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Alpine wet meadows are known as N2O sinks due to nitrogen (N) limitation.

However, phosphate addition and N deposition can modulate this limitation,

and little is known about their combinative effects on N2O emission from the

Qinghai-Tibet Plateau in wet meadows. This study used natural wet meadow

as the control treatment (CK) and conducted experiments with N (CON2H4

addition, N15), P (NaH2PO4 addition, P15), and their combinations (CON2H4

and NaH2PO4 addition, N15P15) to investigate how N and P supplementation

affected soil N2O emissions in wet meadow of QTP. Contrary to previous studies

on grasslands, the effect of phosphate addition treatment on soil N2O flux was

not detectable during the growing seasons of 2019 and 2020. Over a span

of two years, the N addition treatment significantly increased the N2O flux

by 3.45 µg·m−2
·h−1 due to increased soil N availability. Noticeably, phosphate

addition intensified the effect of N deposition treatment on soil N2O flux

with high significance in the early growth season of 2020. This augmentation

can be attributed to the alleviation of limiting factors imposed by plants and

microorganisms on soil N and P, fostering the mineralization and decomposition

of litter and soil nutrients by microorganisms. Consequently, the results showed

that total nitrogen and nitrate nitrogen were the main controls on soil N2O

emission under N and P addition. In addition, redundancy analysis showed that

the relative abundance of NirK genes in soil microorganisms (Bradyrhizobium,

Devosia, Ochrobactrum, Alcaligenes, Rhizobium) is the main factor affecting

N2O flux and available nitrogen. We project that if nutrient input continues to

increase, the main limiting factor of soil will change from N restriction to P

restriction due to the unique microbial nitrogen conversion process in the alpine

meadow, significantly increasing N2O emissions. Consequently, the heightened

contribution of alpine wet meadows to global warming and ozone depletion

hinges on the dynamics of nutrient input regimes, spotlighting the urgent need

for informed environmental management strategies.
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1 Introduction

Nitrous oxide (N2O) is a significant driver of global warming,
with a warming potential 298 times that of carbon dioxide per unit
mass (Wu et al., 2023). Recent studies underscore the alarming
reality that atmospheric N2O accounts for approximately 6.2% of
anthropogenic global warming and is on a trajectory of annual
increase at a rate of 0.2–0.3% (Kim et al., 2022). This potent
greenhouse gas not only contributes to global warming but also
poses a risk to the ozone layer, amplifying the impact of ultraviolet
radiation and imperiling the health and survival of both human
beings and other organisms. In wetlands characterized by abundant
organic matter and surface water, N2O production predominantly
occurs through denitrification processes (Mehnaz and Dijkstra,
2016; Martínez-Espinosa et al., 2021). Recognized as a crucial
natural source of N2O, wetland soil denitrification significantly
influences the global nitrogen biogeochemical cycle (Xie et al.,
2015). Studies have shown that nutrient addition enhances the
diversity and complexity of soil bacteria, especially altering the
functional bacteria related to soil nutrient cycling (Wen et al.,
2022; Zhao et al., 2023). Consequently, the inhibition of the
denitrification process in wetland soils emerges as a key strategy for
curbing N2O emissions, thereby mitigating environmental
pollution risks and enhancing nitrogen use efficiency
(Bardon et al., 2017).

Nitrogen and phosphorus are the key nutrient factors that limit
plant growth in wetland ecosystems, and play a very important
role in wetland productivity and soil ecological process (Gong
and Wu, 2021). In recent years, nitrogen and phosphorus inputs
to global ecosystems have increased dramatically due to excessive
use of chemical nitrogen fertilizers and human overgrazing.
N can be input into the wetland ecosystem through natural
settlement and plant N fixation, while P is mostly input through
livestock manure and artificial fertilization (Jiang et al., 2013).
The high imbalance of N and P inputs in the 20th century
(Peñuelas and Sardans, 2022), which is more pronounced in
areas of high N settlement (Sun et al., 2017), may lead to a
shift from N constraint to a broader P constraint or NP co-
constraint (Wu et al., 2023). Studies have shown that nitrogen
and phosphorus input can disrupt the nutrient balance of wetland
ecosystems, which may affect soil nutrient status, soil microbial
diversity and vegetation productivity in the ecosystem (Poeplau
et al., 2019), and these can promote (Kuypers et al., 2018) or
inhibit (Mori et al., 2014) N2O emissions in wetlands. Although
the P input can alleviate the P limit of the system and the
imbalance between N and P, it also affects the denitrification of
wetland soil N (Kim et al., 2015) and increases N2O emissions
(Wang et al., 2017). In addition, P input can reduce the P
limitation of plants and soil microorganisms, promote nitrogen
absorption and fixation of plants and microorganisms, and
reduce the nitrogen substrate available for N2O production, thus
inhibiting the emission of N2O from the system (Yu et al.,
2017). Furthermore, P input can alleviate the P-limiting effect
of denitrifying bacteria, promote bacterial activity (DeForest
and Otuya, 2020), increase the abundance of functional genes
produced by N2O, and promote N2O emission (Zhang et al.,
2019). Therefore, an accurate understanding of the N2O emission
characteristics and driving mechanism under the background

of future N and P input is a vital prerequisite for slowing
down wetland N2O emissions and coping with future climate
change.

