
Frontiers in Microbiology 01 frontiersin.org

Soil microbial CO2 fixation rate 
disparities with different 
vegetation at a representative 
acidic red soil experimental 
station in China
Chao Long 1,2, Zuwen Liu 1,2,3, Renlu Liu 1, Li Yin 1, Fuxing Tan 1, 
Yian Wang 1* and Genhe He 1*
1 School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution 
Control in Red Soil Regions, Jinggangshan University, Ji’an, Jiangxi, China, 2 School of Civil and 
Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 
China, 3 School of Hydraulic & Ecological Engineering, Nanchang Institute of Technology, Nanchang, 
Jiangxi, China

Soil acidification poses a significant environmental challenge in China’s southern 
red soil regions, impacting the abundance of soil microbes and their capacity 
for carbon fixation. The effect of vegetation types on soil’s biological and abiotic 
components under acidification, and their regulatory role on the CO2 fixation 
mechanisms of soil autotrophic microorganisms, is difficult to examine. This gap 
in understanding constrains the assessment of the carbon fixation potential of red 
soils. To address this, indoor cultivation coupled with 13C stable isotope labeling 
was employed to evaluate the disparate abilities of autotrophic microorganisms 
to assimilate and store CO2 across five vegetation soils from the Qianyanzhou 
acidic red soil experimental station in China. Findings indicate that carbon fixation 
rates in these soils spanned from 4.25 to 18.15  mg C kg−1 soil d−1, with paddy field 
soils demonstrating superior carbon fixation capabilities compared to orchard, 
coniferous forest, broad-leaved forest, and wasteland soils. The 13C fixation rate 
in the 0–10  cm soil stratum surpassed that of the 10–30  cm layer across all 
vegetation types. High-throughput sequencing of 16S rRNA, following cbbL gene 
purification and amplification, identified Bradyrhizobium, Azospirillum, Burkholderia, 
Paraburkholderia, and Thermomonospora as the predominant autotrophic carbon-
fixing microbial genera in the soil. PERMANOVA analysis attributed 65.72% of 
the variance in microbial community composition to vegetation type, while soil 
depth accounted for a mere 8.58%. Network analysis of microbial co-occurrence 
suggested the soil microbial interactions and network complexity changed with 
the change of vegetation types. Additionally, multiple linear regression analysis 
pinpointed the Shannon index and soil organic carbon (SOC) content as primary 
influencers of carbon fixation rates. Structural equation modeling suggested that 
iron enrichment and acidification indirectly modulated carbon fixation rates by 
altering SOC and autotrophic bacterial diversity. This investigation shows the 
spatial dynamics and mechanisms underpinning microbial carbon fixation across 
varying vegetation types in southern China’s red soil regions.
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1 Introduction

Soil represents the most substantial carbon store within terrestrial 
ecosystems, offering vital ecosystem services, including agricultural 
productivity, water purification, and climate modulation (Anikwe and 
Ife, 2023). Soil microorganisms are pivotal in upholding soil 
functionality, thereby sustaining ecosystem services and functional 
stability, encompassing primary production and nutrient turnover 
(Banerjee et  al., 2018; Bu et  al., 2023). Post-industrial human 
endeavors have precipitated widespread soil degradation, with the 
world’s agricultural soils forfeiting approximately 133bn tonnes of 
carbon, potentially impacting ecosystem productivity and atmospheric 
CO2 levels (Sanderman et al., 2017). The principal contributors to soil 
carbon include plant detritus, root secretions, microbial biomass and 
necromass, alongside carbon fixation by autotrophic microbes (Mason 
et al., 2023). These autotrophs, as nature’s quintessential biosynthetic 
entities, are responsible for an estimated 0.6–4.9 Pg C yr−1 of CO2 
fixation, equating to 25% of total anthropogenic CO2 discharges 
(Bossio et al., 2020; Zheng Z. C. et al., 2022). Exhibiting remarkable 
adaptability across various ecosystems, they predominantly engage in 
the carbon cycle via the Calvin–Benson–Bassham (CBB) pathway, 
facilitated by the rate-limiting enzyme Rubisco (Li et al., 2020). The 
cbbL gene encodes Rubisco I’s large subunit, serving as a marker for 
carbon-fixing microbes and is extensively utilized to evaluate soil 
autotrophs’ CO2 fixation capacity (Qin et al., 2021; Bu et al., 2023). 
However, extant research has chiefly concentrated on the influence of 
land stewardship and disparate soil regions on autotrophic microbial 
communities and their CO2 fixation aptitude (Mukasa Mugerwa and 
McGee, 2017; Li et al., 2018; Zhou et al., 2019; Bu et al., 2023; Cheng 
et al., 2023), with a notable dearth of studies examining soil properties’ 
effects on autotrophic microorganisms and carbon dynamics.

