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As the global male infertility rate continues to rise, there is an urgent imperative to 
investigate the underlying causes of sustained deterioration in sperm quality. The 
gut microbiota emerges as a pivotal factor in host health regulation, with mounting 
evidence highlighting its dual influence on semen. This review underscores the 
interplay between the Testis-Gut microbiota axis and its consequential effects 
on sperm. Potential mechanisms driving the dual impact of gut microbiota on 
sperm encompass immune modulation, inflammatory responses mediated by 
endotoxins, oxidative stress, antioxidant defenses, gut microbiota-derived metabolites, 
epigenetic modifications, regulatory sex hormone signaling. Interventions such as 
probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and Traditional 
natural herbal extracts are hypothesized to rectify dysbiosis, offering avenues 
to modulate gut microbiota and enhance Spermatogenesis and motility. Future 
investigations should delve into elucidating the mechanisms and foundational 
principles governing the interaction between gut microbiota and sperm within 
the Testis-Gut microbiota Axis. Understanding and modulating the Testis-Gut 
microbiota Axis may yield novel therapeutic strategies to enhance male fertility 
and combat the global decline in sperm quality.
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1 Introduction

Infertility is becoming a widespread global issue, and the World Health Organization 
estimates that 12.6–17.5% of couples globally encounter fertility challenges, with male factors 
contributing to 30–50% of cases of reduced fertility (Cox et  al., 2022; Fainberg and 
Kashanian, 2019; Eisenberg et al., 2023), causing social, psychological, and marital problems 
for couples. Male reproductive impairment can arise from factors impacting sperm 
production, quality, function, or transport (Tournaye et al., 2017). Given that male fertility 
hinges on both sperm quantity and quality, semen quality serves as a crucial indicator of 
male reproductive health and is closely linked to fertility. A retrospective analysis of semen 
samples collected globally throughout the 20th and 21st centuries has revealed a significant 
decline in male sperm concentration and total sperm count, a trend that is accelerating in 
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the 21st century (Levine et al., 2023). With the acceleration of global 
male infertility, there is an urgent need to investigate the potential 
causes and mechanisms of this continuous decline, and take 
preventive measures to protect male reproductive health from 
further deterioration.

The gut microbiota (GM) represents a significant component of 
the gastrointestinal tract, often termed the “second human genome” 
due to its vast repertoire of over 3 million genes, compared to the 
approximately 23,000 genes found in the human genome. It is 
recognized as the host’s endocrine organ. This extensive bacterial 
community plays a critical role in preserving the equilibrium between 
the host’s internal and external environments, thereby serving as a 
pivotal determinant of host health (De Vos et al., 2022; Lloyd-Price 
et al., 2016). The GM constitutes a complex and dynamically changing 
microbial community. Across the life cycle of mammals, evolution has 
occurred in conjunction with this microbiota (Argaw-Denboba et al., 
2024), and mounting research underscores the pivotal role of GM in 
human physiological functions and disease progression. The 
indigenous GM fulfills distinct functions in host nutrient metabolism, 
xenobiotic and drug metabolism, preservation of the structural 
integrity of the gut mucosal barrier, immunomodulation, and defense 
against pathogens (Jandhyala et al., 2015). Research indicates that 
nearly all regions of the human body harbor microorganisms, and 
various organs can communicate through the GM (Gilbert et al., 2018; 
Schmidt et al., 2018). Furthermore, different individuals can also share 
connections via their GM. A recent study (Argaw-Denboba et al., 
2024) highlights the pivotal role of the GM in mediating 
intergenerational health outcomes across paternal lineages in mice. 
Disruption in the ecological balance of the paternal GM has been 
linked to alterations in the male reproductive system, including 
compromised leptin signaling, changes in testicular metabolite 
profiles, and the redistribution of small RNA payloads in sperm. These 
changes increase the risk of developmental disorders and premature 
mortality in offspring, directly impacting their overall health.

Recent studies have demonstrated the significant influence of GM 
on sperm. Increasing research indicates an interplay between GM and 
the male reproductive system, highlighting its pivotal role in 
reproductive health (Hao et al., 2022; Yan et al., 2022; Jin et al., 2024; 
Li et al., 2022c; Li et al., 2024). Numerous studies have examined how 
GM impacts semen from dual perspectives (Ding et al., 2020; Lundy 
et al., 2021). On one hand, GM like Lactic acid bacteria, Bacteroidetes, 
and Ruminococcus (UCG011) can enhance sperm production, 
motility, and semen quality. (Fu et  al., 2023). On the other hand, 
imbalanced GM can disrupt sperm production and reduce motility. 
The negative correlation between sperm motility and some “bad 
bacteria” or GM dysbiosis has been identified, for example 
Bacteroidetes Prevotella, Enterococcus faecalis, and GM dysbiosis 
caused by high-fat diet or otheres. The potential mechanism of GM 
influencing on sperm includes GM metabolites or bacterial cells 
regulating host intestinal homeostasis, host metabolism, that finally 
affects host reproductive function (Fu et al., 2023; Lv et al., 2024).