The Qinghai-Tibet Plateau (QTP) is a crucial ecological security
barrier in China. It is home to a distinctive alpine meadow
ecosystem, covering 53% of its total area (Zhou et al., 2020).
Perennial low temperatures limit N and P mineralization in
this area, configuring a nutrient limitation model marked by
phosphorus or combined nitrogen and phosphorus limitation
(Chen et al., 2018; Wu et al., 2020). Over time, global nitrogen
deposition and large-scale overfertilization have propelled a
surge in nitrogen and phosphorus deposition on the Qinghai-
Tibet Plateau, escalating from 1 kg N ha−1 y−1 in 1980
to 5 kg N ha−1 y−1 in 2010, and projections indicating a
twofold to threefold increase in the future (Liu et al., 2013).
In addition, QTP is an essential base for developing animal
husbandry in China, which produces a large amount of livestock
manure and increases the input of phosphorus in wetland
soil (Zhang et al., 2019). N deposition and increased P input
not only affect the N and P content of wetland soil but
also influence its physical and chemical properties and relative
abundance of microbial dominant genera (Qiu et al., 2023;
Voigt et al., 2020; Gao et al., 2019), which in turn impacts
wetland N2O emissions. N addition can induce changes in
soil N and P availability, influencing the structure and relative
abundance of soil microbial communities, resulting in positive
(Wu et al., 2023) or negative (Gao et al., 2014) effects on
N2O flux. Conversely, the impact of increased phosphorus
input on wetland N2O emissions varies, with some studies
suggesting a promotion and others noting no significant effect
(Gao et al., 2015; Zhang et al., 2019). The high water content
and rich organic matter characteristic of the QTP area create
a low-oxygen environment in high-altitude soils, fostering N2O
production primarily through denitrification (Wrage-Mönnig
et al., 2018). Central to this process is the NirK gene,
acknowledged as the pivotal gene in denitrification, exceeding
the significance of the nirS gene in soil denitrification processes
(Wu et al., 2022). The presence and activity of the NirK gene
directly influences the soil nitrogen cycle, thereby shaping the
dynamics of soil N2O flux. In addition, soil water content
and temperature are major factors affecting the diversity of
denitrifying bacteria by regulating soil nitrogen content and
oxygen content (Na et al., 2019). Therefore, it was crucial
to investigate how soil nutrients and NirK genes respond to
changes in N and P addition for a clearer understanding of N2O
dynamics.

Therefore, this study focuses on the Gahai wet meadow as the
research area in which to study the effects of N and P addition
on N2O flux, soil nitrogen components, and denitrification
functional genes. Our research objectives are threefold: (1) To
determine how soil N2O flux responds to N and P addition,
and whether this relationship changes with temperature and
soil water content; (2) To clarify the relationship between the
changes in surface soil nitrogen components and denitrification
functional genes after the N and P addition; (3) To explore
the effects of N and P addition on N2O flux through key
abiotic and biological factors. We hypothesize that: (1) phosphate
addition increases N2O emissions due to stimulating the activity
of denitrifying microorganisms (Cui et al., 2018); (2) Nitrogen
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deposition promotes soil N2O emissions due to the lifting of
nitrogen restrictions, and phosphate addition intensifies the impact
of N deposition on soil N2O release; (3) N and P addition
can change the soil N2O emissions by changing the relative
abundance of dominant species in the soil denitrification bacterial
community; (4) Soil nitrogen components, temperature, and
water content are the main environmental controls for N2O
emissions.

2 Material and methods

2.1 Study area

The research area was located in the nature reserve of
Gahai-Zecha (33◦ 58′ 12′′ −34◦ 32′ 16′′ N, 102◦ 05′ 00′′

−102◦ 47′ 39′′ E), near the northeast border of the QTP. The
distribution area of alpine meadows in the area was over 80%,
with an average elevation of 3,430–4,300 m and an area of
57,846 hm2. The Gahai Wetland belongs to the highly cold and
humid climate zone of the Qinghai-Tibet Plateau. The average
temperature in the area from 1981 to 2020 was 2.9◦C, with
an average annual precipitation of 785 mm.1 More than 70%
of the rainfall was concentrated during the growing season
(Wang et al., 2022). The soil was mainly composed of meadow
soil, peat soil, and swamp soil, with a high organic matter
content.

