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Background: Despite the advantages of endoscopic surgery in reducing trauma 
and enhancing recovery for breast cancer patients, its impact on gut microbiota, 
which is crucial for health and estrogen metabolism, remains unclear. Further 
investigation is necessary to fully understand this impact and its implications.

Materials and methods: Between June and December 2022, fecal samples 
were collected from 20 patients who underwent endoscopic surgery. The 
gut microbiota composition was determined using 16S rRNA sequencing, 
while the metabolites were analyzed through liquid chromatography-tandem 
mass spectrometry (LC-MS/MS). Bioinformatics and statistical analyses were 
employed to identify significant alterations in microbial taxa abundance and 
to assess intergroup differences. These analyses included t-tests for pairwise 
comparisons, one-way ANOVA for multiple group comparisons, and chi-square 
tests for categorical data analysis.

Results: Endoscopic surgery in breast cancer patients subtly changed gut 
microbiota diversity and composition. Post-surgery, there was a reduction in 
Lachnospiraceae, Monoglobaceae and Firmicutes to Bacteroides ratios. Shifts in 
metabolites were also observed, the changed metabolites impacted pathways 
such as primary bile biosynthesis and Ascorbate and aldarate metabolism, with 
PE(PGD1/18:1(9Z)) identified as a key differential metabolite that increased post-
surgery. Azasetron, tyramine glucuronide, DL-DOPA, phthalide, acetophenazine, 
aciclovir, creatinine bicarbonate, and 4-oxo-L-proline being associated with 
distinct bacterial taxa.

Conclusion: Breast cancer patients undergoing endoscopic surgery experience 
a shift in their gut microbiota and metabolic profiles. Therefore, postoperative 
management, with a particular focus on the adjustment of the gut microbiota, is 
crucial for enhancing patient recovery and health outcomes.
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Introduction

Breast cancer is the most prevalent form of cancer and one of the 
leading causes of death among women (Ahmad, 2019). Currently, the 
primary method of treating breast cancer is through surgical 
mastectomy (Trayes and Cokenakes, 2021; Maughan et al., 2010). 
During radical breast cancer surgery, inadequate aseptic procedures 
or a patient’s weakened immune system may result in postoperative 
complications such as wound infections and delayed wound healing 
(Sørensen et  al., 2002). In recent years, endoscopic surgery has 
emerged as a minimally invasive technique in breast surgery (Lee 
et al., 2006; Lai et al., 2016). Compared to traditional open surgery, 
endoscopic surgery offers the benefits of reduced trauma, faster 
recovery, and fewer complications (Lai et al., 2016). In particular, the 
application of endoscopic technology in breast cancer surgery has 
provided patients with more options and improved treatment 
outcomes (Lai et al., 2016). However, further research is needed to 
fully understand the health implications of endoscopic surgery.

The intestinal tract is a symbiotic environment for bacteria, and 
the gut microbiota plays a crucial role in maintaining overall body 
health (Thursby and Juge, 2017). The gut microbiota produces a vast 
array of metabolites that interact with the host (Thursby and Juge, 
2017). Breast cancer patients typically exhibit low microbial diversity 
and changes in microbial composition (Plaza-Díaz et  al., 2019). 
Specifically, breast cancer patients had been found to have elevated 
levels of Clostridiaceae, Calcobacterium faecalis, and 
Ruminalococcaceae, and lower levels of Daueriaceae and 
Hirschsprungiaceae (Fernández et  al., 2018). The degree of 
deterioration in breast cancer patients was found to be negatively 
correlated with Faecalibacterium prausnitzii and interleukin-6 levels 
(Ma et al., 2020). Additionally, research had shown that gut microbes 
are involved in estrogen metabolism, which is closely linked to the 
development of breast cancer (Parida and Sharma, 2019). However, 
the impact of gut microbiota on breast cancer prognosis remains 
largely unknown.

Studies have shown that surgery, particularly abdominal surgery, 
can disrupt the balance of gut microbiota (Guyton and Alverdy, 2017). 
This disruption can affect postoperative recovery and the incidence of 
complications by altering the gut microbiota (Lederer et al., 2021). A 
recent study has demonstrated that traditional mastectomy surgery 
can alter the composition and metabolites of gut microbiota (Fan 
et  al., 2024). Therefore, this study aims to further investigate the 
impact of endoscopic surgery on gut microbiota, as well as the 
differences between endoscopic surgery and traditional mastectomy 
surgery in terms of their effects on gut microbiota.