Occupying 36% of China’s arable land, the red soil region is a 
critical contributor to the nation’s rice production, accounting for over 
90% of the output (Huang and Zhao, 2014). Predominantly found in 
tropical and subtropical zones, these soils are subject to frequent 
alternations of high temperatures and rainfall, leading to severe 
erosion and leaching of alkali metal ions. Consequently, this results in 
elevated concentrations of iron and aluminum oxides, culminating in 
soil acidification (Xing et al., 2022). The dissolution of stable metal 
mineral-soil organic matter (SOM) complexes by acid rain further 
influence of SOM microbial mineralization (Moore et  al., 2023). 
While prior research has concerned the interplay between autotrophic 
microorganisms, soil attributes, and various factors—including 
regional, soil type, and agricultural management influences—on these 
microorganisms’ carbon-fixation capabilities (Chu et al., 2016; Zhou 
et  al., 2019; Wang et  al., 2021), the feedback mechanisms and 
functional behaviors of autotrophic carbon-sequestering microbes in 
iron- and aluminum-rich acidic red soils remain largely uncharted.

Iron oxides can interact with soil organic carbon (SOC) in 
multiple ways: they may adsorb, complex with, and co-precipitate 
SOC, thereby enhancing its stabilization. Conversely, iron-reducing 
bacteria may facilitate dissimilatory Fe reduction, utilizing SOC and 
Fe as electron donors and acceptors, respectively, which can accelerate 
SOC decomposition (Moore et  al., 2023; Yao Y. et  al., 2023). 
Moreover, the diversity of vegetation types modulates soil 
physicochemical properties through processes such as litter 
decomposition and root exudation, subsequently affecting the 
composition and diversity of soil protozoa and microbial 

communities, as well as soil carbon-fixation rates (Bahadori et al., 
2021; Bhattacharyya et al., 2022; Spohn et al., 2023; Yao Y. W. et al., 
2023; Sun et  al., 2024). For instance, Lynn et  al. (2017) reported 
carbon-fixation rates of soil autotrophic microbes in wetland, 
grassland, and woodland soils to be 85.1, 21.9, and 32.9 mg C m−2 d−1, 
respectively. Similarly, Huang et  al. (2022) observed notable 
disparities in carbon-fixation rates between forest and grassland soils 
in the Loess Plateau. These findings underscore the influence of 
vegetation types on soil carbon-fixation rates, which are pivotal for 
projecting the carbon-fixation potential of soil autotrophic microbes 
in the red soil region. Nonetheless, the underlying mechanisms of 
this influence remain to be elucidated.

This study seeks to explore the dynamic shifts in CO2 fixation rates 
by autotrophic microorganisms within the red soil region and to 
furnish a theoretical framework for appraising the carbon-fixation 
potential of microbes across terrestrial ecosystems in the red soil 
regions of China. We examined the distribution patterns of soil carbon 
content and the CO2 fixation. Employing bacterial 16S rRNA high-
throughput sequencing, real-time fluorescent quantitative PCR, and 
stable isotope labeling techniques, we quantified the CO2 fixation 
capacities of soil autotrophic microorganisms under different 
vegetation types. Additionally, we delineated the characteristics of soil 
autotrophic microbial communities, and identified the key biotic and 
abiotic determinants influencing carbon fixation.

2 Methods

2.1 Sample collection and pre-treatment

The research site is situated at the Qianyanzhou Red Soil Hill 
Comprehensive Development Experimental Station in Jiangxi 
Province, China, which lies within the subtropical monsoon climate 
zone. The station experiences an average annual temperature of 
17.9°C and receives an average annual precipitation of 1,475 mm. The 
predominant soil type is red soil, classified as ferralsols, originating 
from red sandstone and mudstone (Shao et al., 2009; Jiang et al., 2020; 
IUSS Working Group WRB, 2022; Zhou L. et al., 2024). For this study, 
soils from five vegetation types were selected: paddy fields (PS), 
orchards (OS), wastelands (WS), broad-leaved forests (BFS, primarily 
comprising Liriodendron chinense, Liquidambar formosana Hance, 
and Cinnamomum camphora Presl), and coniferous forests (CFS, 
chiefly consisting of Cunninghamia lanceolata, Pinus elliottii 
Engelmann, and Pinus massoniana) (Supplementary Figure S1). 
Following the methodology of Bao (2000), soil samples were collected 
from three strata: 0–10 cm, 10–30 cm, and 30–50 cm. Utilizing a soil 
drill and an S-type sampling scheme, five subsamples from each depth 
were mixed into a single composite sample. This process was replicated 
for three plots per vegetation type, with each plot separated by a 
minimum of 200 m, yielding a total of 45 soil samples. Post-
homogenization, extraneous materials such as gravel and roots were 
excised, and the samples were sifted through a 2 mm sieve. Each 
sample was then bifurcated: one portion first immediately designated 
for DNA extraction and microbial sequencing, preserved at below 
−80°C ultra-low temperature refrigerator (DW-HL678D, Zhongke 
Meiling Cryogenic Technology Co., LTD., Hefei, Anhui, China); the 
other (remaining sample) reserved as the second part of the research 
material, air-dried and stored at 4°C refrigerator (BCD-539WT, Haier 
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Smart Home Co., LTD., Qingdao, Shandong, China) for subsequent 
analysis of soil physical and chemical attributes.

