

Frontiers in Microbiology 02 frontiersin.org

conservative estimates, at least 76 million people globally may suffer 
from Long COVID (Davis et al., 2023).

Common symptoms associated with Long COVID-19 sequelae 
include fatigue, breathlessness, cognitive dysfunction (e.g., confusion, 
forgetfulness, lack of concentration, or mental fog), muscle spasms, 
cough, sleep disturbances, tachycardia, anxiety, chest pain and joint 
pain (Carfì et al., 2020; Huang et al., 2021; Asadi-Pooya et al., 2022). 
Long COVID patients may experience functional impairments in 
daily life, with over 200 symptoms identified that affect multiple organ 
systems (Lippi et al., 2023). Recent studies identified fatigue, cognitive 
impairment, joint pain, anxiety, and depression as the main clinical 
symptoms of long-term COVID-19 (Davis et al., 2021; Chen et al., 
2022). Furthermore, Long COVID is also a risk factor for 
complications, with common comorbidities including cardiovascular, 
cerebrovascular diseases, chronic fatigue syndrome, and autonomic 
nervous system dysfunction (Munblit et al., 2022; Xie et al., 2022; Xie 
and Al-Aly, 2022; Mancini et al., 2021; Kedor et al., 2022). Due to the 
non-specific clinical presentations of Long COVID, lack of follow-up 
screenings, and absence of diagnostic biomarkers (Raveendran, 2021; 
Duerlund et al., 2022), there is a potential for delayed treatment and 
increased risk of complications in clinical settings. Therefore, it is 
crucial to explore the potential pathogenic mechanisms of the disease, 
which would provide clinical evidence for the development of specific 
diagnostic biomarkers for Long COVID and the optimization of 
precise clinical treatment strategies.

The pathogenesis of Long COVID is complex, and several 
hypotheses have been proposed regarding its mechanism, including 
persistent storage of SARS-CoV-2 in tissues (Proal and VanElzakker, 
2021), immune dysregulation with or without reactivation of latent 
pathogens such as herpes viruses (Phetsouphanh et  al., 2022), 
microvascular coagulation with endothelial dysfunction (Haffke et al., 
2022), and dysfunction in neural signal transmission (Spudich and 
Nath, 2022). However, the potential pathogenic mechanisms of Long 
COVID have not been fully elucidated. Proteins are direct products of 
the genome, while metabolites are functional products of interactions 
between the host and the environment, disease states, clinical 
information, and other factors (He et al., 2022; Qu et al., 2023; Tian 
et al., 2022). Utilizing multi-omics can characterize the biological 
processes behind COVID-19. Hence, our goal is to study the 
metabolome and proteome to comprehensively understand the host 
response and identify potential molecular mechanisms and 
biomarkers associated with Long COVID-19.

2 Methods

2.1 Subjects and study design

All participants were recruited from the Sixth People’s Hospital of 
Nantong (Jiangsu, China). A total of 50 plasma samples were collected, 
including 18 from healthy individuals (HC group), 17 from recovered 
COVID-19 patients (Recovered group), and 15 from Long COVID 
patients. All enrolled patients met the diagnostic criteria, clinical 
classification, and discharge criteria outlined in the “Chinese Clinical 
Guidance for COVID-19 Pneumonia Diagnosis and Treatment (7th 
edition)” published by the China National Health Commission. Long 
COVID (LC group) was defined as the presence of one or more 
persistent COVID-19–related symptoms that could not be explained 

by an alternative diagnosis. While common Long COVID symptoms 
include smell and taste dysfunction, fatigue, shortness of breath, and 
cognitive dysfunction, over 200 different symptoms have been 
reported to impact daily functioning. The Recovered group comprised 
individuals who had been infected with COVID-19, recovered for 
more than 6 months, and currently had no symptoms associated with 
Long COVID. Additionally, 18 age-matched individuals without 
COVID-19 or lung abnormalities were recruited as healthy volunteers 
(Figure  1A). Written informed consent was obtained from both 
COVID-19 survivors and healthy controls after approval from the 
Research Ethics Commission of the hospital (NTLYLL2022049).

2.2 Sample collection

Venous blood was collected from participants and processed 
within 12 h to isolate plasma. And the plasma was obtained by 
centrifugation at 4°C (2000 rpm, 10 min). Then, all plasma samples 
were stored in a refrigerator at −80°C for proteomic and 
metabolomic analysis.

2.3 Plasma sample preparation for DIA 
analysis

Plasma samples were prepared in accordance with serum samples 
as described in our previous studies (Chen et al., 2021; Zhang et al., 
2022). Plasma from each sample was mixed with the reaction solution 
buffer (1% sodium deoxycholate, 10 mM tris(2-carboxyethyl) 
phosphine hydrochloride, 40 mM 2-chloroacetamide). The reaction 
was carried out at 56°C for 30 min for protein denaturation, disulfide 
bond reduction, and cysteine SH alkylation. The sample was passed 
through a Sep-Pak C18 cartridge (1 cm3 50 mg, tC18 Cartridges, 
Waters, Milford, MA) conditioned and washed by 0.1% Formic acid 
(FA) solution for low-abundance proteins enrichment and then eluted 
by 75% acetonitrile in 0.1% FA (Capriotti et al., 2012; Lin et al., 2019). 
Then, each sample was diluted with an equal volume of H2O, and 
trypsin was added at a ratio of 1:50 (enzyme: protein, w/w) and 
incubated overnight at 37°C for digestion. After centrifugation 
(12,000 × g, 15 min), the supernatant was subjected to peptide 
purification using self-made desalting columns. The peptide eluate 
was vacuum drying process and spiked with iRT peptides before 
DIA analysis.