2.2 Experimental design

In May 2019, we selected an area characterized by flat
terrain and evenly distributed vegetation as the experimental area.
To implement nitrogen and phosphorus treatments, we utilized
urea (CON2H4) and sodium dihydrogen phosphate (NaH2PO4)
to convert these substances into their respective nitrogen and
phosphorus content (Camenzind et al., 2014). Studies have shown
that the current background value for both nitrogen deposition
and phosphorus addition in this area was 5.0 kg N ha−1 y−1,
and the rate of nitrogen deposition and phosphorus addition is
expected to increase 2–3 times in the future (Zhai et al., 2024;
Wu et al., 2023). Based on this, we added 15 kg N ha−1 y−1 and
15 kg P ha−1 y−1 as nutrient additions under different treatments.
A total of four treatments were set up, including no fertilization
as the control (CK), N15 treatment (CON2H4 addition), P15
treatment (NaH2PO4 addition), and N15P15 treatment (CON2H4
and NaH2PO4 addition). Each treatment had three replicates, a
total of 12 plots. The plot size was 2 m × 2 m, and to avoid
mutual interference, the distance between two adjacent plots was
5 m. At the end of May 2019 and 2020, the corresponding mass of
fertilizer was dissolved in 2 L of water, and the sprayer was used to
uniformly distribute the fertilizer solution across the experimental
plots, while the control plots received an even spray of 2 L of
water.

1 http://data.cma.cn/data/weatherbk.html

2.3 N2O flux and soil sample collection

Throughout the plant growth season, spanning from June
to October 2019 and 2020, we conducted comprehensive
measurements of N2O fluxes for each treatment. Gas samples were
meticulously collected at 15-day intervals, employing the closed
static chamber technique (Ma et al., 2018). The chambers used
in our study were designed with dimensions of 50 cm in length,
width, and height. After chamber closure, gas samples were taken
at specific time intervals (0, 3, 10, 25, and 40 min) after chamber
closure. Following collection, the N2O gas samples of the air
samples were quantified using a gas chromatograph (Echrom A90,
China). For N2O flux, the concentration slope versus time was
accepted if R2 > 0.80 (Schneider et al., 2023). The N2O fluxes
were then calculated using linear regression of N2O in the chamber
concentrations versus time (Shi et al., 2021). Overall, 99.5% of
the fluxes were calculated by linear regression and 0.5% by non-
linear regression, and all N2O flux data were used for further
analysis. In addition, a portable digital thermometer (JM624) and
a soil moisture content analyzer (RS232) were used to measure soil
temperature (ST) and soil water content (SWC) at 10 cm depth.

We collected 0–10 cm soil samples from June to October 2019
and 2020 (mid-month; June is the early growth period, EG; July to
August is the middle growth period, MG; September to October
is the late growth period, LG). The soil characteristics, including
soil ammonium nitrogen (NH4

+), nitrate nitrogen (NO3
−), total

nitrogen (TN), total phosphorus (TP), microbial biomass nitrogen
(MBN), and microbial biomass carbon (MBC) were determined
using previously established methods described (Saha et al., 2018;
Wu et al., 2023). Additionally, on 20 June, 1 August, and 22
September 2020, liquid nitrogen was used to transport 0–10 cm
soil samples back to the laboratory for testing the NirK gene
sequence in each treated soil using a detection method as described
in previous research (Zhang et al., 2018; Wu et al., 2022). DNA
was extracted from 0.25 g of soil samples using the soil DNA
extraction kit (MoBio Laboratories, Carlsbad, CA, USA), and use
1% agarose gel electrophoresis solution was used to detect DNA
quality. The eligible DNA genes were amplified using the primer
combination nirK1F-nirK5R (Chen et al., 2010), and the amplified
sequencing was performed using the Illumina MiSeq 250 Sequencer
(generating 2 × 250 bp paired-end reads) from Shanghai Tianhao
Biotechnology Co., Ltd.

2.4 Statistical analysis

A normality test was conducted on the data using SPSS 22.0
software. The effects of treatments on soil N2O emissions and soil
characteristic variables (ST, SWC, NH4

+, NO3
−, TP, MBC, and

MBN) were tested with a one-way ANOVA. A linear regression
model was used to explain the variability of environmental
variables to N2O flux. Additionally, the differences in the NirK
gene community structure were displayed by principal coordinate
analysis (PCoA) based on Bray-Curtis distances using the PCoA
function in the “ape” package in R software (significance level was
P < 0.05). Redundancy analysis (RDA) was used to explore the
relationships between soil NirK gene community structure, N2O
fluxes, and soil characteristic factors.
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TABLE 1 Changes in surface soil characteristics during different vegetation growth seasons under nitrogen and phosphate addition for two
consecutive years (mean ± standard errors).