2.2 Soil physical and chemical properties 
analysis

The total iron (Fe) content and its various forms were quantified 
in 0.2 g of air-dried red soil, which had been passed through a 
100-mesh sieve (100 openings per inch). Following the methodologies 
outlined by Jeewani et al. (2021), different forms of Fe were extracted 
from the soil samples: free iron oxide (Fed) using the sodium disulfite - 
sodium citrate - sodium bicarbonate method, amorphous iron oxide 
(Fea) with ammonium oxalate buffer solution, and complexed iron 
oxide (Fec) via sodium pyrophosphate solution. Total Fe was extracted 
by dissolving the soil in a mixture of 5 mL 8 M HNO3, 2 mL 12 M HCl, 
and 2 mL HF. The Fe content in the extraction solution was determined 
using a flame atomic absorption spectrometer (200 series AA, 
Agilent, USA).

Soil organic carbon (SOC) was measured employing the external 
heating method with potassium dichromate. Microbial biomass 
carbon (MBC) and dissolved organic carbon (DOC) were extracted 
using the chloroform fumigation-K2SO4 method and a soil-water 
mixing procedure at a ratio of 1:5 followed by shaking centrifugation, 
respectively. The extracts were then analyzed by a total organic carbon 
analyzer (MultiC/N3100, Jena, Germany). Readily oxidized organic 
carbon (ROC) was assessed using the 333 mM KMnO4 oxidation 
method. Soil pH was measured using soil-determination of 
pH-potentiometry method (HJ 962–2018, China) with a pH meter 
(FE28, Mettler Toledo, USA) at a soil-to-water ratio of 1:2.5. Total 
nitrogen (TN) and total phosphorus (TP) were quantified using an 
elemental analyzer (Vario Max CN, Elementar, Germany) and the 
molybdenum-antimony anti-spectrophotometric method, 
respectively.

2.3 Extraction and high-throughput 
sequencing of soil DNA

The samples were used for DNA isolation in triplicate. Total DNA 
was extracted from fresh soil samples utilizing the Power Soil™ Total 
DNA Isolation Kit (Qiagen, Hilden, Germany), and its concentration 
and purity were assessed using a NanoDrop nucleic acid quantifier 
(ND-1000, Thermo Scientific, USA) based on the absorbance ratios of 
A260/A280 and A260/A230. The DNA samples were subsequently 
stored at −80°C for future analysis. The carbon fixation functional 
microbial community was characterized using cbbL primers (K2f 
(5’-ACCAYCAAGCCSAAGCTSGG-3′) and V2r (5’-GCCTTCS 
AGCTTGCCSACCRC-3′)) and analyzed via the Illumina MiSeq 
high-throughput sequencing platform (Shanghai Majorbio Bio-Pharm 
Technology Co. Ltd., Shanghai, China) (Qin et  al., 2021). Raw 
sequences underwent initial processing with Trimmomatic software 
for filtering and FLASTQ software for assembly. Subsequent quality 
control, de-noising, merging, and de-chimerization of all sequences 
were conducted using the DADA2 plug-in within Qiime 2 software. 
High-quality sequences were then clustered at a 97% similarity 
threshold into operational taxonomic units (OTUs). The most 
abundant sequence within each OTU was designated as the 

representative sequence, with a confidence threshold set at 0.7. 
Classification of bacterial 16S rRNA and cbbL gene sequences was 
performed against the silva138 and unite8.0 databases, respectively, to 
ascertain taxonomic information and relative abundance distributions 
(Tiquia et al., 2002).

2.4 Soil carbon fixation culture experiment

To initiate microbial carbon fixation activity, 50 g of dry soil 
samples, sieved through a 2 mm mesh, were placed into 500 mL 
conical flasks with rubber stoppers and pre-incubated under 
illumination at 25°C for 15 days (Ge et al., 2013). CO2 was purged 
from the flasks by injecting a synthetic air mixture (75% N2 and 25% 
O2). Subsequently, the flasks containing soil samples were divided into 
two parallel sets. One set was injected with 0.2 mL of 13C-labeled CO2, 
while the control set received 0.2 mL of 12C-CO2. The CO2 
concentration within the flasks was maintained at approximately 
400 ppm. A 40-day labeling experiment was conducted refer to 
previous studies (Miltner et  al., 2005; Huang et  al., 2022), during 
which air and 13CO2/12CO2 were periodically reintroduced every 5 days 
to maintain oxygenation and constant isotope concentration. 
Concurrently, ultra-pure water was periodically added to each flask to 
compensate for soil water evaporation. The culture room temperature 
was regulated to 25 ± 1°C from 8 am to 8 pm daily, with artificial light 
intensity sustained at 0.5 mol photons m−2 s−1; the temperature was 
adjusted to 15 ± 1°C from 8 pm to 8 am. Post-experimentation, soil 
samples were air-dried and sieved for 13C-SOC content analysis. A 
1.5 g air-dried sample was sifted through a 0.15 mm mesh, transferred 
to a 10 mL centrifuge tube, and treated with 3 mL of 2.5 mol L−1 HCl 
for 24 h to eliminate inorganic carbon. After centrifugation, the HCl 
was decanted, and the residue was rinsed twice with ultra-pure water 
to remove residual acid (Ge et al., 2013). The stable carbon isotope 
ratio (13C/C) of the soil samples was determined via isotope ratio mass 
spectrometry (MAT253, Thermo Fisher Scientific, USA) following 
HCl treatment. The 13C-SOC content and carbon-fixation rate (Rs) 
were calculated using Equations 1, 2 (Huang, 2021), respectively.