The influence of GM on sperm is evident, however, the specific 
influencing mechanisms require further elucidation. Accordingly, our 
team maintains a focus on investigating the gut-testis axis (Zou et al., 
2024). By thoroughly reviewing existing literature, we aim to uncover 
potential mechanisms through which GM affects semen. This 
exploration intents to stimulate researchers’ interest on investigating 
the connections and reciprocal influences between GM and 

reproductive disorders, including sperm health, testicular function, 
and sex hormone regulation.

2 Potential mechanisms of GM 
affecting sperm

The GM comprises numerous species and interacts with multiple 
systems in the body, exhibiting complex potential mechanisms of 
action (Chen et al., 2021). This section focuses on elucidating the dual 
effects of GM on semen, exploring its role in mediating immune and 
inflammatory responses via endotoxins, oxidative stress, antioxidant 
protection, microbiota-derived metabolites, epigenetic modifications, 
regulation of sex hormones, and modulation of the blood-testis barrier.

2.1 GM mediates immune and 
inflammatory responses via endotoxins

Endotoxin is a potential pathway through which the intestinal 
microbiota mediates immune and inflammatory responses that affect 
sperm generation and reproductive function (Noguchi et al., 2017; 
Tremellen et al., 2018; Khanmohammad et al., 2021). Endotoxin is a 
component of the intestinal microbiota, particularly gram-negative 
bacteria, which use lipopolysaccharides (LPS) as cytoderm, that is 
effective activator of inflammation. Upon activation of the immune 
system, inflammatory mediators such as cytokines (e.g., tumor 
necrosis factor, interleukin-6) and chemokines (Chen et al., 2017; Silva 
et al., 2018) are typically released, triggering inflammatory responses 
that can affect sperm generation and function (Rizzetto et al., 2018; 
Maynard et al., 2012; Brown et al., 2019; Wei et al., 2024).

Dysbiosis of the GM can lead to the release of endotoxins into the 
intestine due to damage of gram-negative bacteria (Zhao et al., 2019; 
Schoeler and Caesar, 2019), which will compromise the intestinal 
barrier. This allows endotoxins to enter the circulation and activate 
immune responses, thereby mediating inflammatory reactions (Mohr 
et  al., 2022; Di Lorenzo et  al., 2019; Candelli et  al., 2021). These 
reactions include releasing key pro-inflammatory cytokines, activating 
genes involved in inflammation and immune responses, that decrease 
sperm motility (O'Doherty et al., 2016; Parker and Palladino, 2017). 
For example, LPS from Escherichia coli can stimulate immune 
responses in healthy male mice, leading to the production of 
pro-inflammatory cytokines such as IL-17A, mediating immune and 
inflammatory responses in testicular tissue. This results in widespread 
necrosis of testicular parenchyma, damage to the epithelial cells of 
seminiferous tubules, reduction in testosterone levels within the testes, 
ultimately impairing testicular tissue, decreasing sperm production, 
reducing motility, and enhancing DNA fragmentation 
(Khanmohammad et al., 2021; Folliero et al., 2022; Li et al., 2024). 
Additionally, LPS-induced epididymitis in rats exhibits leukocyte 
infiltration and fibrosis in the caudal epididymis, downregulating the 
expression of rat-specific β-defensin SPAG11E, disrupting SPAG11E 
binding with sperm, damaging blood-epididymal barrier permeability, 
and sperm viability (Cao et al., 2010; Wang et al., 2019). Research by 
Brecchia G and others (Brecchia et al., 2010; Collodel et al., 2012) 
demonstrates that LPS-mediated subacute inflammation can disrupt 
rabbit testicular structure and sperm membrane integrity. After 
30 days of LPS exposure, rabbit sperm membrane integrity and the 
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number of necrotic sperm are severely affected, peaking at the end of 
the 56-day spermatogenic cycle. Supplementation with testicular 
vitamin K may help inhibit inflammatory signal transduction and 
improve LPS-induced reduction in testicular testosterone synthesis, 
maintaining stable testosterone levels (Takumi et al., 2011).