MBN (abs·g−1

dry soil)
TN (g·kg−1) TP

(mg·kg−1)
NH4

+-N
(mg·kg−1)

NO3
−-N

(mg·kg−1)
MBC

(mg·kg−1)

EG CK 0.13± 0.010 b 5.79± 0.20 b 71.08± 2.49 a 39.23± 0.37 b 26.67± 0.61 b 1,129.74± 68.95 b

N15 0.17± 0.008 a 4.99± 0.35 c 60.60± 0.95 b 38.75± 0.71 b 18.82± 0.55 c 1348.87± 42.80 ab

P15 0.20± 0.004 a 6.93± 0.06 a 36.14± 2.57 c 51.75± 1.66 a 35.86± 1.06 a 1,534.77± 75.48 a

N15P15 0.11± 0.010 b 6.10± 0.15 b 40.52± 0.01 c 40.22± 1.63 b 24.97± 0.80 b 1,320.72± 26.66 ab

MG CK 0.17± 0.005 c 6.30± 0.10 a 48.23± 5.57 b 44.61± 2.27 c 43.17± 2.24 c 693.40± 23.71 c

N15 0.17± 0.006 c 5.66± 0.09 b 50.98± 4.82 b 76.54± 3.21 b 42.68± 2.67 c 740.46± 20.09 c

P15 0.24± 0.003 b 5.61± 0.11 b 104.25± 5.91 a 85.09± 1.04 a 57.81± 1.94 a 936.82± 13.20 b

N15P15 0.29± 0.006 a 6.73± 0.25 a 89.11± 0.52 a 89.77± 0.41 a 49.85± 0.43 b 1,150.44± 10.25 a

LG CK 0.10± 0.009 b 3.26± 0.09 b 84.67± 1.89 a 45.72± 0.54 b 35.30± 0.63 c 1,522.85± 24.81 b

N15 0.11± 0.002 a 3.66± 0.11 a 46.16± 0.73 b 33.42± 0.21 c 33.55± 1.87 c 1,153.56± 40.66 c

P15 0.11± 0.002 a 2.78± 0.16 c 85.11± 1.92 a 44.06± 0.89 b 42.01± 1.19 b 1,518.24± 56.76 b

N15P15 0.08± 0.001 c 3.71± 0.10 a 47.21± 1.62 b 84.60± 0.10 a 48.45± 1.94 a 2,404.55± 12.39 a

Average CK 0.13± 0.005 c 5.12± 0.07 b 67.99± 1.66 b 43.19± 0.79 d 35.05± 1.05 c 1,115.33± 14.32 c

N15 0.15± 0.005 b 4.77± 0.11 b 52.58± 1.68 d 49.57± 0.84 c 31.68± 1.30 d 1,080.96± 31.96 c

P15 0.18± 0.001 a 5.10± 0.04 b 75.17± 0.47 a 60.30± 0.08 b 45.23± 0.58 a 1,329.94± 47.56 b

N15P15 0.16± 0.003 b 5.51± 0.16 a 58.95± 0.37 c 71.53± 0.59 a 41.09± 1.04 b 1,625.24± 37.70 a

MBN, microbial biomass nitrogen; TN, total nitrogen; TP, total phosphorus; NH4
+-N, ammonium nitrogen; NO3

−-N, nitrate nitrogen; MBC, microbial biomass carbon. Different lowercase
letters represent significant differences (P < 0.05) between the treatments.

FIGURE 1

Changes in soil water content and soil temperature under nitrogen and phosphate addition. Error bars show the standard error. CK, Control; N15,
CON2H4 addition treatment; P15, NaH2PO4 addition treatment; N15P15, CON2H4 and NaH2PO4 addition treatment.

3 Results

3.1 Soil characteristics

The soil characteristics of the 0–10 cm soil layer in the wet
meadow on the QTP were significantly affected by the N and P
addition treatments (Table 1 and Figure 1). Compared with CK,
P15 and N15P15 treatments significantly increased the contents
of soil MBN, NH4

+-N, NO3
−-N, and MBC (P < 0.05); P15

treatments significantly increased the soil TP content (P < 0.05),
while N15 treatments significantly decreased the contents of TN,
TP, NO3

−-N and MBC (P < 0.05). ST showed a trend of increasing
first and then decreasing after a month, while there was no clear
SWC trend. In addition, the soil characteristics content under
four treatments showed significant seasonal variations (P < 0.05,

Table 2). Except for the TP content in the soil treated with CK
and N15, the content of MBN, TN, NH4

+, and NO3
− in the soil

showed a trend of first increasing and then decreasing with the
extension of the season, with the larger values appearing in MG.
The soil MBC content under the four treatments showed a trend of
decreasing and increasing with the extension of seasons. Repeated
analysis of variance demonstrated that N and P addition and season
significantly interaction influenced the soil characteristics content
in wet meadow soil (Table 2).