2.4 Liquid chromatography-mass 
spectrometry for proteome analysis

The peptides were dissolved in mobile phase A, which consisted 
of 2% acetonitrile and 0.1% formic acid. Following centrifugation at 
20,000 × g for 10 min, the supernatant was separated using an 
UltiMate 3,000 UHPLC system (Thermo, United States). In brief, the 
peptides underwent enrichment in the trap column and then 
proceeded to the connected self-packed C18 column (1.8 μm, 
150 μm × 350 cm) for separation at a flow rate of 500 nL/min. The 
elution of peptides utilized the following gradient: 0–5 min, 5% 
mobile phase B (98% acetonitrile, 0.1% formic acid); 5–90 min, 5–25% 
mobile phase B; 90–100 min, 25–35% mobile phase B; 100–108 min, 
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35–80% mobile phase B; 108–113 min, 80% mobile phase B; 
113–120 min, 5% mobile phase B. The liquid-phase separated peptides 
were ionized using a nano ESI source and subsequently connected to 
a Q-Exactive HF tandem mass spectrometer (MS) (Thermo, 
United  States). For the analysis of the plasma proteome in each 
subject, the Q Exactive HF instrument operated in the data-
independent acquisition (DIA) mode, alternating between full-scan 
MS and MS/MS acquisition. The MS1 scan range was set at 
400–1250 m/z with a resolution of 120,000 and an MIT of 50 ms. All 
precursor ions were directed to collision cells for fragmentation by 
high-energy collision dissociation (HCD). The MS/MS resolution was 
set at 30,000, the maximum fill time at automatic, and the AGC target 
at 1e6. DIA was conducted using a variable isolation window, with a 
total of 45 windows. During the proteomic analysis, we incorporated 
Quality Control (QC) samples throughout the detection process and 
subsequently assessed the stability among the QC samples by 
calculating the coefficient of variation (CV) of the proteins.

2.5 DIA data analysis

Identification and Quantification of proteins were generated with 
Spectronaut version 14.2 (Biognosys, https://biognosys.com/shop/
spectronaut) (Bruderer et  al., 2015) against a UNIPROT human 
database (only reviewed entries, 20,433 sequences) and the SARS-
CoV-2 UNIPROT database. All the parameters were default. In order 
to ensure better alignment between different samples, we used iRT 
peptides to normalize the retention time alignment of different 
samples. The FDR was estimated using the mProphet scoring 
algorithm with 1% FDR control at the peptide-spectrum match, 

peptide, and protein levels. Proteins with missing ratios exceeding 
80% in were excluded from the proteomics dataset. Missing values in 
the dataset were imputed with using the K-Nearest Neighbors (KNN) 
method (Jin et al., 2021). Next, the R package Msstats was used for 
log2 transformation, normalization, and p value calculation of the 
data (Choi et  al., 2014). Differential expression protein screening 
needs to meet the following three conditions: (1) p value <0.05, (2) 
Fold change ≥1.5 or Fold change≤0.67, and (3) The pvalue were then 
adjusted using the Benjamini-Hochberg correction (qvalue <0.05).

2.6 Sample preparation for metabolome 
analysis

For comprehensive metabolite detection, both hydrophilic and 
hydrophobic metabolites were extracted and analyzed following a 
previously established method (Wu et al., 2020). To extract hydrophilic 
compounds, plasma samples were thawed on ice and vortexed for 10 s. 
The addition of six volumes of pure methanol to one volume of plasma 
samples was followed by thorough mixing for 3 min and centrifugation 
at 12,000 rpm for 10 min at 4°C. The resulting supernatant was 
collected and underwent another round of centrifugation at 
12,000 rpm for 5 min at 4°C. The final supernatant was collected for 
LC–MS/MS analysis. To extract hydrophobic compounds, plasma 
samples were thawed on ice, vortexed for 10 s, and centrifuged at 
3000 rpm for 5 min at 4°C. Subsequently, the plasma samples were 
thoroughly mixed with 1 mL of a lipid extract mixture (composed of 
methanol, tert-butyl methyl ether, and an internal standard mixture) 
for 15 min. This mixture was then combined with 200 μL of water, 
vortexed for 1 min, and centrifuged again at 12,000 rpm for 10 min at 

FIGURE 1

Proteomics and metabolomics analysis and profiling result. (A) Flowchart of study design. (B) PCA plot of proteomic analysis. (C) Proteomics heatmap 
of association analysis among three patient group. (D) PCA plot of metabolomics analysis. (E) Metabolomics heatmap of association analysis among 
three patient group.
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4°C. The resulting supernatant was extracted, concentrated, dissolved 
in 200 μL of mobile phase B (consisting of acetonitrile/isopropanol at 
a ratio of 10%/90% (v/v), containing 0.04% acetic acid and 5 mM 
ammonium formate), and subjected to LC–MS/MS analysis.