 ( ) ( )( )13C SOC SOC AT% labeled AT% unlabeled 10 − = × − ×   (1)

 
13

SR CSOC1/ S / T=  (2)

AT% (labeled) signifies the proportion of microbial carbon-
fixation isotope atoms present in labeled soil, whereas AT% 
(unlabeled) indicates the proportion of organic carbon isotope atoms 
in unlabeled soil. The carbon-fixation rate (Rs) is quantified in mg C 
kg−1 soil d−1; 13C-SOC denotes the 13C-enriched soil organic carbon 
content, measured in mg kg−1. The bottom area of the container (S), 
with a diameter of 0.05 m, is expressed in m2; T denotes the duration 
of the experiment, which was conducted over a period of 40 days.

2.5 Data analysis

Data processing was conducted using Microsoft 365 Excel, 
statistical analysis was performed with IBM SPSS 19.0, and data 
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visualization was facilitated by Origin 2022. A one-way ANOVA, 
followed by the Least Significant Difference (LSD) test and Duncan’s 
multiple range test (DMRT), was employed to discern significant 
differences in soil environmental factors and soil organic carbon 
composition across various treatments. The BioProjectID is 
PRJNA1174083  in SRA database. For the co-occurrence network 
analysis, only bacterial genera within the top 100 relative abundances 
were considered, with correlation coefficients exceeding an absolute 
value of 0.5 and p-values below 0.01 deemed statistically robust for 
network generation. Networks were visualized utilizing Gephi 
(Barberán et  al., 2012), with node size reflecting the number of 
connections (degree), node color denoting major phyla, and edges 
indicating pairwise correlations.

Non-metric Multidimensional Scaling (NMDS) based on Bray–
Curtis dissimilarity was executed to assess microbial community 
composition variances, while Analysis of Similarity (ANOSIM) tested 
the significance of microbial community differences between 
vegetation types (n = 999 permutations). A structural equation model 
elucidating the relationship between the Rs and soil autotrophic 
bacterial community, SOC, MBC, Fe, and pH was constructed using 
IBM SPSS Amos 25.0. In this model, the autotrophic bacterial 
community was represented by the Shannon index. The model 
underwent further refinement based on the algorithmic outcomes of 
the theoretical model, with a p-value greater than 0.05  in the 
chi-square test indicating a satisfactory fit with the data.

3 Results

3.1 Differences in physical and chemical 
properties of soil

The quantification of soil carbon components under various 
vegetation types revealed significant findings, as depicted in Figure 1. 
The CFS exhibited the highest SOC content in the surface layer 
(0–10 cm), registering at 18.11 g kg−1, followed by PS at 15.80 g kg−1, 
WS at 14.58 g kg−1, BFS at 13.80 g kg−1, and OS at 13.54 g kg−1. The 
highest DOC and ROC contents in the surface layer were found in PS 
(118.01 mg kg−1) and OS (2.06 g kg−1), respectively, with the lowest 
values recorded in BFS (67.77 mg kg−1) and CFS (1.41 g kg−1). A trend 
of decreasing SOC, DOC, and ROC contents with increasing soil 
depth was observed across all vegetation types. MBC content showed 
a decrease with soil depth in PS and OS, whereas an increase was 
noted in WS, BFS, and CFS.

TP and TN contents, detailed in Supplementary Table S1, were 
highest in the surface layer of PS (0.62 g kg−1 and 1.93 g kg−1, 
respectively) and exhibited a decline with increasing soil depth across 
all vegetation types. The soil layers from 0 to 30 cm in PS and OS 
demonstrated higher carbon, TP, and TN contents compared to 
WS. Soil pH levels were acidic across all sampling points, ranging 
from 4.57 to 6.27, with PS soils showing the highest pH values (5.11–
6.27) and BFS soils the lowest (4.73–4.79). Furthermore, the contents 
of Fec, Fea, and Fed varied between 0.68 to 2.90 g kg−1, 0.39 to 2.51 g 
kg−1, and 5.81 to 18.27 g kg−1 in Supplementary Table S1, respectively. 
No significant differences were observed among soil layers for Fec and 
Fea contents. The surface soil layer exhibited lower total Fe content 
compared to the deeper layers (10–50 cm) in all vegetation types, with 
the exception of WS.