2.2 Oxidative stress and antioxidant 
protection

Sperm are susceptible to oxidative stress (OS), which refers to the 
imbalance between the generation of reactive oxygen species (ROS) 
and the cellular antioxidant defense systems (Barati et  al., 2020). 
Spermiogenesis involves an oxidative process that requires controlled 
levels of ROS to trigger phosphorylation. Thus, at physiological 
concentrations, ROS are essential for normal sperm function, playing 
critical roles in sperm maturation, capacitation, hyperactivation, and 
acrosome reaction processes. However, excessive ROS can lead to OS, 
causing structural and functional damage to sperm cells, manifested 
as impaired energy metabolism, protein oxidation, lipid peroxidation, 
and DNA damage, ultimately resulting in reduced sperm motility and 
viability (Du Plessis et al., 2015; Aitken, 2017).

The GM can influence the host’s antioxidant defense system, 
thereby affecting sperm production and motility (Uchiyama et al., 
2022; Magill and MacDonald, 2023). Antioxidant enzymes such as 
superoxide dismutase (SOD), glutathione peroxidase (GPX), 
peroxiredoxin (PRDX), thioredoxin, and glutathione-S-transferase 
exhibit antioxidant activity, neutralizing free radicals and other 
oxidative stressors to reduce oxidative damage. Certain probiotics or 
specific bacterial strains can produce antioxidants like glutathione and 
superoxide dismutase, which are essential for generating healthy 
sperm, maintaining sperm quality to ensure vitality, energy acquisition, 
and DNA integrity, thereby protecting sperm from oxidative harm 
(O'Flaherty and Scarlata, 2022; Oliveira et al., 2024; Wang et al., 2017). 
Studies indicate that PRDX regulates ROS levels, preventing oxidative 
stress during human sperm maturation processes (Lee et al., 2017) 
Further research by Fernandez MC (Fernandez and O'Flaherty, 2018; 
Fernandez et al., 2019) and others has highlighted peroxiredoxin 6 as 
a key antioxidant enzyme maintaining human sperm vitality and DNA 
integrity. Peroxiredoxin 6 regulates the phosphoinositide 3-kinase 
(PI3K) /protein kinase B (AKT) pathway to eliminate excessive ROS 
and maintain sperm vitality, thereby preventing oxidative damage.

Supplementation with antioxidants such as vitamins E and C, 
selenium, glutathione, coenzyme Q10, carotenoids, and l-carnitine 
can modulate GM, reducing sperm damage induced by oxidative 
stress (Beygi et al., 2021; Li et al., 2023). For instance, selenium (Se), a 
renowned antioxidant, significantly influences gut microbial 
composition, male sperm quality, and fertility. Research indicates 
associations between selenium binding protein (SeAlb), Escherichia/
Shigella species, and glutathione peroxidase (GPx) (Rayman, 2012; 
Ramírez-Acosta et al., 2022). Studies by Sun et al. (2023) and Zeng 
et al. (2024), and others have shown that selenium gluconate (SeGlu) 
derivatives, novel organic selenium compounds, reduce the abundance 
of detrimental bacteria such as Rikenella, Barnesiella, Tenacibaculum, 
Acinetobacter, Bacteroides, and Alistipes, while increasing beneficial 
microbes like Intestinimonas, Christensenella, Coprococcus, 
Butyrivibrio, Clostridium, Ruminococcus, Lactobacillus, and 
Lactococcus. This supplementation enhances rat sperm quality by 

reducing harmful bacterial colonization, modulating GM, and 
decreasing sperm damage induced by oxidative stress.

Furthermore, dysbiosis of GM increases oxidative stress within 
the host, making cells more susceptible to oxidative damage, triggering 
immune responses, inflammation, and other pathological changes 
(Ferro et  al., 2020), impairing sperm production and function. 
Dysbiosis-induced LPS induce oxidative stress-mediated 
mitochondrial damage in sperm, leading to significant mitochondrial 
ultrastructural changes and increased mitochondrial reactive oxygen 
species. This abnormal activation of oxidative phosphorylation 
(OXPHOS) and mitochondrial membrane lipid peroxidation result in 
sperm oxidative damage, reducing boar sperm motility and vitality 
(He et al., 2017). Research has shown that glyphosate (GLY) -induced 
dysbiosis of GM increases local interleukin (IL) -17A production (Liu 
et  al., 2021), subsequently activating testicular oxidative damage, 
manifesting as impaired testicular structure, decreased sperm vitality, 
and increased sperm deformity rates.