2.7 Untargeted UPLC–MS/MS analysis

All UPLC–MS/MS analyses were conducted using the ACQUITY 
2D UPLC system from Waters (Milford, MA, United States) and the 
Q Exactive HF hybrid Quadrupole-Orbitrap system from Thermo 
Fisher Scientific (San Jose, United States). The mass spectrometer 
operated at a resolution of 35,000 mass units at 200 m/z. In the first 
UPLC–MS/MS method, positive electrospray ionization (ESI) was 
employed with a C18 column (UPLC BEH C18, 2.1 × 100 mm, 
1.7 μm; Waters). Mobile solutions composed of water and methanol 
containing 0.05% perfluorooctanoic acid (PFPA) and 0.1% formic acid 
(FA), with a final pH of 3, were used for gradient elution. The gradient 
elution, with the polar mobile phases ranging from 5 to 95%, was 
performed within a 7 min run. The second method also utilized the 
QE in positive ESI mode, with the same C18 column as in the first 
method. The mobile phase solutions for more hydrophobic 
compounds consisted of water, acetonitrile, methanol, 0.01% FA, and 
0.05% PFPA at pH 3. For the third UPLC–MS/MS method, the QE 
was operated under negative ESI mode, and a C18 column was 
employed with mobile solutions containing methanol and water in 
6.5 mM ammonium bicarbonate at pH 8. In the fourth method, an 
HILIC UPLC column (UPLC BEH Amide, 2.1 × 150 mm, 1.7 μm; 
Waters) was used, and the mobile solutions consisted of water and 
acetonitrile with 10 mM ammonium formate at pH 10.8. The gradient 
elution, reducing the polar mobile phase from 80 to 20%, occurred 
within a 7 min run. The QE was operated under negative ESI mode 
for this method as well. Analysis using the QE mass spectrometer 
involved alternating MS and data-dependent MS2 scans with dynamic 
exclusion. The scan range was set from 70 to 1,000 m/z, and the MS 
capillary temperature was 350°C, with a sheath gas flow rate of 40 and 
an auxiliary gas flow rate of 5 for both positive and negative methods.

The hydrophilic compounds were injected into a Waters 
ACQUITY UPLC HSS T3 column (1.8 μm, 2.1 mm × 100 mm). The 
column temperature, flow rate, and injection volume were set at 40°C, 
0.4 mL/min, and 2 μL, respectively. The mobile phase comprised water 
(A) containing 0.1% formic acid and acetonitrile (B) containing 0.1% 
formic acid. The gradient elution involved an increase from 5% B to 
90% B over 11 min, which was then maintained for 1 min before 
decreasing to 5% B over 2 min. Mass spectrometric scans were 
acquired using a 6,500+ QTRAP® LC–MS/MS System equipped with 
an electrospray ionization (ESI) Turbo Ion-Spray interface. The system 
operated in both positive and negative ion modes and was controlled 
by Analyst 1.6.3 software (Sciex). The ESI source parameters were as 
follows: a source temperature of 500°C, an ion spray voltage of 5,500 V 
in positive ion mode (or − 4,500 V in negative ion mode), ion source 
gas I at 55 psi, ion source gas II at 60 psi, curtain gas at 25 psi, and 
collision-activated dissociation (CAD) set to high.

Meanwhile, the hydrophobic compounds were injected into a 
Waters AccucoreTM C30 column (2.6 μm, 2.1 mm × 100 mm). The 
column temperature, flow rate, and injection volume were set at 45°C, 
0.35 mL/min, and 2 μL, respectively. The mobile phase consisted of 
acetonitrile/water (60%/40%, v/v) with 0.1% formic acid and 

10 mmol/L ammonium formate (A), as well as acetonitrile/
isopropanol (10%/90% v/v) with 0.1% formic acid and 10 mmol/L 
ammonium formate (B). The gradient elution involved an increase 
from 20% B to 95% B over 15.5 min. This composition was maintained 
for 2 min before decreasing to 20% B over 2.5 min. Mass spectrometric 
scans were acquired using a 6,500+ QTRAP® LC–MS/MS System 
equipped with an ESI Turbo Ion-Spray interface. The system operated 
in both positive and negative ion modes and was controlled by Analyst 
1.6.3 software (Sciex). The ESI source parameters were as follows: a 
source temperature of 500°C, an ion spray voltage of 5,500 V in 
positive ion mode (or − 4,500 V in negative ion mode), ion source gas 
I  at 45 psi, ion source gas II at 55 psi, curtain gas at 35 psi, and 
collision-activated dissociation (CAD) set to medium.

Instrument tuning and mass calibration were performed with 10 
and 100 μmol/L polypropylene glycol solutions in the triple 
quadrupole (QQQ) mode. Based on the self-built database and 
metabolite information in the public database, the materials were 
qualitatively analyzed according to the secondary spectrum 
information and the isotope signal was removed during the analysis. 
QQQ scans were acquired as multiple reaction monitoring (MRM) 
experiments with the collision gas (nitrogen) set to 5 psi (Khan et al., 
2020). The de-clustering potential (DP) and collision energy (CE) for 
individual MRM transitions were obtained with further DP and CE 
optimization. The quantification of metabolites was accomplished 
using the targeted MRM approach (Khan et al., 2020). A specific set 
of MRM transitions were monitored for each period according to the 
metabolites within this period. Each sample analysis was conducted 
on both the positive and the negative modes. For the quality control 
(QC) of the metabolomic analysis, we  pooled a QC sample by 
pipetting 10 μL from each sample, similar to the method used for 
assessing protein stability. One QC sample was analyzed after every 
10 samples in the LC–MS/MS sequence. The stability of the LC–MS/
MS analysis was evaluated by calculating the coefficient of variation 
(CV) of the peak area for each metabolite in the QC samples.