3.2 N and P addition effects on N2O flux

High levels of N addition and NP addition significantly
impacted the 2-year average N2O flux, but P addition did not
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significantly affect N2O flux (Figure 2). Throughout the entire plant
growing seasons (June to October) of QTP in 2019 and 2020,
the N2O emissions varied between the four treatments. Compared
with CK (10.08 µg·m−2

·h−1), N15, P15, and N15P15 increased
N2O average emission by 3.46, 0.86, and 5.53 µg·m−2

·h−1 in
wet meadow. Moreover, P addition increased the increase of
N2O emission resulting from N fertilization by 2.07 µg·m−2

·h−1

(Figure 2).
Fertilization and seasonal changes also significantly impacted

soil N2O flux in QTP wet meadow (Table 2). Compared with the
CK treatments in the EG (12.17 ± 0.90 µg·m−2

·h−1) and MG
periods (8.71 ± 0.79 µg·m−2

·h−1) of 2019, the N15 treatment
significantly increased average N2O emissions by 5.34 µg·m−2

·h−1

during the EG period and 4.67 µg·m−2
·h−1 during the MG period.

Likewise, soil N2O emissions under N15 treatment increased by
3.16 µg·m−2

·h−1 during the EG period and 5.99 µg·m−2
·h−1

during the MG period in 2020. In addition, soil N2O emissions
under the interactive treatment of N15 and P15 fertilization
treatment were 6.95 µg·m−2

·h−1 and 11.56 µg·m−2
·h−1 higher

than under the CK treatment in the EG of 2019 and 2020,
respectively (Figure 2). Additionally, P fertilization together
significantly increased the N2O flux by 2.02 and 3.37 µg·m−2

·h−1

compared with the CK treatment only during the MG period in
2019 and 2020 (P = 0.03 and P = 0.01). In the late growth season,
all other treatments had no significant effect on N2O flux except for
N15P15 (P > 0.05).

3.3 Effect of N and P addition on soil NirK
genes

There were significant differences in the composition of
soil microbial communities under the four N and P addition
treatments (Figure 3). Principal coordinates analysis (PCoA) of
Bray-Curtis distance showed that there were significant differences
in soil microbial community structure between N and P addition
treatments and CK (P = 0.024), while the differences in
the microbial community structure between N15 and N15P15
treatments did not reach significant (P = 0.152). Moreover, the
dominant genera among the four treatments in wet meadows
were Bradyrhizobium, Devosia, Ochrobactrum, Alcaligenes, and
Rhizobium (Figure 4). N and P addition (N15, P15, N15P15)
significantly reduced the relative abundance of Bradyrhizobium,
and increased the relative abundance of Devosia, Ochrobactrum,
Alcaligenes, and Rhizobium.

3.4 Relationships between N2O flux and
soil characteristics and NirK genes

After two years of nitrogen and phosphorus addition
treatments, significant correlations between N2O flux and TN at
10 cm depth, and between N2O flux and NO3

− at 10 cm depth
were observed (Table 3), explaining 16.99 and 24.78% of N2O
variation, respectively (Figure 5). Furthermore, the relationships
between N2O flux and other soil characteristics (ST, SWC, MBN,
TP, NH4

+ and MBC at 10 cm depth) were undetectable in this
study. Moreover, at the level of dominant genera, the N2O flux was
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FIGURE 2

Average N2O flux in the 2019 and 2020 early (EG), middle (MG), and late (LG) growing season under four treatments. Average N2O flux in the 2019
and 2020 early (EG), middle (MG), and late (LG) growing season under four treatments. Different lowercase letters represent significant differences
(P < 0.05) between the treatments, error bars show the standard error. CK, Control; N15, CON2H4 addition treatment; P15, NaH2PO4 addition
treatment; N15P15, CON2H4 and NaH2PO4 addition treatment.