3.2 13CO2 fixation rate of soil

Following a 40-day period of indoor cultivation, the 13C-SOC 
content in the soil spanned from 0.75 to 3.21 mg kg−1, as detailed in 
Supplementary Table S2. The 13C-SOC content was found to be higher 
in the 0–10 cm layer compared to the 10–30 cm layer. The ratio of 13C-
SOC to SOC fluctuated between 0.012 and 0.039%, with the 
autotrophic carbon fixation contribution to SOC in the 10–30 cm layer 
being significantly greater than that in the 0–10 cm layer. The 13C 
fixation rates across different vegetation types were ranked as follows: 
PS (0–10 cm, 18.15 mg C kg−1 soil d−1; 10–30 cm, 16.71 mg C kg−1 soil 
d−1) > OS > CFS > BFS > WS (0–10 cm, 9 mg C kg−1 soil d−1; 10–30 cm, 
4.25 mg C kg−1 soil d−1). Additionally, the 13C fixation rate in the 
0–10 cm soil layer was consistently higher than that in the 10–30 cm 
layer for all vegetation types.

3.3 Community diversity of soil 
carbon-fixation microorganisms

OTU clustering analysis disclosed a range of 488 to 1,088 OTUs 
within the sampled soils, as depicted in Figure  2a. Notably, BFS 
demonstrated a significantly higher number of OTUs in comparison 
to PS, OS, and CFS. The diversity, evenness, and richness of soil 
microbial communities, influenced by varying vegetation types, were 
quantitatively evaluated using several indices: the Chao index for 
richness, the Simpson index for evenness, and the Shannon index for 
diversity, with their respective assessments illustrated in Figures 2b–d. 
The findings indicated that both the Shannon and Chao indices 
reached their peak values in BFS soil, while the lowest values were 
recorded in CFS soil. In contrast, the Simpson index was highest in PS 
soil and lowest in BFS soil. Following a multivariate stepwise 
regression analysis (Supplementary Table S3) to identify factors 
influencing carbon fixation rates, the explanation degree of Shannon 
index for the variability of the synthesis rate of 13C-SOC was 67.07%, 
followed by SOC (35.23%), TP (8.8%), DOC (7.2%), the Simpson 
index (3.21%), and the Chao index (5.01%). The Shannon diversity 
index emerged as having the most substantial effect, and this 
observation is slated for further validation through Pearson 
correlation analysis.

3.4 Soil autotrophic microbial community 
composition and co-occurrence network

Within soil ecosystems, excluding unidentifiable entities, the 
dominant autotrophs are primarily represented by five bacterial 
groups: Proteobacteria, Actinobacteria, Armatimonadetes, 
Planctomycetes, and candidate_division_NC10. Collectively, these 
groups account for 78.2 to 90.1% of the total bacterial population, as 
illustrated in Figure 3a. The distribution of Proteobacteria is notably 
higher in CFS and BFS compared to PS, OS, and WS. In contrast, 
Actinobacteria exhibit an inverse pattern of relative abundance. At a 
finer taxonomic resolution, the top 30 autotrophic communities were 
analyzed, excluding unidentified groups. The genera Bradyrhizobium, 
Azospirillum, Burkholderia, Paraburkholderia, and Thermomonospora 
emerged as the most abundant, as depicted in Figure  3b. 
Bradyrhizobium was the most prevalent across various soil types, with 
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an abundance ranging from 16.1 to 30.0%. Azospirillum recorded its 
highest mutual abundance of 11.1% in CFS. Paraburkholderia 
demonstrated a lower relative abundance in PS, OS, and WS compared 
to BFS and CFS. Conversely, Thermomonospora’s relative abundance 
was found to be highest in PS, while it was lowest in BFS.

Non-metric Multidimensional Scaling (NMDS) was employed to 
discern the driving factors behind the disparities in microbial 
community structures. The analysis indicated a significant influence 
of vegetation type on microbial community composition (ANOSIM: 
R = 0.904, p = 0.01), as depicted in Figure  4a. Furthermore, 
Permutational Multivariate Analysis of Variance (PERMANOVA) 
attributed 65.72% of the variance to the impact of different vegetation 
types and 8.58% to soil depths on autotrophic microbial community 
composition, as detailed in Supplementary Table S5. Quantitative 
Polymerase Chain Reaction (qPCR) results demonstrated that the 
copies of cbbL functional genes in all vegetation soils spanned from 
6.4 × 107 to 1.8 × 1010 copies g−1 fresh soil (Figure 4b). In PS, OS, and 
WS, the copies of cbbL functional genes diminished with increasing 
soil depth. Conversely, in BFS and CFS, the copies of cbbL functional 
genes escalated with soil depth, corroborating the 13C fixation rate 
results presented in Supplementary Table S2.

Co-occurrence networks were generated to elucidate potential 
interactions among soil microorganisms across five vegetation types. 
The topological properties of these networks are illustrated in Figure 5. 
The collinear network associated with PS exhibited the highest edge 
density, with a network density quantified as 333 edges and a map 
density of 0.075. In contrast, WS demonstrated the lowest edge 
density. The average network width size followed the sequence: 
PS > CFS > WS > OS > BFS, as detailed in Supplementary Table S6.