Materials and methods

Patients

Between June 1st, 2022 and December 1st, 2022, 20 patients with 
breast cancer underwent endoscopic surgery at the First Affiliated 
Hospital of Hainan Medical College. The patients’ ages ranged from 
18 to 60 years old, with a mean age of 48.75. Their BMI ranged from 
21.1 to 29.3, with an average of 23.12 (Table 1).

Fecal samples were collected from patients undergoing breast 
cancer endoscopic surgery prior to surgery (QJ0 group), 3 days after 

surgery (QJ3 group), and 7 days after surgery (QJ7 group). A total of 
60 samples were collected, each weighing 5 grams. After collection, 
the fecal samples were rapidly frozen in liquid nitrogen and stored in 
a refrigerator at −80°C.

DNA extraction and 16S rRNA sequencing

The CTAB technique was employed to extract genomic DNA 
from the sample, and the DNA concentration was determined using 
the Nanodrop 2000. The sample was appropriately diluted with sterile 
water to a concentration of 1 ng/μL and transferred to a centrifuge 
tube. The primers utilized for amplification of the 16S rDNA V4 
region were 515F: GTGCCAGCMGCCGCGGTAA and 806R: 
GGACTACNNGGGGTATCTAAT. The TruSeqR DNA PCR Free 
Sample Preparation Kit was utilized for library construction, which 
was subsequently quantified using the Life Invitrogen Qubit 3.0 and 
library assay. The library was sequenced using the HiSeq2500 platform 
after passing the assay.

Analysis of 16S rRNA sequencing data

All data analysis was conducted on the Majorbio platform.1 
The Flash software was utilized to achieve bipartite sequence 
splicing at the paired ends. The QIIME software was employed to 
construct water abundance tables for each taxonomy and 
determine beta diversity distances. USEARCH was utilized to 
generate OTU statistics. GreenGenes was utilized for the 
annotation of the rRNA database for comparison purposes. The 
Wilcoxon rank sum test was utilized to determine intergroup 

1 https://cloud.majorbio.com

TABLE 1 Basic information of patients.

Age 48.75 ± 10.08

BMI 23.12 ± 2.28

Height 159.14 ± 5.84

Weight 54.52 ± 5.84

Pathological type

  Non-specific invasive cancer 10

  Invasive lobular carcinoma 1

  Other invasive cancers 9

Pathological grade

  Grade III 5

  Grade II 13

  Grade I 2

Lymph node metastasis

  Transferred 9

  Not transferred 11

N = 20.
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differences. Linear discriminant analysis Effect Size (LEfSe) was 
employed to identify bacterial taxa with significant differences in 
abundance between phyla and genera (LDA >2, p < 0.05).

Comparisons of fecal metabolite profiles

To elucidate distinct fecal metabolomic profiles 
distinguishing major depressive disorder (MDD) subjects from 
healthy controls (HC), gas chromatography-mass spectrometry 
(GC-MS; Agilent 7890A coupled with 5975C) was employed. 
Resultant three-dimensional data sets—comprising retention 
time-mass-to-charge ratio (RT-m/z) pairs, sample identifiers, 
and standardized peak area proportions—were subsequently 
imported into SIMCA-P + 14.0 software (Umetrics, Umeå, 
Sweden). Principal coordinates analysis (PCoA) served as a 
visual tool for discernibly segregating before and after surgery 
samples based on their metabolomic fingerprints. For each 
metabolite, an ROC curve was constructed using binary 
classification outcomes. Area under the curve (AUC) values 
served as quantitative measures of discriminative performance, 
where AUC closer to 1 indicated superior discriminatory  
capability.

Statistical methods

The data was analyzed using statistical software SPSS21.0 and Excel. 
The measurements were presented as mean ± standard deviation. An 
independent samples t-test was employed to compare the two groups. 
One-way ANOVA was used to compare multiple groups. The chi-square 
test was used to analyze count data, with a significance level of p < 0.05.