FIGURE 3

Histogram of soil NirK bacterial community structure (genus level) under nitrogen and phosphate addition treatment. CK, Control; N15, CON2H4

addition treatment; P15, NaH2PO4 addition treatment; N15P15, CON2H4 and NaH2PO4 addition treatment.

significantly negatively correlated with the relative abundance of
Ochrobactrum, significantly positively correlated with the relative
abundance of Alcaligenes (P < 0.05, Figure 6), and weakly

correlated with other dominant genera (P > 0.05). Bradyrhizobium
was significantly positively correlated with NH4

+, NO3
−, MBN,

and significantly negatively correlated with MBC. Devosia and
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FIGURE 4

Principal coordinates analysis (PCoA) of bacterial community structure based on Bray-Curtis distances under different treatment. CK, Control; N15,
CON2H4 addition treatment; P15, NaH2PO4 addition treatment; N15P15, CON2H4 and NaH2PO4 addition treatment. We used the first two samples
from the P15 treatment for PCoA analysis due to the third soil sample from the P15 treatment was contaminated.

TABLE 3 Correlation analysis between soil characteristics and N2O flux in different vegetation growth seasons.

Parameter SWC ST MBN TN TP NH4
+ NO3

− MBC

Df 36 36 36 36 36 36 36 36

F 0.277 −0.045 0.058 0.412 −0.306 −0.103 −0.498 0.226

P-value 0.102 0.793 0.736 0.012 0.070 0.552 0.002 0.129

SWC, soil water content; ST, soil temperature; MBN, microbial biomass nitrogen; TN, total nitrogen; TP, total phosphorus; NH4
+-N, ammonium nitrogen; NO3

−-N, nitrate nitrogen; MBC,
microbial biomass carbon.

Rhizobium were significantly positively correlated with MBC, while
negatively correlated with NH4

+, NO3
−, and MBN. Ochrobactrum

was positively correlated with TP content but negatively correlated
with SWC, ST, and TN.

4 Discussion

4.1 Effects of nitrogen and phosphorus
addition on N2O flux in wet meadow

N2O is mainly produced by two biological processes,
nitrification and denitrification, which are affected by the soil
environment and substrate nutrient content (Cui et al., 2016).
After two years of phosphate addition treatment alone in the
Qinghai-Tibet Plateau wet meadow, no significant effects on N2O
fluxes were found. This fails to confirm our first hypothesis but is

consistent with previous studies on alpine grasslands and wetlands
(Wang et al., 2018; Zhang et al., 2019). The significant positive
effect of phosphate addition on N2O flux has been reported in
grasslands. It is attributed to the increase in soil-denitrifying
microbes biomass and activity under the phosphate addition
treatment (Cui et al., 2018). Although soil total phosphorus content
was increased due to the phosphate addition treatment, no effect
on N2O fluxes has been detected in this study. Contrary to the
phosphate addition treatment, N fertilization (N15) significantly
increased N2O emission, which confirms our second hypothesis
that N fertilization relieves N element limitation in wet meadow
systems and promotes N2O emissions. On the one hand, N and P
addition treatment can increase soil available nitrogen (Table 1),
promote the abundance of soil microbial functional genes, and
increase the reaction matrix available for N2O production (Mori
et al., 2017). On the other hand, nitrogen addition will weaken the
limiting effect of nutrient elements, accelerate the decomposition
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FIGURE 5

Relationship between soil N2O flux and two environmental variables (total nitrogen (TN) and nitrate nitrogen (NO3
−) at 10 cm soil depths).

FIGURE 6

Redundancy analysis (RDA) between N2O emissions and NirK bacterial community structure (genus level) and soil characteristics. The length and
angle of the arrows indicates the magnitude and direction of the correlation, respectively. CK, Control; N15, CON2H4 addition treatment; P15,
NaH2PO4 addition treatment; N15P15, CON2H4 and NaH2PO4 addition treatment.

rate of litter, increase the content and distribution of soil nutrients
(Jiang et al., 2021), and promote the emission of N2O.

Similar to the second hypothesis, we found that phosphate
addition trended to intensify the effect of N deposition treatment

(N15P15) and it was significant in the early growth season of
2020 (Figure 2). The comprehensive impact of nitrogen and
phosphorus addition on N2O emissions is mainly due to the
competition between plants and soil microorganisms for nutrient
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availability (Shen and Zhu, 2022). The simultaneous addition
of NP not only relieved the N limitation of the soil in the
Gahai wet meadow, but also increased the available nutrients
in the soil. Adequate P element increased the activity of soil
microorganisms and extracellular enzymes (Mehnaz et al., 2019;
Camenzind et al., 2016), promoted the mineralization of nitrogen
in the ecosystem (Anderson et al., 2023), and stimulated the
occurrence of denitrification (Gao et al., 2015), resulting in that
the addition of P enhanced the influence of nitrogen deposition
on N2O emission. To survive, soil microorganisms will promote
the mineralization and decomposition of soil TN into available
nitrogen (MBN, NH4