2.3 Metabolites of GM

The influence of GM metabolites on host health extends to semen 
quality. GM produce a diverse array of metabolites with varied 
biological activities. These metabolites can be categorized into three 
main types based on their origins (Figure  1): Metabolites directly 
synthesized by GM from dietary sources, including short-chain fatty 
acids (SCFAs), polyunsaturated fatty acids (PUFAs), and amino acid 
derivatives; Metabolites initially produced by the host and subsequently 
modified by GM, such as secondary bile acids and hydroxysteroid 
dehydrogenase (HSDH); Metabolites synthesized de novo, such as LPS 
and vitamin K (Liu et al., 2022a; Lv et al., 2024). Alterations in GM 
composition can impact the levels of these metabolites, consequently 
influencing sperm production and quality (Wang et al., 2023a). For 
instance, decreased levels of RuminococcaceeNK4A214_group in the gut 
correlate with reduced bile acid levels, impairing spermatogenesis and 
decreasing spermatogenic cell counts (Zhang et al., 2021). Moreover, 
the GM-derived metabolite 3-hydroxyphenylacetic acid (3-HPAA) has 
been shown to inhibit ferroptosis-mediated mechanisms and promote 
spermatogenesis in aging mice (Jin et al., 2023). Supplementation with 
dietary fiber enhances GM composition in boars, stimulating the 
production of SCFAs and thereby improving sperm production and 
semen quality (Lin et al., 2022). This review focuses on the impact of 
key GM metabolites such as SCFAs, secondary bile acids, tryptophan 
and indole derivatives, and vitamins on sperm health.

SCFAs are metabolites produced by GM, particularly probiotics 
and Bacillus subtilis, through the fermentation of cellulose and 
unabsorbed carbohydrates. They play a crucial role in regulating gut 
homeostasis and influencing health and disease outcomes (van der Hee 
and Wells, 2021; Fusco et al., 2023). SCFAs are involved in regulating 
sperm production and motility; for instance, dietary supplementation 
with sodium butyrate (SB) in roosters has been shown to enhance 
semen volume, sperm motility, sperm concentration, and reduce 
abnormal sperm percentages. Additionally, it enhances the enzyme 
activity of GPx and SOD in adult roosters at 45 weeks, promoting 
testosterone secretion and testicular growth (Alhaj et al., 2018). SCFAs 
can improve intestinal microbiota altered by a high-fat diet (HFD), 
regulate lipid metabolism to enhance spermatogenesis, and improve 
semen volume and fertility by producing n-3 polyunsaturated fatty 

https://doi.org/10.3389/fmicb.2024.1478082
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2024.1478082

Frontiers in Microbiology 04 frontiersin.org

acids (Hao et al., 2022). They also increase beneficial enterobacteria, 
reduce harmful bacteria, elevate levels of acetic acid and butyric acid 
in feces, and enhance blood levels of testosterone, DHA, EPA, 
promoting spermatogenesis, and improving sperm concentration and 
vitality in type 2 diabetes (Yan et al., 2022; Zhou et al., 2023).

Secondary bile acids are a type of bile acid formed after metabolism 
by GM. They significantly influence host metabolism and immune 
response by modulating bile acid pool circulation and overall fat 
metabolism (Fogelson et al., 2023). Altering the GM structure affects bile 
acid metabolism, which in turn influences host metabolism and immune 
response (Tian et al., 2020; Lee et al., 2024). Bile acids may impact sperm 
production and quality through their regulatory effects on host 
metabolism and immune response. Research indicates that heat stress-
induced dysbiosis of GM impairs spermatogenesis by altering secondary 
bile acid metabolism in the gut (He et al., 2024). Moreover, Aspergillus 
fumigatus regulates secondary bile acid metabolism by promoting 

colonization of bile salt hydrolase (BSH) metabolizing bacteria, thereby 
enhancing retinol absorption in the host gut and improving testicular 
retinoid levels, which further improves spermatogenesis. Zhang et al. 
(2022) found that reduced levels of RuminococcaceeNK4A214_group 
lead to decreased bile acid levels, causing abnormal vitamin A 
metabolism in the intestine and resulting in abnormal sperm.

Tryptophan is an amino acid metabolized into indole, a primary 
product of tryptophan metabolism. In the intestine, GM further 
metabolizes indole into various derivatives such as indole-3-propionic 
acid (IPA) and 3-hydroxyindole, which significantly influence host 
health, disease, and aging (Wang et al., 2024a; Gupta et al., 2023). IPA 
inhibits GM dysbiosis and intestinal endotoxin leakage (Zhao et al., 
2019). Indole-derived metabolites upregulate CatSper protein 
expression, enhance testosterone secretion, and increase StAR protein 
expression to mitigate testicular injury induced by Cisplatin (II), 
inhibit OS and inflammation, and restore sex hormone levels (Afsar 

FIGURE 1

Typical gut microbiota metabolites from different sources. According to different sources, these metabolites can be divided into three main types: 1. 
Metabolites directly produced by the gut microbiota from the diet: short chain fatty acids (SCFAs), polyunsaturated fatty acids (PUFAs) amino acid 
derivatives, and indole derivatives; 2. Metabolites produced by the host and modified by the gut micro- biota, secondary bile acids and hydroxysteroid 
dehydrogenases (HSDH); 3 Metabolites synthesized from novel LPS, polysaccharide A, and vitamin K, etc. The metabolites of GM may influence the 
host’s Spermatogenesis and motility.
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et al., 2022). The potential effects of tryptophan and its derivatives on 
sperm warrant further investigation.