2.8 Metabolite identification and 
quantitation analysis

The MS data were processed using Software Analyst 1.6.3. The 
repeatability of metabolite extraction and detection was evaluated 
using the total ion current (TIC) and multiple peaks of 
MRM. Qualitative analysis of the first-order and second-order spectra 
detected by mass spectrometry was carried out on the basis of a home-
made metadata database and existing metabolomic databases, 
including MassBank1 (Horai et al., 2010), HMDB2 (Wishart et al., 
2018), LIPID MAPs3 (Sud et al., 2007) and Metlin4 (Xue et al., 2020).

Metabolites and therapeutic compounds with missing ratios 
exceeding 80% in a particular patient group were excluded from the 
metabolomics dataset. Only the metabolomics dataset containing 
endogenous metabolites was used for subsequent statistical analysis. 
Missing values in the dataset were imputed with the minimum value 

1 http://www.massbank.jp/

2 http://www.hmdb.ca/

3 www.lipidmaps.org/data/structure/

4 http://metlin.scripps.edu/index.php
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and zero. A two-sided unpaired Welch’s t-test was performed for each 
pair of comparing groups. Differential metabolites were further 
screened by combining the p-value and fold change from the 
univariate analysis. The screening criteria included metabolites with a 
fold change greater than or equal to 1.5 or less than or equal to 0.67, 
as well as a p-value less than 0.05. The pvalue were then adjusted using 
the Benjamini-Hochberg correction (qvalue <0.05).

Partial-least squares discrimination analysis (PLS-DA) (Ahn et al., 
2020) was conducted as a supervised method to identify the important 
variables with discriminative power. PLS-DA models were validated 
based on the multiple correlation coefficient (R2), after that, 
we applied cross-validation on this R2 to calculate the cross-validated 
R2 (Q2); and permutation tests by applying 2000 iterations (p < 0.001).

2.9 Function enrichment analysis

We conducted GO and KEGG pathway enrichment analyses using 
the Gene Ontology (GO) database5 and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database6, respectively. These analyses aimed to 
explore the biological processes associated with the disease based on 
differential proteins and metabolites (Kanehisa et al., 2017; Zhou et al., 
2019). The GO analysis included biological process (BP), cellular 
component (CC), and molecular function (MF) as the three main 
categories. R cluster Profiler (v3.12.0) package was used for enrichment 
analysis of differential molecules, pvalue was calculated by 
hypergeometric test, and pvalue was corrected by BH multiple 
hypothesis test. The adjusted p-values (FDR) < 0.05 was considered 
significant. Protein–protein interactions (PPI) between differential 
proteins were analyzed using metascape (Zhou et  al., 2019), and 
networks were visualized with Cytoscape (v3.4.0) (Shannon et al., 2003).

In addition, for the pathway enrichment analysis of differential 
metabolome, we  compared between groups according to the 
differences in metabolites, and used KEGG pathway and KEGG 
module for enrichment analysis. R cluster Profiler (v3.12.0) package 
with hypergeometric distribution test as pvalue <0.05 was used to 
determine significant enriched function that were enriched for at least 
three metabolites (for significantly altered metabolites), and fold 
enrichment >2.

2.10 Statistical analysis

Data analyses were performed using R software (version 4.1.2). 
The normality of the data distributions was checked using the 
Kolmogorov–Smirnov test. Normally distributed data are presented 
as the mean (±standard deviation). Principal component analysis 
(PCA) and hierarchical cluster analysis were performed using the 
distance matrix calculated using the pheatmap (Version 1.0.12, https://
cran.r-project.org/web/packages/pheatmap/index.html), and ggord 
(Version 1.1.5). These statistical analyses were done with SAS, version 
9.4 (SAS Institute, Inc., Cary, NC). Data visualization techniques 
utilized the ggplot2 package in R (version 4.1.2).

5 http://geneontology.org/

6 http://www.genome.jp/kegg/

2.11 Data availability

The data that support the findings of this study will be available 
from the corresponding author upon reasonable request. The MS 
proteomics and metabolomics data have been deposited to the 
Proteome Exchange Consortium7 via the iProx partner repository (Ma 
et al., 2019) with the dataset identifier IPX0008710001.

3 Results

3.1 Proteomic and metabolomic profiling 
of patient’s plasma

The study included three cohorts matched for age and gender: a 
healthy control group (n = 18), recovered COVID-19 patients 
(n = 17), and long-term COVID-19 patients (n = 15). Table 1 shows 
baseline characteristics of patients enrolled in the study. At follow-up 
examination 6 months after discharge, we found that 15 patients with 
COVID-19 continued to exhibit at least a single clinical symptom 
(41%), including 13 severe patients (54%) and 9 non-severe patients 
(30%). The main symptoms among the patients were smell and taste 
dysfunction (27%), fatigue (27%), exertional dyspnea (33%), and 
muscular soreness (27%). Other symptoms included cough (20%), 
loss of appetite (20%) and nausea (7%).

In our study, we  collected plasma samples from subjects to 
conduct both proteomics and untargeted metabolomics analyses 
(Figure 1A). In summary, a total of 1,154 proteins were identified, and 
of these, 990 proteins were quantified and used for comparative 
analysis (Supplementary Table S1). And 1,082 metabolites were 
quantified through a compound library search. The coefficient of 
variation (CV) values of 93.2% of proteins were demonstrated to 
be <30% (Supplementary Figure S1A) in QC samples and meanwhile, 
the CV values of 90.3% metabolites were 30%, respectively 
(Supplementary Figure S1C). The median CVs for the proteomics and 
metabolomics data were 12.38 and 10.14%, respectively 
(Supplementary Figures S1B,D). These results indicate that the MS 
data were highly consistent and reproducible.