+, NO3
−), resulting in a lower N2O

flux under phosphorus addition conditions than under nitrogen
addition treatment. This result is consistent with Baral et al.’s
(2014) finding that phosphorus addition reduces N2O emissions,
mainly due to the Gahai wet meadow being an N limited ecosystem
(Wu et al., 2021). Phosphorus addition reduces the absorption
of soil mineral nitrogen by plant roots and nitrogen assimilation
by soil microorganisms (Guan et al., 2024; Chen et al., 2023),
ultimately reducing N2O emissions. Additionally, the N2O flux
under N and P addition gradually decreased with the extension
of the season (Figure 3), with the minimum value appearing at
the end of plant growth (September-October), which was mainly
related to the rapid depletion of nutrients after N and P addition
(Gebremichael et al., 2022; Wei et al., 2020). On the one hand,
the available nutrients in the soil gradually decrease with the
extension of nitrogen and phosphorus addition time, and the
nitrification and denitrification processes gradually weaken due
to the decrease in substrate concentration, resulting in the peak
of N2O flux at the beginning of plant growth after nitrogen and
phosphorus addition. On the other hand, this temporal trend is
linked to the rainfall pattern characteristic of the Gahai wet meadow
area (Wu et al., 2023), with rainfall mainly concentrated in the
plant growing season (May-October). The elevated temperatures
during this period enhance soil microbial activity, fostering the
microbial decomposition of nitrogen and phosphorus nutrients
and litter. This, in turn, supplements the substrate concentration
for soil microbial nitrification and denitrification processes (Luo
et al., 2020), leading to an initial increase in N2O flux. However,
as the growing season progresses, nutrient competition between
plants and soil microorganisms emerges (Jones et al., 2018).
Consequently, soil nutrient content and soil N2O flux gradually
decline. In contrast, the N2O flux under the CK treatment displayed
a trend of first decreasing and then increasing with the extension of
the season. Because plant growth absorbs the available nutrients in
the soil, the competition between soil microorganisms and plants
for soil nutrients is intensified (Das et al., 2022). In addition,
P addition alone significantly increased N2O emissions in the
middle growing season, because higher temperatures increased
N mineralization and decomposition by soil microorganisms
and increased nutrient content in the soil (Table 1), P addition
promoted soil microbial and extracellular enzyme activities that
enhanced soil denitrification (Mori, 2022; Mehnaz et al., 2019; Baral
et al., 2014), and contributed to N2O emissions. During the late
growth period, aboveground plants will turn yellow or even die;
the decomposition of aboveground litter by soil microorganisms
increases the effective nutrients in the soil (Ochoa-Hueso et al.,
2020), promotes soil nutrient cycling processes and increases the
substrate content of N2O production (Pandeya et al., 2020), leads

to an increase in N2O emissions under CK treatment at the late
growth period.

4.2 Effects of environmental and
microorganism factors on N2O flux

N and P addition not only induces shifts in the soil
environmental factors of wet meadows (e.g., SWC and ST)
but also leads to changes in soil nitrogen components (e.g.,
TN, NH4

+, NO3
−, MBN) and soil microbial community

structure, ultimately changing soil N2O flux. Prior research
has shown that soil total nitrogen and nitrate are substrates
for nitrification and denitrification processes that produce N2O
and soil microorganisms usually absorb mineral nitrogen for
nitrification and denitrification, resulting in reduced nitrogen
component content in the soil and promoting N2O emission
(Kuang et al., 2018). Consistent with this understanding, our study
reveals a significant correlation between soil N2O flux, nitrate
nitrogen, and TN content (Table 2 and Figure 5). Moreover,
prior research has consistently underscored soil temperature
and humidity as principal drivers influencing N2O flux. This
correlation stems from the direct impact of temperature on
soil microbial activity, and the indirect influence of soil water
content on denitrification processes by regulating anaerobic
conditions (Bååth, 2018; Wu et al., 2022). Surprisingly, unlike
the anticipated association outlined in our four hypotheses,
no significant correlation was observed between N2O flux and
temperature, NH4

+, and MBN. This incongruity challenges the
notion that soil temperature and nitrogen composition are the
primary controllers of N2O flux. In contrast, our findings reveal a
substantial positive correlation between N2O flux and SWC. This
alignment emphasizes the influential role of soil water content in
shaping the redox state and microbial activity within wet meadow
soils. Increased SWC promotes denitrification processes, thereby
influencing the production and transport of N2O (Xu et al., 2016).