2.4 Epigenetic modifications induced by 
GM and their impact on host physiology

The GM and epigenetic processes are dynamic and influenced by 
environmental factors and diet (Li et  al., 2022c). Epigenetic 
modifications refer to chemical alterations of certain parts of the 
genome that do not involve changes in the DNA sequence itself. These 
modifications alter the structure or modification status of DNA and 
its associated proteins, thereby regulating gene expression levels and 
functions. They include DNA methylation, histone modifications, 
chromatin remodeling, and modifications mediated by non-coding 
RNAs (Skvortsova et al., 2018; Xavier et al., 2019).

Epigenetic regulation is considered an effective mechanism by 
which the GM influences host physiological functions (Wang et al., 
2024b). GM metabolites can induce epigenetic modifications, such as 
changes in DNA methylation and micro-RNA expression. Studies 
have shown that gut microbes like lactobacilli and bifidobacteria can 
influence DNA methylation by affecting the bioavailability of folate 
they produce (Ashonibare et  al., 2024). Kumar et  al. (2014) 
demonstrated that GM dominated by Firmicutes or Bacteroidetes 
correlates with differences in the methylation status of gene promoters 
associated with cardiovascular disease.

The GM may influence sperm genetic quality and offspring health 
through effects on host gene expression and epigenetic modifications. 
These effects can manifest in various ways, including changes in DNA 
methylation patterns or regulation of histone modifications, thereby 
impacting genetic stability and phenotypic characteristics of sperm 
(Woo and Alenghat, 2022; Ashonibare et al., 2024). For instance Liu 
et al. (2022b) found that water extracts of black tea alter tissue gene 
expression through GM modulation, changing the levels of major 
epigenetic modifications (DNA methylation) and regulating 
imprinting genes’ DNA methylation in sperm of high-fat diet-fed 
mice. The impact of GM on sperm via epigenetic modifications is 
evident but requires further investigation for clarification.

2.5 GM’s role in regulating sex hormones 
and spermatogenesis

The GM influences the host’s endocrine system, including 
regulation of sex hormones by affecting the hypothalamic–pituitary-
gonadal (HPG) axis (Wang and Xie, 2022). Sex hormones are crucial 
for spermatogenesis and sperm activity, and dysbiosis of the GM may 
lead to abnormal changes in hormone levels, affecting sperm quality 
and quantity. Within the HPG axis, the hypothalamus coordinates the 
pulsatile release of gonadotropin-releasing hormone (GnRH), activating 
the pituitary-gonadal axis. GnRH stimulates the pituitary gland to 
produce luteinizing hormone (LH) and follicle-stimulating hormone 
(FSH), which are vital for male reproductive processes. LH regulates 
Leydig cell function and testosterone secretion, while FSH promotes 
germ cell division and sperm production, supporting the energy 
metabolism of testicular germ cells (Kaprara and Huhtaniemi, 2018).

The GM can modulate hormone levels through various pathways 
(He et  al., 2021). Studies by Ashonibare (Ashonibare et  al., 2024) 

suggest that the GM can directly influence the synthesis of hormone-
related enzymes and participate in the enterohepatic circulation of 
hormones, thereby affecting the hypothalamic–pituitary-testicular 
(HPT) axis. Research by Shin JH (Shin et al., 2019) indicates that men 
with higher testosterone levels have a more diverse gut microbial 
community compared to others, with abundances of Bacteroides, 
Dorea, Ruminococcus, and Clostridium significantly correlating with 
testosterone levels. Similarly, research by Yan et al. (2024) shows that 
within the male GM, species like Coprobacter, Ruminococcus2, 
Barnesiella, Actinomyces, and Bifidobacterium are negatively 
correlated with sex hormone-binding globulin (SHBG) levels, whereas 
α-Proteobacteria are positively correlated.