Further analysis using unsupervised PCA (Principal Component 
Analysis) was performed to investigate these components 
(Figures 1B,D). Our findings revealed significant differences in the 
proteomic profiles among the LC (Long COVID), Recovered 
(Recovered COVID-19), and HC (Healthy control) groups. The 
significant differences between groups of PROS, ZYX, TBA4A and 
ST1M1 genes may suggest that these genes can be used as important 
indicators of concern in LC group (Supplementary Figures S2A,B). 
Regarding the metabolomics analysis, the metabolic profiles of the LC 
and Recovered groups were similar to each other but differed 
significantly from the HC group. It is also mainly manifested by some 
differences in lipid metabolism (Supplementary Figures S2C,D). This 
suggests that both COVID-19 recovered patients and those in the LC 
group exhibit metabolic abnormalities. A pearson correlation 
coefficient test was used to analyze the sample-sample correlation 
among identified metabolites and proteins in healthy controls and 

7 http://proteomecentral.proteomexchange.org
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COVID-19 patients. A heatmap was used to show the correlations 
between groups in the form of a matrix in Figures 1C,E. The results 
also showed that the overall metabonomics and proteomics profile of 
the LC group was different from that of the other two groups.

3.2 Characteristics of proteomics changes 
analysis

Inter-group differential protein analysis was conducted using 
Welch’s t-test (Fold change >1.5 or Fold change <0.67, Pvalue <0.05 and 
qvalue with Benjamini-Hochberg less than 0.05). Compared to the HC 
group, the LC group had 187 proteins upregulated and 144 proteins 
downregulated (Supplementary Table S2). In comparison to the HC 
group, the Recovered group had 93 proteins upregulated and 65 
proteins downregulated (Supplementary Table S3). When comparing 
the LC group to the Recovered group, 113 proteins were upregulated, 
and 86 proteins were downregulated (Supplementary Table S4). These 
findings are detailed in the volcano plots (Figures 2A–C) and heatmaps 
(Figures 2D–F). The results indicate a widespread variation in protein 
expression between the LC, Recovered, and HC groups.

3.3 Dysregulated immune response, 
coagulant functions and fatty acid 
transport from long COVID patients

We further performed pathway enrichment analysis on 
differentially expressed proteins, comparing with the HC group, 
pathways significantly enriched in the LC group included Hemostasis, 
Complement and coagulation cascades, and Neutrophil degranulation 
among other biological processes. Compared to the HC group, the 

Recovered group showed significant enrichment in biological processes 
such as Complement and coagulation cascades, Hemostasis, Formation 
of Fibrin Clot, humoral immune response, Post-translational protein 
phosphorylation, and Neutrophil degranulation. In comparison with 
the Recovered group, the primary biological processes significantly 
enriched in the LC group included Platelet degranulation, inflammatory 
response, humoral immune response, Neutrophil degranulation, and 
Post-translational protein phosphorylation (Figures 3A–C). The detail 
results of function enrichment analysis are shown in 
Supplementary Tables S5–S7. Moreover, based on known and predicted 
protein–protein interactions (PPI) databases, a PPI network analysis 
was conducted for differentially expressed proteins between groups. 
Compared to the HC group, the LC group displayed interactions 
among proteins involved in intracellular fatty acid and lipoprotein 
transport, the intrinsic pathway for fibrin clot formation, complement 
cascade/activation, G α (i) signaling events, and platelet degranulation, 
such as IGF2, IGFALS, CCL5, C1QA, KLKB1, etc. (Figure  3D). 
Similarly, compared to the HC group, the Recovered group’s PPI 
network interactions and nodes were relatively fewer, involving proteins 
in pathways similar to those in the LC group, such as G α (i) signaling 
events, complement and coagulation cascade reactions, cellular 
connectivity tissue, intracellular fatty acid, and lipoprotein transport 
(Figure 3E). Additionally, compared to the Recovered group, the LC 
group also showed dysregulation in pathways such as cytoskeleton 
organization, and fatty acid and lipoprotein transport (Figure 3F).

3.4 Characteristics of metabolomics 
changes analysis

First, we  classified the 1,082 identified metabolites from all 
patients into 14 groups based on their product types 

TABLE 1 Demographics and clinical characteristics.

Characteristics Healthy control 
(n = 18)

Recovered (n = 17) Long COVID 
(n = 15)

p value

Sex – no. (%) 0.7819a

Male 10 (55%) 11 (57%) 8 (53%)

Female 8 (45%) 6 (43%) 7 (47%)

Age – year

Mean ± SD 43 ± 4.78 42 ± 13.56 43 ± 13.22 0.2572b

Range 36–65 29–69 26–69

Smoke – no. (%) 1 (6%) 2 (14%) 0.5887c

Alcohol – no. (%) 2 (12%) 1 (7%) 1c

Symptoms – no. (%) 3 (18%) 15 (100%) 1.47E-06c

Smell and taste dysfunction 4 (27%) \

Fatigue 4 (27%) \

Exertional dyspnea 1 (6%) 5 (33%) \

Muscular soreness 1 (6%) 4 (27%) \

Cough 1 (6%) 3 (20%) \

Loss of appetite 3 (20%) \

Nausea 1 (7%) \

aChi-square test.
bStudent t test.
cFisher exact test.
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(Supplementary Table S8). The major types included 
glycerophospholipids (31.7%), glycerides (24.12%), sphingolipids 
(9.43%), amino acids and their metabolites (8.13%), organic acids and 
their derivatives (5.55%), etc. Among them, glycerophospholipids 
(GP) were mainly composed of phosphatidylcholine (PC), 
phosphatidylethanolamine (PE), lyso-phosphatidylcholine (LPC), 
lyso-phosphatidylethanolamine (LPE), etc. Glycerides (GL) were 
mainly composed of triglyceride (TG), diglyceride (DG), etc. 
Additionally, lipid-related metabolites also included sterol lipids 
(3.42%), mainly consisting of 24 cholesterol species and 12 bile acids 
(Figure 4).