Similar to the third hypothesis, we found that N addition and
NP co-addition can promote soil N2O emissions by changing the
relative abundance of dominant species in the soil denitrification
bacterial community. Although P addition significantly altered the
relative abundance of dominant species in the soil denitrification
bacterial community, no significant effect was observed on the
average N2O emission. Specifically, N and P addition resulted
in a decrease in the relative abundance of Bradyrhizobium and
an increase in the relative abundance of Devosia and Rhizobium
genera. This observed microbial community restructuring aligns
with prior research by Xu et al. (2019): as Bradyrhizobium is a
slow-growing bacteria, N and P addition increases the available
nitrogen content in the soil. Plants absorb a large amount of mineral
nitrogen for root growth, which increases soil ventilation (Table 1).
A higher concentration of oxygen will cause Bradyrhizobium to
consume more energy to protect the nitrogenase from oxygen
inactivation (Lin et al., 2018), decreasing the abundance and
nitrogen component content of Bradyrhizobium. Consistent with
previous studies showing that reduced microbial nitrogen fixation
capacity increases N2O emissions (Mori et al., 2014), this confirms
our second hypothesis that N and P addition alters N2O emissions
by modifying the proportion of prevailing species within soil
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denitrifying bacterial communities. Moreover, as reflected in
Table 1, the observed increase in the relative abundance of fast-
growing nitrogen-fixation bacteria, such as Devosia and Rhizobium,
due to nitrogen and phosphorus addition contributes to heightened
soil microbial activity (MBN and MBC). This stimulation, in turn,
facilitated the rapid propagation of Devosia and Rhizobium, directly
promoting the soil nitrogen cycle (Kuypers et al., 2018; Fang et al.,
2019). The consequence is an indirect increase in N2O emission.
Notably, Devosia and Rhizobium are known to promote plant
growth (Zhou et al., 2017; Yang et al., 2021). Consequently, the
accelerated absorption of available nitrogen by wet meadow plants,
facilitated by these bacteria, reduces soil nitrogen component
content. This finding is consistent with the results demonstrating
a negative correlation between Devosia, Rhizobium, and soil
NH4

+, NO3
−, MBN, alongside a significant positive correlation

with MBC (Figure 6). Contrastingly, Ochrobactrum exhibits
a negative correlation with N2O, attributing to its capacity
to degrade aromatic and hydrocarbons (Veeranagouda et al.,
2006). This microbial activity converts high levels of NO2

−

to N2 (Doi et al., 2009) through denitrification under anaerobic
conditions. In this study, the addition of nitrogen and phosphorus
resulted in higher soil available nutrient content, promoting
the growth of soil microorganisms and increasing the relative
abundance of Ochrobactrum (Figure 3). This, in turn, stimulated
the conversion of NO2

− into N2, and reduced the production of
N2O. Therefore, the availability of soil nitrogen and the relative
abundance of microorganisms emerge as pivotal limiting factors
for soil denitrification in QTP wet meadows. These intricate
microbial and nutrient dynamics underscore the importance of
considering alpine wet meadows in the prediction of global
greenhouse gas emissions and climate models, particularly in
relation to N2O emissions. The unique geography and sensitive
climatic conditions of the Gahai wet meadow system have
resulted in much higher N2O emissions than elsewhere (Tiemeyer
et al., 2016; Jiang et al., 2010), soil microbes and effective
nutrients are the main factors influencing N2O emissions. The
N2O warming potential is about 296 times that of carbon
dioxide, contributing about 7% to global warming (Feng and
Li, 2023), becoming the main destroyer of the ozone layer.
To accurately assess the contribution of global climate change
and nutrient inputs to the warming effect, the model needs to
clarify the response of soil N2O emissions to nutrient inputs
(Prentice et al., 2012).

5 Conclusion

This study examined the effects of high levels of N and P
additions on N2O flux within alpine wet meadow ecosystems.
The impact of phosphate addition treatment on soil N2O flux
was not detectable, while a significant effect of N deposition
treatment was shown. A trend that phosphate addition intensified
the effect of N deposition treatment on soil N2O flux was
observed, which was significant in the early growth season. Among
different abiotic factors, soil TN and NO3

− were the main controls
for N2O emission, while SWC has a weaker impact on N2O
flux. Furthermore, our research revealed a strong correlation
between N2O flux and soil available nitrogen and the relative

abundance of NirK microorganisms (Bradyrhizobium, Devosia,
Ochrobactrum, Alcaligenes, Rhizobium). In the alpine wet meadow
ecosystem, the denitrification process is constrained by nitrogen
availability and microbial biomass carbon and phosphorus content.
Our results indicated a shift in the main limiting factor from
nitrogen to phosphorus in response to nutrient addition, suggesting
a change in the ecological dynamics of this area. Nitrogen
alone and nitrogen-phosphorus interactions were all found to
significantly amplify the environmental pressure associated with
N2O emission in wet meadows. This insight underscores the
importance of considering the intricate interplay between nutrient
dynamics, microbial communities, and environmental factors for
a comprehensive understanding of the consequences of nutrient
additions in alpine wet meadows.
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