Results

Effect of endoscopic surgery on the 
α-diversity of gut microbiota in breast 
cancer patients

To investigate the impact of endoscopic surgery on the gut 
microbiota of breast cancer patients, fecal samples were collected before 
and after surgery and analyzed using 16S rRNA sequencing (Figure 1A). 
OTU analysis revealed that the QJ0, QJ3, and QJ7 groups had 674, 597, 
and 631 OTUs, respectively. Alpha diversity analysis of the gut microbiota 
of patients 3 and 7 days after surgery showed no significant differences 
in the Ace index and Shannon index among groups. Furthermore, the 
impact of surgery on the β-diversity of gut microbiota in breast cancer 

FIGURE 1

Analysis of gut microbiota diversity and composition in breast cancer patients after endoscopic surgery. (A) Alpha-diversity analysis. (B) Beta-diversity 
analysis. (C) Phylum level. (D) Family level.
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patients was determined by PLS-DA analysis. The QJ0, QJ3, and QJ7 
groups were slightly overlapped and distinguishable (Figure 1B).

Effect of endoscopic surgery on the 
composition of gut microbiota in breast 
cancer patients

The composition of the gut microbial community in the patients 
was further investigated (Figures 1C,D). The most prevalent microbes 
at the phylum level were Firmicutes, Proteobacteria, Bacteroides, and 
Actinobacteria. Firmicutes and Proteobacteria accounted for 81.76% 
of the overall phylum abundance. Moreover, the families 
Lachnospiraceae, Enterobacteriaceae, and Ruminococcaceae were the 
most abundant, comprising more than 60% of the total. Additionally, 
the Firmicutes to Bacteroides ratios were significantly lower in the QJ3 
and QJ7 groups compared to the QJ0 group.

Analysis of differential gut microbiota

LEfSe analysis identified three distinct bacteria, including 
f__Lachnospiraceae (p-value = 0.0271), o__Lachnospirales (p-
value = 0.0271), and g__Lachnoanaerobaculum (p-
value = 0.0182) (Figure 2A).

The Kruskal–Wallis H test analysis was used to detect bacteria 
with significant differences. Lachnospiraceae (p-value = 0.0271) was 
greatly reduced, while Monoglobaceae (p-value = 0.0457) and 
norank_o__Oscillospirales (p-value = 0.0488) were significantly 
enhanced (Figure 2B).

Effect of endoscopic surgery on the 
metabolism of gut microbiota in patients 
with breast cancer

In the positive ion mode, a total of 85 different metabolites were 
identified between QJ0 and QJ3, while 153 different metabolites 
(p < 0.05) were detected between QJ0 and QJ7. In the negative ion 
mode, 44 and 67 different metabolites (p < 0.05) were found in QJ3 
and QJ7, respectively, compared to QJ0. The KEGG functional 
pathway analysis revealed that 20 signaling pathways were significantly 
enriched, including bile secretion, phenylalanine metabolism, and 
cholesterol metabolism (Figure 3A). The KEGG topology analysis 
showed that primary bile acid biosynthesis and metabolism of 
ascorbate and aldarate were significantly affected (Figure 3B).

Consequently, we adjusted the level of significant difference to 
p < 0.01, and post-hoc tests for multiple group comparisons identified 
a total of 22 differential metabolites. Heatmap analysis revealed that 
these differential metabolites could be categorized into two groups 

FIGURE 2

Analysis of differences in gut microbiota among patients with breast cancer after endoscopic surgery. (A) LEfSe multilevel species difference 
discriminant analysis. (B) Comparison of family levels among multiple groups. *Indicates the difference between groups p < 0.05. **Indicates the 
difference between groups p < 0.01.
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FIGURE 3

Analysis of metabolites in gut microbiota in patients with breast cancer after endoscopic surgery. (A) Enrichment analysis of differential metabolite 
KEGG functional pathways. (B) KEGG topology analysis. *Indicates the difference between groups p < 0.05. **Indicates the difference between groups 
p < 0.01. ***Indicates the difference between groups p < 0.001.
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(Figure  4A). The metabolites that increased post-surgery include 
azasetron, etomidate, ineketone, alpha-terpineol acetate, 
PE(PGD1/20:0), butylate, N-[(Z)-1,3-dihydroxyoctadec-4-en-2-yl]-6-
[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]hexanamide, 
PE(PGD1/18:1(9Z)), PE(PGD1/P-18:1(9Z)), annocherin A, chapso, 
jervine, veratramine, (5Z,7E)-(3S)-26,26,26-Trifluoro-27-nor-9,10-
seco-5,7,10(19)-cholestatriene-3,25-diol. The metabolites that 
decreased post-laparoscopic surgery include acetophenazine, creatinine 
bicarbonate, 4-oxo-L-proline, tyramine glucuronide, 5-amino-1-
[(2R,3R,4S,5R)-5-[(benzylamino)methyl]-3,4-dihydroxyoxolan-2-yl]
imidazole-4-carboxamide, aciclovir, DL-DOPA, phthalide.