3.5 Correlation between autotrophic 
microorganisms and environmental factors

Pearson correlation analysis (Figure  6) revealed that the soil 
carbon fixation rate (Rs) was significantly correlated with the Shannon 
index, TP, TN, DOC, Fec and Fea (p < 0.05). The Shannon index also 
showed significant correlations with Fea, Fed, TP, TN and DOC 
(p < 0.05). Additionally, the copies of the cbbL gene in soil was 
significantly correlated with pH (p < 0.01). The positive correlation 
between TP and Rs may be  attributed to the role of essential 
phosphorous compounds in the carbon fixation pathways of 

FIGURE 1

The distribution of (a) SOC (soil organic carbon), (b) DOC (dissolved organic carbon), (c) MBC (microbial biomass carbon), and (d) ROC (readily 
oxidized organic carbon) contents across soils associated with various vegetation types. PS, paddy fields; OS, orchards; WS, wastelands; BFS, broad-
leaved forests; and CFS, coniferous forests. Significant differences were indicated by different lowercase letters under different vegetation (p  <  0.05).
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autotrophs, including heptose 7-phosphate and D-fructose 
1,6-diphosphate in the Calvin cycle, as well as phosphoenolpyruvate 
in the rTCA and DC/4-HB cycles (Zheng Z. C. et al., 2022). Further 
Pearson correlation analysis suggested positive associations between 
SOC, the Shannon index, and Rs, indicating that SOC may enhance 
facultative autotrophic bacterial growth.

The structural equation model (SEM) further substantiated that 
Rs was influenced by SOC and autotrophs (χ2 = 7.219, df = 6, p = 0.301, 
RMSEA = 0.068, GFI = 0.952), as illustrated in Figure  7. The SEM 
elucidated that Fe indirectly affected the carbon fixation rate by 
modulating SOC, and pH indirectly impacted Rs by influencing the 
diversity of autotrophic microorganisms. Consequently, soil 
acidification may impede the carbon fixation function of bacterial 
communities (Li et al., 2021).

4 Discussion

The surface soil layer of PS and OS exhibited higher SOC, TP, and 
TN contents compared to other vegetation types, as indicated in 
Figure 1 and Supplementary Table S1. This disparity may be attributed 

to the application of inorganic or organic fertilizers, which are rich in 
nitrogen and phosphorus, on agricultural lands (Hao et al., 2019; 
Zheng F. J. et  al., 2022). Conversely, SOC, DOC, MBC, and TN 
contents in BFS and CFS were superior to those in WS and OS, which 
can be ascribed to the enhanced absorption of soil nutrients during 
plant growth in the initial stages of vegetation restoration in WS (Zhu 
et al., 2023). As a result, WS exhibited a lower nutrient content relative 
to other vegetation cover types. The elevated SOC content in BFS and 
CFS suggests that the input of forest litter may compensate for the 
nutrient depletion following plant uptake (Pan et al., 2023). However, 
the humic acid produced by litter decomposition could further reduce 
soil pH (Rahim et al., 2024). Additionally, the organic acids secreted 
by coniferous forests, such as Cunninghamia lanceolat, to solubilize 
and assimilate phosphorus from soil minerals, also contribute to the 
reduction in soil pH (Pan et  al., 2023). The highest SOC content 
recorded in CFS surface soil (18.11 g kg−1) might be correlated with 
the shallow root depth of conifers and the retention of easily 
degradable rhizosphere sediments within the topsoil (Yan et al., 2018; 
Duan P. P. et al., 2023). In contrast, broadleaf trees, which possess a 
higher root biomass, allocate more carbon from decomposable roots 
to deeper soil strata (Panchal et al., 2022), potentially explaining the 

FIGURE 2

(a) OTU number, and (b) Chao, (c) Simpson, and (d) Shannon indices for soil microorganisms across different vegetation types. The sequencing data 
for microorganisms in various soil layers (0–10, 10–30, and 30–50  cm) are consolidated in the figure, with detailed information provided in 
Supplementary Table S4.
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observed increase in MBC content in the deeper layer (0–50 cm) of 
BFS compared to CFS (Figure 1c).

Furthermore, iron plays a pivotal role in the fixation of soil 
organic carbon (Song et al., 2022). The forms of iron influence the 
accumulation and stability of soil carbon (Duan X. et al., 2023), where 
the interaction between iron minerals and organic matter may form 
an iron-soil organic carbon complex, potentially reducing the 
bioavailability of soil organic carbon to microorganisms (Herndon 
et al., 2017; Duan X. et al., 2023; Yang et al., 2023). This interaction 
may lead to enhanced carbon sequestration in deeper soils. 

Augmenting the sequestration of soil organic carbon not only 
ameliorates soil quality and fertility but also contributes to a primary 
strategy for mitigating global climate change (Nazir et al., 2024).