Using the Welch t-test for inter-group difference analyses of 
metabolites (Fold change >1.5 or Fold change <0.67, Pvalue<0.05 and 
qvalue with Benjamini-Hochberg less than 0.05), in comparison to the 
HC group, the LC group showed upregulation in 180 metabolites, 
such as glycerides (primarily triglycerides), and PE, while 81 
metabolites were downregulated, notably including choline, fatty acids 
(especially long-chain fatty acids), and lyso-phosphatidylcholine 
(Figures 5A,D). Compared to the HC group, the Recovered group 
exhibited upregulation in 241 metabolites, such as triglycerides, PE, 
and phosphatidylcholine. Conversely, 112 metabolites were 
downregulated, including choline, long-chain fatty acids, and lyso-
phosphatidylcholine (Figures 5B,E). Interestingly, according to the 

definition criteria of differential metabolites, the LC group and the RE 
group did not have any different metabolites. Filtering with fold 
change >1.5 or Fold change <0.67 and pvalue <0.05 was different for 
only 22 metabolites, including upregulation in 10 metabolites, such as 
amino acids. And downregulation was observed in 12 metabolites, 
including triglycerides (Figures 5C,F). These results suggest that the 
specific metabolites in the Recovered group and the LC group were 
not significantly different. The detail result of differentially altered 
metabolites are shown in Supplementary Tables S9–S11.

Furthermore, by employing partial-least squares discrimination 
analysis (PLS-DA) for supervised analysis, we distinguished between 
samples from different groups (Supplementary Figure S3). The results 
showed a clear classification between the LC and HC groups, with R2Y 
and Q2Y values of 0.964 and 0.811, respectively, indicating significant 
metabolic spectrum differences between the two groups 
(Supplementary Figure S3A). Similarly, a clear classification between 
the Recovered and HC groups was observed, with R2Y and Q2Y 
values of 0.992 and 0.773, respectively, suggesting significant metabolic 
spectrum differences between these groups as well 
(Supplementary Figure S3B). However, due to the smaller overall 
differences between the LC and Recovered groups, PLS-DA analysis 
was unable to construct a model, indicating minor overall metabolic 
spectrum differences between LC and Recovered.

FIGURE 2

Expressed protein analysis of plasma samples from different group. Volcano plots show the change in transformed p value (−log10) against the log2 
(Fold change) among in different compare group, LC-vs-HC (A), Recovered-vs-HC (B) and LC-vs-Recovered (C). Black dashed lines: cut-off values 
(log2|fold change| >0.67 (log2 (1.5) or and p value <0.05). Red dots: Highly detected protein in case group. Purple dots: Low expression of protein. 
Heatmap visualization of the significantly different expression proteins among in different compare group, LC-vs-HC (D), Recovered-vs-HC (E) and 
LC-vs-Recovered (F). DEPs included in the heatmap meet the requirement that fold change >1.5 or < 0.67 and p value (t test) of <0.05. Color bar 
represents the relative intensity of protein from −4 to 4.
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3.5 Dysregulated lipid metabolism from 
long COVID and COVID-19 recovered 
patients

We further analyzed differential metabolites among groups through 
KEGG pathway enrichment analysis (Supplementary Tables S12, S13) 
and KEGG module analysis to investigate the potential functional 
mechanisms and biological significance of specific pathways and units. 
Compared to the HC group, significant enrichment in lipid-related 
metabolic pathways was observed in the LC group, including Glycerolipid 
metabolism, Glycerophospholipid metabolism, Sphingolipid 

metabolism, among others, as well as metabolic pathways such as 
Arachidonic acid metabolism and Vascular smooth muscle contraction. 
The functional units involved mainly pertain to the biosynthesis or 
degradation of lipid substances, like the synthesis of Sphingosine, 
Phosphatidylserine (PS), Phosphatidylethanolamine (PE), Ceramide, 
and the degradation of Acylglycerol. Additionally, fatty acid biosynthesis 
processes such as Eicosanoid biosynthesis are included (Figure 6A).

Compared to the HC group, the pathways significantly enriched in 
the Recovered group, besides lipid metabolism pathways like 
Glycerophospholipid metabolism and Glycerolipid metabolism, include 
endocrine signaling pathways such as the GnRH signaling pathway, 

FIGURE 3

Differentially expressed protein enrichment analysis. Bar plot show the signaling pathway analysis of differential proteins among in different compare 
group, LC-vs-HC (A), Recovered-vs-HC (B) and LC-vs-Recovered (C). Functional enrichment analysis of PPI candidates among in different compare 
group, LC-vs-HC (D), Recovered-vs-HC (E) and LC-vs-Recovered (F) p value is represented by color intensity.
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immune-related signaling pathways like the Fc epsilon RI signaling 
pathway and the Chemokine signaling pathway, and pathways regulating 
cellular functions such as the MAPK signaling pathway and the Calcium 
signaling pathway. The corresponding functional units, similar to those 
in the LC group, mainly involve the biosynthesis or degradation of lipid 
substances and fatty acids, including PC biosynthesis, Eicosanoid 
biosynthesis, Acylglycerol degradation, among others (Figure 6B).