The GM may be  a primary regulatory factor in testosterone 
production and metabolism. Deng C (Li et  al., 2024) and others 
propose interactions between testosterone and the GM, suggesting 
testosterone may regulate spermatogenesis through the blood-testis 
barrier (BTB). Tang (Tang et  al., 2024) further supports Deng’s 
findings, showing that viscumin affects the immune microenvironment 
of the testes, downregulating serum testosterone levels in male mice 
by inhibiting Akkermansia, disrupting guanosine metabolism. 
Supplementation of guanosine restores testosterone secretion by 
repairing the BTB and serum lipopolysaccharide levels. Clostridium 
scindens American Type Culture Collection 35,704 converts primary 
bile acids into toxic secondary bile acids and converts glucocorticoids 
into testosterone by side-chain cleavage (Ridlon et  al., 2013). 
Adolescent Bifidobacterium strains with 20β-HSDH activity can alter 
glucocorticoid metabolism in the gut, potentially serving as probiotics 
for testosterone-dependent diseases (Doden et al., 2019). Poutahidis 
et al. (2014) and colleagues demonstrate that male mice fed purified 
Lactobacillus have larger testes and higher serum testosterone levels 
compared to controls. Moreover, feeding mice with Lactobacillus 
reuteri significantly increases testosterone levels after 5 months, with 
significant enhancement in seminiferous tubule cross-sectional 
profiles and interstitial cell proliferation in the testes.

Furthermore, the GM can regulate the permeability of the BTB, 
influencing hormone levels and thereby modulating sperm production 
and motility. The BTB is a critical ultrastructure in the testes 
supporting meiosis and post-meiotic spermatogenic cell development 
(Cheng and Mruk, 2012). Dysbiosis of the GM can increase 
inflammation, regulating oxidative stress-related enzyme activity, 
testosterone levels, and BTB permeability (Guo et  al., 2024). 
Al-Asmakh et al. (2014) and others demonstrate that the microbiota 
regulates BTB permeability through modulation of intercellular 
adhesion, secreting high levels of butyrate, which restores BTB 
integrity in germ-free (GF) mice and normalizes levels of cell adhesion 
proteins, with intercellular adhesion molecules (ICAMs) being critical 
regulatory molecules for spermatogenesis (Xiao et al., 2013).

3 Intervention methods: correcting 
dysbiosis of GM

3.1 Prebiotics, probiotics, and synbiotics

Prebiotics refer to specific non-digestible food components 
beneficial to humans; Probiotics are live microorganisms in the gut; and 
synbiotics is composed of a mixture of prebiotics and probiotics. 
Prebiotics can stimulate the growth and activity of beneficial gut flora 
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to improve host health. Probiotics confer health benefits to the host by 
colonizing the intestinal tract, rebalancing GM, and inhibiting the 
growth of harmful bacteria. Synbiotics offer a broader and more 
comprehensive probiotic effect through synergistic interactions of 
multiple strains (Ashonibare et al., 2024; Swanson et al., 2020; Gibson 
et al., 2017; Hill et al., 2014).Prebiotics, probiotics, and synbiotics have 
the potential to rectify dysbiosis of GM, influencing various host 
functions through colonization, pathogen eradication, and induction of 
host cell responses, thereby serving as microbial management tools to 
enhance host health (Sanders et al., 2019; Yadav et al., 2022) (Figure 2).

Supplementation with prebiotics, probiotics, and synbiotics can 
ameliorate OS and inflammation, adjust sex hormone levels, thereby 
improving sperm quality. Reshaping of GM following probiotic 
supplementation reduces proliferation of pathogenic bacteria, 
enhances intestinal barrier function, decreases oxidative stress, 
restores balance of SCFAs, and improves testicular function by 
repairing seminiferous tubule structure and increasing spermatogonial 
stem cells (Wu et  al., 2024b), while also reducing gut-derived 
inflammatory mediators circulating in the bloodstream (Cai et al., 
2023). For instance, supplementation with Lactobacillus rhamnosus 
NCDC-610 [and Lactobacillus fermentum NCDC-400 with prebiotics 
such as fructooligosaccharides (FOS)] enhances activities of catalase 
and superoxide dismutase, IL-6, IL-10, and tumor necrosis factor-
alpha (TNF-α), thereby improving oxidative stress and inflammation, 
mitigating sperm defects induced by restraint stress, and enhancing 
gut health (Akram et  al., 2023). Studies by Akram et  al. (2022), 
Dardmeh et  al. (2017), and others similarly demonstrate that 
supplementation with Lactobacillus fermentum NCDC 400 and 
Lactobacillus rhamnosus NCDC 610, Lactobacillus rhamnosus PB01, 
along with FOS, can reduce OS damage, maintain testosterone 
concentrations, restore testicular structure, and improve sperm vitality 
and motility parameters in diet-induced obesity models.