Environmental factors such as temperature, land use, nutrient 
content, and soil depth are significant determinants of CO2 fixation by 
soil autotrophs (Bhattacharyya et al., 2022; Zhang et al., 2023). Liao 
et al. (2020) investigated the differences in soil carbon fixation rates 
between chemically and organically fertilized farmlands, attributing 
the diminished CO2 fixation rate in chemically fertilized soils to 
decreased soil pH and increased nutrient concentrations. Additionally, 

FIGURE 3

The relative abundance of soil microorganisms at the (a) phylum and (b) genus levels across various vegetation types. The accompanying heatmap 
delineates the relative abundance of genera, employing Bray–Curtis dissimilarity and average linkage clustering for both columns and rows; no data 
transformation has been applied.

FIGURE 4

(a) OTU-based NMDS analysis; (b) the absolute abundance of copies of the soil carbon fixation functional gene cbbL.
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Li et al. (2021) posited that alterations in the soil carbon-to-nitrogen 
(C/N) ratio significantly affect the rate of soil microbial carbon 
fixation, likely due to the ratio’s facilitation of microbial growth and 
metabolism, thus enhancing microbial carbon fixation processes. This 
study demonstrated that PS could sequester more CO2, as shown in 
Supplementary Table S2, while farmland abandonment (wasteland) 
proved less conducive to soil carbon fixation. PS exhibited a higher 
rate of carbon fixation compared to other soil types, albeit lower than 
the CO2 fixation rate of Tibetan Plateau soil (18–29 mg C kg−1 soil d−1) 
reported by Zhao et al. (2018). Prior research indicates that paddy field 
soil harbors a larger fraction of obligate autotrophic bacteria and 
exhibits greater ribulose-1,5-bisphosphate carboxylase/oxygenase 
(RubisCo) enzyme activity, with its CO2 fixation rate being four times 
that of dryland and forest soils (Lynn et al., 2017; Liao et al., 2020). 
Numerous studies support the critical role of SOC in modulating 
carbon fixation rates (Bu et al., 2023), with variations in unstable soil 
organic matter altering the composition of the autotrophic bacterial 
community—specifically, the balance between obligate and facultative 
autotrophs—and thereby influencing microbial carbon fixation 
potential (Badger and Bek, 2008). Moreover, Fec and Fea are 

significantly correlated with the Rs and positively associated with SOC 
(Figure  6). Fec is likely to form complexes with simple SOC and 
organic acids via coordination bonds (Rezapour et al., 2015), while 
iron ions may act as electron acceptors for extrinsic iron reduction, 
affecting carbon fixation within autotrophic bacterial communities 
(Liu et  al., 2019). The Spearman correlation heatmap (Figure  8) 
demonstrated that eight dominant bacterial species containing the 
cbbL gene were significantly correlated with pH value (p < 0.05), likely 
due to the sensitivity of soil microorganisms, particularly bacteria, to 
changes in soil pH (Fierer et al., 2007; Raniolo et al., 2023). Moreover, 
Fe, Fec and Fea showed significant correlations with dominant 
microbial genera (p < 0.05). Spearman correlation analysis also 
revealed significant correlations of TP with Mycolicibacterium, 
Sulfitobacter, Thiobacillus, and Thermomonospora. A global meta-
analysis demonstrated that soil pH influences bacterial composition 
more strongly than spatial or climatic factors (biomes). Furthermore, 
an analysis of 942 soil bacterial genera found that only 0.8% were 
tolerant of low pH, whereas 21% were tolerant of high pH. Genera 
with an acidic pH optimum were more prevalent in humid climates 
(e.g., boreal forests, and tropical forests) (Zhou X. et al., 2024).

FIGURE 5

Microbial co-occurrence network analysis among soil microbial communities across various vegetation types.
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Soil microorganisms play a pivotal role in regulating the carbon 
budget balance at the soil-atmosphere interface through the 
assimilation of CO2 and the mineralization and decomposition of soil 

organic matter (Tao et al., 2023; Ding et al., 2024; Wu et al., 2024; Yang 
et al., 2024). It is commonly posited by researchers that CO2 fixation 
by soil autotrophic microorganisms predominantly occurs at the 
surface soil-atmosphere interface, leading to a frequent 
underestimation of the carbon fixation capacity of soil due to the 
overlooked contribution of deep soil microorganisms (Liao et  al., 
2023). An observed weak negative correlation between the abundance 
of the cbbL gene across various soil types and their CO2 fixation 
capacity (Figure  4 and Supplementary Table S2) contrasts with 
findings by Li et  al. (2021), who reported a positive correlation 
between the cbbL gene abundance and carbon fixation rates in the 
Tibetan Plateau and southern red soils. In contrast, Xiao et al. (2018) 
found no significant association between CO2 fixation capabilities and 
cbbL gene abundance in erosive watershed and agricultural soils. This 
variance may be  ascribed to the differing carbon assimilation 
potentials and metabolic strategies of autotrophs within the soil, as the 
abundance of autotrophic bacteria does not consistently correlate with 
CO2 assimilation rates (Saini et al., 2011). Multiple linear regression 
analysis has identified SOC content and the Shannon index as the 
primary factors explaining variations in microbial carbon fixation 
rates (Supplementary Table S3). While previous research has indicated 
that alterations in tillage methods and vegetation succession can 

FIGURE 6

Pearson correlation analysis matrix of soil physicochemical and community diversity parameters.