4 Discussion

Long COVID is a multisystem disease, often presenting as severe 
symptoms following infection with Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2), including but not limited to myalgia, 
breathing difficulties, abnormalities in chest imaging and pulmonary 
function tests, and cardiovascular problems (Carfì et al., 2020; Davis 
et al., 2021; Daitch et al., 2022). However, there are no uniform guidelines 
for LC-19 to assist in standardized and earlier detection; diagnosis is 
typically made by assessing symptoms and ruling out other diseases 
(Srikanth et  al., 2023). Thus, exploring the pathophysiological 
mechanisms of Long COVID is crucial for identifying therapeutic targets 
for the disease, enabling the establishment of appropriate treatment and 
clinical management strategies for early diagnosis. This study included 
Long COVID patients, COVID-19 recovered patients, and healthy 
control subjects, investigating the molecular characteristics and potential 
pathogenic mechanisms of Long COVID patients through proteomic 
and metabolomic analyses of plasma samples.

Our research findings indicate that, compared to healthy subjects, 
protein dysregulation in Long COVID patients primarily involves 
pathways like coagulation, platelets, complement cascade reactions, 

GPCR cell signal transduction, and substance transport, which 
participate in regulating immune responses, inflammation, and tissue 
repair. Abnormalities in the coagulation system (fibrin clot, platelet 
activation, coagulation cascade reaction), especially among severe 
COVID-19 patients, have been shown to be associated with disease 
progression and may lead to severe complications (Al-Samkari et al., 
2020) such as deep vein thrombosis (DVT), disseminated intravascular 
coagulation (DIC). Furthermore, coagulation system abnormalities are 
involved in thrombus formation and can release pro-inflammatory and 
pro-coagulant factors, further enhancing inflammation and coagulation. 
Additionally, the complement cascade reaction is a key pathway for 
immune defense, with abnormalities causing immune dysregulation 
(Warwick et al., 2021). Complement activation products like C3a and 
C5a exert their effects through their corresponding GPCRs, which are 
critical for regulating inflammatory responses and the recruitment of 
immune cells (Wang et al., 2019). Similar to our study, recent research 
found disrupted plasma proteomes within 12 weeks post-COVID-19 
recovery, characterized by the differential expression of proteins involved 
in lipid metabolism, complement, and coagulation cascades (Captur 
et al., 2022). Clinical studies have also observed immune and coagulation 
dysfunctions in patients, identifying persistent coagulopathy and 
elevated antifibrinolytic levels in Long COVID patients (Pretorius et al., 
2021). In some patients, a pro-coagulant state, endothelial dysfunction, 
and inflammation can be detected about a year post-COVID-19 recovery 
(Fan et  al., 2022). Additionally, compared to COVID-19 recovered 
patients, Long COVID patients exhibit significant proteomic differences, 
exhibiting more pronounced dysregulation of coagulation, platelet, and 
immune-related proteins, as well as disturbances in cytoskeleton, 
lipoprotein pathways, further supporting sustained chronic inflammation 
and vascular dysfunction in Long COVID patients (Ong et al., 2021).

FIGURE 4

Composition analysis of plasma metabolites in patients. Among the 1,082 metabolites from all patients classified into 14 groups, a diverse assortment 
includes glycerophospholipids, glycerides, and sterol lipids, representing the major varieties associated with lipid within the classification.
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FIGURE 5

Expressed metabolite analysis of plasma samples from different group. Volcano plots show the change in transformed p value (−log10) against the 
log2 (Fold change) among in different compare group, LC-vs-HC (A), Recovered-vs-HC (B) and LC-vs-Recovered (C). Black dashed lines: cut-off 
values (log2|fold change| >0.67 (log2(1.5) or and p value <0.05). Red dots: Highly detected metabolites in case group. Purple dots: Low expression of 
metabolites. Heatmap visualization of the significantly different altered metabolites among in different compare group, LC-vs-HC (D), Recovered-vs-
HC (E) and LC-vs-Recovered (F). DEPs included in the heatmap meet the requirement that fold change >1.5 or < 0.67 and p value (t test) of <0.05. 
Color bar represents the relative intensity of altered metabolites from −4 to 4.