Research indicates that synbiotics (Lactobacillus paracasei + 
 arabinoxylan oligosaccharides + FOS + L-glutamine) can regulate FSH, 
LH, and testosterone levels in idiopathic oligoasthenoteratozoospermia 
patients and improve semen volume and sperm quality/quantity 
(Maretti and Cavallini, 2017). Khan et al. (2024) and others have also 
shown that supplementation with Lactobacillus rhamnosus, 
Bifidobacterium, and galactooligosaccharides can enhance immature 
male Japanese quail estrogen, testosterone, FSH, and LH steroid 
hormone receptor expression through GM modulation, increase catalase 
to improve oxidative stress, promote testicular weight, and 
gonadosomatic index (GSI). FamiLact (probiotics + prebiotics) can 
alleviate oxidative stress, improve sperm concentration, vitality, and 
abnormal morphology, and reduce sperm DNA damage (Abbasi et al., 
2021). Further research by Mahiddine et  al. (2023) indicates that 
supplementation with Lactobacillus rhamnosus for 6 weeks increases 
relative abundance of Actinobacteria, Bacillus, and Streptomyces while 
decreasing Clostridium and Enterococcus, thereby enhancing sperm 
kinetic parameters, vitality, and acrosome integrity, and upregulating 
mRNA levels of genes associated with DNA repair and antioxidation.

3.2 Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) involves transferring GM 
derived from healthy donor feces into the gastrointestinal tract of 
patients to treat dysbiosis-related diseases by altering GM composition. 

The efficacy of FMT may be linked to the specific implantation of 
donor phages (Wang et al., 2022; Liu et al., 2023). Increasingly valued 
and recognized as a novel treatment method to enhance semen 
quality, FMT has gained attention (Hao et al., 2022).

FMT has shown potential to mitigate inflammation and improve 
testicular diseases in male mice induced by GM dysbiosis from 
microplastics (MPs), thereby enhancing semen quality (Zhang et al., 
2023; Wen et al., 2022). It can also alleviate male obesity and fertility 
decline caused by a HFD by enhancing systemic and testicular 
metabolism. For instance, studies by Hao et  al. (2022), Hao et  al. 
(2022), Yan et al. (2022) and others demonstrated that modifying GM 
through FMT combined with alginate oligosaccharides (AOS) (A10-
FMT) improved reduced semen quality (sperm concentration and 
vitality) caused by a high-fat diet. A10-FMT enhanced blood 
metabolism and increased beneficial GM such as lactobacilli and 
allobacilli, including small intestinal lactobacilli, thereby elevating 
blood and/or testicular levels of butyric acid, docosahexaenoic acid 
(DHA), eicosapentaenoic acid (EPA), and testosterone, promoting 
spermatogenesis, and thereby improving sperm concentration, vitality, 
and semen quality affected by type 1 (T1D) and type 2 diabetes (T2D) 
through the gut-microbiota-testis axis (Hao et al., 2022).

Given the limitations in acceptance and reproductive feasibility of 
fecal transplantation in clinical practice, researchers have explored 
alternative approaches for FMT, such as transplanting viral groups, 
bacterial communities (e.g., phage transplantation), and fungal groups 
(e.g., Candida genus). Future advancements in FMT are anticipated to 
focus more on transplanting specific components of fecal microbiota, 
such as bacterial or viral components (Lam et al., 2022; Wu et al., 
2023; Yu et al., 2023). Consequently, future developments like fecal 
bacteriophage transplantation (FBT) and fecal virome transplantation 
(FVT) offer potential avenues to modulate GM to enhance sperm 
production and motility.

3.3 Traditional natural herbal extracts

Traditional natural herbs have been widely used in clinical 
treatment and health care in many countries and regions (Jia et al., 
2022) The GM and traditional natural herbs can interact 
synergistically, with herbs capable of modulating GM composition 
(An et  al., 2019). They enhance sperm production and motility 
through mechanisms such as elevating SCFA levels, regulating bile 
acid metabolism, reducing trimethylamine oxide production, and 
mitigating inflammatory factor release (Li et al., 2021).

Ginseng, widely used in clinical settings, is noted for its 
energizing effects and fatigue-reducing properties. Research indicates 
that ginsenosides (Zhang et al., 2024) significantly enhance bile acid 
enterohepatic circulation via the FXR/CYP7A1 pathway, restore GM 
diversity, rebalance the Firmicutes/Bacteroidetes ratio, and ameliorate 
sperm damage and density (Ji et al., 2024). Chestnut polysaccharides 
(CPs) improve the testicular microenvironment, notably increasing 
germ cell counts in seminiferous tubules, adjusting GM composition 
by enriching Firmicutes, Proteobacteria, Bacteroidetes, 
Actinobacteria, and other phyla. Studies suggest that CPs metabolize 
through steroid hormone biosynthesis to enhance sperm production 
(Sun et al., 2022; Yu et al., 2020). Rhodiola rosea glycoside (Wang 
et  al., 2023b; Wang et  al., 2024c) inhibits LPS entry into the 
circulatory system, activates SCFA receptor mRNA expression, 
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fortifies the intestinal barrier, alleviates orchitis, and enhances semen 
quality via GM regulation and metabolite adjustment. Cornus 
officinalis glycoside alleviates diabetes-induced testicular injury by 
inhibiting the AGEs-RAGE-p38 MAPK pathway, modulates 
intestinal flora, markedly reverses flora distribution, increases 
testosterone, LH, and FSH levels, and improves sperm count and 
vitality (Liu et al., 2021; Chen et al., 2016).