FIGURE 7

Structural equation model of factors influencing the carbon fixation 
rate.
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diminish microbial community diversity, the contrasting findings 
regarding community diversity in this study (Supplementary Table S4) 
may be  attributed to the distinct influences exerted by different 
vegetation types on microbial populations (Zhao et al., 2019; Ramírez 
et al., 2020; Schmidt et al., 2021).

Obligate and facultative autotrophic bacteria are ubiquitous 
across all five vegetation types of soil. Certain microbial 
communities, including Proteobacteria, Actinobacteria, 
Armatimonadetes, and Planctomycetes, are recognized for their CO2 
fixation capabilities, as documented in previous studies (Vlaeminck 
et  al., 2011; He et  al., 2015; Bhattacharyya et  al., 2022). The 
composition of carbon-fixing bacterial communities is known to 
vary across ecosystems; for instance, Rhodopseudomonas palustris, 
Bradyrhizobium, and Ralstonia eutropha are identified as 
predominant carbon fixation genera in wetlands (Lynn et al., 2017), 
while Sulfuritalea, Ferriphaselus, and Thiohalorhabdus dominate in 
karst region soils (Wang et al., 2021). The distinctive iron-rich and 
acidic conditions of the southern red soil region foster a unique 
carbon fixation bacterial community (Xing et al., 2022). Microbial 
co-occurrence network analysis has revealed the development and 
interactions within ecological niches, such as symbiosis, competition, 

and predation (Barberán et al., 2012; Hu et al., 2022), as depicted in 
Figure 5. PS microorganisms exhibit the most intricate co-occurrence 
network, suggesting that ecosystems with higher nutrient content 
possess enhanced stability and versatility (Wagg et  al., 2019). 
Conversely, in barren ecosystems, oligotrophic species predominate 
with minimal predation competition, resulting in weaker interaction 
relationships. The co-occurrence network displays strong positive 
correlations and few negative correlations, indicating potential 
cooperation among microbes to adapt to similar niches (Liang et al., 
2017). Facultative bacteria such as Bradyrhizobium and 
Mesorhizobium demonstrate versatile capabilities, thriving 
autotrophically via the Calvin cycle and utilizing energy from 
inorganic sources like nitrogen, sulfur compounds, and iron oxides 
(Selesi et  al., 2005; Wang et  al., 2021). Thiobacillus species, for 
example, are known to use organic substrates as electron donors and 
Fe as electron acceptors, facilitating dissimilatory Fe reduction, 
which enhances the microbial carbon utilization rate and strengthens 
the soil carbon reservoir by increasing the microbial carbon fraction 
content within the entombing effect (Liang et al., 2017; Yao Y. et al., 
2023). Additionally, Odoricaulis and Methylibium participate in 
sulfur oxidation processes, while Bradyrhizobium forms symbiotic 

FIGURE 8

Spearman correlation analysis heatmap between the dominant genus and various environmental factors.
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relationships with legumes, contributing to soil organic matter 
enhancement (Wang et al., 2021).

5 Conclusion

This study highlights the intricate interplay between soil carbon 
dynamics, microbial activity, and environmental factors in red soil 
ecosystems. The pronounced vertical variation in soil carbon content, 
which was more significant than horizontal distribution. The carbon 
fixation rate distribution revealed that PS exhibited nearly twice the 
fixation rate of WS, underscoring the important role of vegetation type 
in influencing carbon fixation. Both the Shannon index and SOC were 
key factors explaining the variability in soil carbon fixation rates 
across vegetation types. The results indicate that Fe and pH levels 
modulate carbon fixation by affecting SOC and the diversity of 
autotrophic bacterial communities. Although autotrophic carbon 
fixation contributed only 0.012 to 0.039% of total organic carbon 
within 40 days, its higher contribution in deeper soil layers emphasizes 
the importance of autotrophic carbon fixation in soils with low 
nutrient availability. Further research is needed to elucidate the 
mechanisms by which iron ions mediate microbial carbon fixation 
and facilitate the formation of stable carbon pools. These findings also 
have practical implications for sustainable agriculture and soil 
management. Targeted interventions, such as iron supplementation or 
pH regulation, could enhance microbial communities and improve 
carbon fixation. Additionally, this research supports the development 
of bio-based technologies, including microbial inoculants, to promote 
carbon storage and mitigate CO2 emissions. A comprehensive 
understanding of microbial processes under different environmental 
conditions can inform the restoration of degraded red soils and guide 
climate mitigation strategies through improved soil carbon 
management. Advanced molecular tools—such as biomarker analysis, 
metagenomics combined with DNA-stable isotope probing, 
transcriptomics, and proteomics—will be crucial for identifying the 
specific microbial processes driving carbon fixation under both 
controlled and natural conditions. This research can provide a view 
for understanding the dynamic changes in microbial autotrophic CO2 
fixation rates in the red soil regions of China.
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