FIGURE 6

Differential metabolite of KEGG enrichment analysis. (A) KEGG pathways enrichment analysis and KEGG module analysis between LC and HC group. 
(B) KEGG pathways enrichment analysis and KEGG module analysis between Recovered and HC group. p value is represented by color intensity.
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Proteins primarily related to immune system, coagulation system, 
and signal transduction system dysregulation in this study include: 
Insulin-like growth factor-related proteins (IGF-2, IGFALS, IGFBP3), 
inflammation-related proteins (C1QA, MASP2, CFHR1, SAA2), 
coagulation-related proteins (KLKB1, ELANE, PROC, SEPRINC1, 
SERPIND1, F11), G protein signal transduction-related proteins (C3, 
C5, CCL5, GNAI2, PF4), lipid transport (APOL1, APOM, APOF), 
among others, with multiple proteins interacting and regulating 
homeostasis within the body. Previous studies have associated 
IGFBP-2, IGF1 with adverse outcomes in COVID-19 patients (Ilias 
et al., 2021; Mester et al., 2024). Liew found that increased complement 
activation marker C1QA is associated with the long presence of the 
coronavirus (Liew et al., 2024). Carlo also discovered complement 
dysregulation accompanied by inflammatory signatures in active Long 
COVID patients (Cervia-Hasler et al., 2024). Lower respiratory tract 
levels of CCL5 are associated with high viral loads of SARS-CoV-2 
(Pérez-García et al., 2022), and with inflammation, atherosclerosis 
complications of COVID-19 (Das and Podder, 2021). Meta-analyses 
have indicated that GPCRs may play a significant role in Long COVID 
symptoms (Akbari et al., 2023) (Supplementary Figure S2). Moreover, 
researchers using machine learning discovered that CXCL5, AP3S2, 
MAX, PDLIM7, and FRZB could differentiate Long COVID 
outpatients from healthy control subjects, with protein functions 
related to immune cell activation, and nervous system development 
(Patel et al., 2023). Therefore, our study’s results include key proteins 
associated with Long COVID dysregulation identified in previous 
research, as well as other potential proteins closely related to Long 
COVID symptoms. For instance, acute kidney damage caused by 
COVID-19 may lead to tubular damage, endothelial damage, and 
glomerular injury (LONG et al., 2022), with APOL1, APOM, APOF 
possibly being related to glomerular diseases in Long COVID 
symptoms. KLKB1, serine protease inhibitors, among others, are 
associated with atherosclerosis and the coagulation cascade (Moellmer 
et al., 2024; Wang et al., 2022; Rein et al., 2011). The critical mechanisms 
of these potential proteins still require further investigation.

In addition to proteomics, this study further examined the 
metabolite levels in the plasma of subjects. Compared with healthy 
subjects, both Long COVID patients and COVID-19 recovered patients 
exhibited similar metabolic disorders, primarily involving dysfunctions 
in lipid metabolites and fatty acid metabolism, such as 
glycerophospholipids, sphingolipid metabolism, and arachidonic acid 
metabolism. These involve biological processes such as 
phosphatidylserine, sphingomyelin and ceramide biosynthesis, and 
acylglycerol degradation, indicating that Long COVID still features 
impaired energy metabolism, chronic immune dysregulation, and 
dyslipidemia. Glycerophospholipids, as major components of cellular 
membranes, participate in processes like signal transduction, energy 
storage, inflammation, apoptosis, and lipid transport (Sakuragi and 
Nagata, 2023). Plasma levels of glycerophospholipids, including 
phosphatidic acids and phosphatidylinositol, are reduced in COVID-19 
patients (Song et al., 2020) (Supplementary Figure S3). Sphingolipids, 
key bioactive molecules involved in inflammation, cell differentiation, 
regeneration, and particularly important in musculoskeletal cells, have 
their metabolic dysregulation possibly related to fatigue and muscle pain 
(Meacci et al., 2022). Researchers found that, compared with the control 
group, the expression levels of phosphatidylcholine and sphingomyelin 
were higher in the blood of patients 2 years after COVID-19 infection 
(López-Hernández et al., 2023). Ceramides, derivatives of sphingomyelin, 
have been found to increase expression in patients with chronic fatigue 

syndrome (Filippatou et al., 2021). Arachidonic acid is a precursor to 
pro-inflammatory prostaglandin E2 and anti-inflammatory lipoxin A4, 
making arachidonic acid metabolism crucial in the activation and 
resolution of inflammation (Das, 2021). Metabolites of arachidonic acid 
can serve as potential biomarkers for COVID-19 (Ghimire et al., 2023). 
Furthermore, in addition to the dysregulated expression of lactate and 
pyruvate, patients with Long COVID syndrome also exhibit disorders in 
lipid metabolites, such as triglycerides, apolipoproteins, and long-chain 
acylcarnitine (Berezhnoy et al., 2023; Yang et al., 2022). Thus, similar to 
previous metabolomic studies, the comorbidities of Long COVID may 
be due to prolonged dysregulation of inflammatory metabolites and 
lipid metabolites.

Despite the progress and findings, this study has several 
limitations, highlighting the necessity and direction for future 
research. Firstly, a major limitation is the small sample size of the 
cohort. As the number of participants was limited, the results of this 
study may be subject to a certain degree of bias. The small sample size 
limits our ability to generalize the findings to a broader population 
and may lead to statistical uncertainties. Secondly, there is a lack of 
clinical biochemical markers data in this study. Biochemical markers 
could provide deeper insights into physiological mechanisms, and 
their absence limits our understanding of the complex mechanisms 
behind the study subject. In future research, collecting and analyzing 
relevant biochemical markers will be  key to understanding these 
processes, thereby aiding in revealing the disease’s pathogenesis or 
evaluating the effectiveness of health interventions.

5 Conclusion

In conclusion, this study rigorously explored the persistent 
changes in protein and metabolite levels in the plasma of Long 
COVID-19 patients, revealing significant biomarker abnormalities 
within these individuals compared to recovered patients. Through 
comparative analysis, our findings clearly demonstrate significant 
protein dysregulation and metabolic abnormalities in the plasma of 
Long COVID-19 patients, more pronounced than in those who have 
recovered from COVID-19. Our results provide a metabolic and 
proteomic molecular profile of Long COVID-19 patients, mapping 
out specific changes in proteins and metabolites in their plasma. This 
not only aids in the exploration of biomarkers but is also crucial for 
understanding the complex pathogenesis and pathophysiological 
foundation of Long COVID-19.
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