Cordyceps militaris, a parasitic fungus with medicinal properties, 
is utilized in food and medicine. Cordyceps polysaccharides (SeCMP) 
extracts exhibit structural diversity (Wu et  al., 2024a) and repair 
intestinal mucosal damage from LPS. By augmenting lactobacilli 
abundance while reducing Akkermansia and Bacteroidetes, SeCMP 
mitigates intestinal microbiota imbalance (Wu et al., 2022). SeCMP 
corrects metabolic disorders, enhances testosterone synthesis in mice, 

FIGURE 2

probiotics, prebiotics and synbiotics. Probiotics refer to beneficial live microorganisms that improve host health conditions. Common types include 
Lacto- bacillus acidophilus, Bifidobacterium, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus rhamnosus, and yeast such as Saccharomyces 
boulardii. Other probiotics like Streptococcus thermophilus are also recognized for their beneficial effects on host health. Prebiotics refer to food 
components that cannot be digested or absorbed by the host but can be utilized by beneficial gut bacteria, thereby promoting the growth or activity of 
probiotics. Common prebiotics include Inulin, fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), xylo-oligosac- chandes (XOS), chitosan-
oligosaccharides (COS), and pectin-oligosaccharides (POS). Synbiotics refer to products combining probiotics and prebiotics that coexist and interact 
synergistically. Synbiotics contribute to enhancing gut microbiota by delivering probiotics (live beneficial microorganisms) and prebiotics (compounds 
that foster probiotic growth).
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FIGURE 3

Potential mechanisms and intervention measures of GM influence sperm. Potential mechanisms of GM on sperm encompass immune modulation, 
inflammatory responses mediated by endo- toxins, oxidative stress, antioxidant defenses, metabolites of GM, epigenetic modifications, regulatory sex 
hormone signaling Interventions such as probiotics, prebiotics, synbiotics, FMT, and Traditional natural herbal extracts are hypothesized to rectify 
dysbiosis, offering avenues to modulate gut microbiota and enhance spermatogenesis and motility.

raises androgen levels, increases seminiferous tubule area, thereby 
boosting sperm concentration and vitality in mice (Lin et al., 2022; 
Lin et al., 2007; Huang et al., 2023). Furthermore, SeCMP decreases 
rumen cocci abundance in infertile male rats, increases Romboutsia 
abundance, lowers serum LPS levels, and enhances sperm production 
by restoring intestinal microbiota diversity and inhibiting 
epididymitis in infertile male rats (Sheng et al., 2023).Traditional 
natural herbal resources are abundant and can effectively regulate 
GM and sperm quality. There is great potential to improve sperm 
quality by regulating GM, with further exploration needed regarding 
its application value.

In addition to the aforementioned measures, improving male 
fertility through gut microbiota regulation remains an ongoing area 
of research. Modifying lifestyle habits could potentially enhance gut 
microbiota, restore its balance, and improve semen quality. Lin et al. 
have demonstrated that dietary fiber supplements can positively affect 
gut microbiota and boost SCFA production, which in turn improves 
sperm production and semen quality (Lin et al., 2022). Conversely, 
chronic alcohol consumption can disrupt gut microbiota, leading to 
metabolic disorders, increased serum endotoxins and inflammatory 
cytokines, orchitis, abnormal gene expression, and ultimately, reduced 
sperm quality (Liu et al., 2022b).

4 Conclusion and outlook

The GM exerts dual effects on sperm through endotoxin-
mediated immune and inflammatory responses, oxidative stress 
and antioxidant protection, metabolites of GM, epigenetic 
modifications, regulatory sex hormones. Prebiotics, probiotics, 
symbiotics, fecal microbiota transplantation, and Traditional 
natural herbal extracts offer potential for rectifying dysbiosis in the 
GM and regulating spermatogenesis and motility (Figure 3). Due 
to the unclear mechanisms through which specific GM and their 
metabolites influence sperm quality, methods aimed at enhancing 
male fertility by modulating the GM remain experimental, and 
clinical evidence is still needed. Future research should investigate 
the specific effects of particular GM and their metabolites on 
sperm quality, as well as explore the regulatory and mechanistic 
roles of different prebiotics, probiotics, and traditional medicines 
on GM and sperm quality. Given the influence of GM on sperm, 
continued focus on the Testis-Gut microbiota Axis is warranted, 
emphasizing interconnections and mutual impacts in future 
research directions. The diversity of GM species and the complexity 
of their mechanisms underscore the extensive journey ahead in 
this field.
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