The ROC analysis identified an important differential metabolite, 
PE(PGD1/18:1(9Z)) [AUC = 0.9103, 95% CI: (0.7913–1)], whose 
abundance gradually increased at 3 and 7 days after surgery compared 
to before surgery (Figures 4B,C).

Association study of differential 
metabolites with gut microbiota

Figure  5 delineates the correlations between 22 differentially 
expressed metabolites and the gut microbiota. The production of 
azasetron and 5-amino-1-[(2R,3R,4S,5R)-5-[(benzylamino)methyl]-
3,4-dihydroxyoxolan-2-yl]imidazole-4-carboxamide is significantly 
correlated with the presence of unclassified_c__Clostridia. The 
synthesis of tyramine glucuronide is significantly associated with 
Monoglobaceae, unclassified_c__Clostridia, Lachnospiraceae, 
Prevotellaceae, Obscuribacteraceae, and Enterobacteriaceae. The 
generation of DL-DOPA is significantly correlated with Rikenellaceae. 
Phthalide production is significantly linked to Clostridiaceae. The 
synthesis of acetophenazine and aciclovir is significantly associated 
with Enterococcaceae and Tannerellaceae. Creatinine bicarbonate 
production is significantly correlated with Lachnospiraceae and 
Acidaminococcaceae. Lastly, the production of 4-oxo-L-proline is 
significantly associated with Selenomonadaceae (see Table 1).

Discussion

Evidence from prior studies underscores the profound impact of 
surgical intervention on the intestinal ecosystem. Surgery for 
colorectal cancer has been found to modify the composition of 
bacterial groups, including bifidobacteria and lactobacilli (Zaharuddin 
et  al., 2019). Changes in perioperative microbiota during cardiac 
surgery have been shown to impact prognosis (Chernevskaya et al., 
2021). Following liver transplantation, the microbiota plays a crucial 
role in immunity and metabolism, which correlates with overall health 
(Ancona et al., 2021; Bromberg et al., 2015). Open surgeries for breast 
cancer have also been found to induce substantial alterations in the 
microbiota (Fan et al., 2024). Against this backdrop, our investigation 
specifically targets the underexplored terrain of endoscopic surgery—a 
minimally invasive approach—and its repercussions on the gut 
microbiota and metabolites.

Our current investigation solidifies the premise that endoscopic 
surgery exerts a notable effect on both the beta diversity and 
compositional profile of the gut microbiota, reaffirming surgery’s 
status as a potent modifier of gut ecology. Specifically, our results 
revealed a striking diminution in the Firmicutes to Bacteroidetes ratio 

among individuals undergoing endoscopic surgery for breast cancer. 
This finding aligns closely with observations from a study 
demonstrating reduced Firmicutes to Bacteroidetes ratios in breast 
cancer survivors versus healthy counterparts (Caleca et al., 2023), 
further underscoring surgery’s role in reconfiguring microbial 
landscapes. In a cohort with a history of chemotherapy, higher levels 
of fear of cancer recurrence were associated with lower microbial 
diversity, lower relative abundance of Firmicutes, and higher relative 
abundance of Bacteroidetes (Okubo et al., 2020). Adjuvant letrozole 
and radiotherapy resulted in a shift in the gut microbial dominance 
from Firmicutes to Bacteroidetes (Vilhais et al., 2024). Recent research 
has shown that surgery leads to a decrease in the abundance of 
Firmicutes and Lachnospiraceae (Fan et al., 2024). Therefore, our 
study enriches our comprehension of post-breast-cancer treatment 
microbiome alterations.

This study found that endoscopic surgery led to a significant 
increase in the abundance of Oscillospirales, and a reduction in the 
abundance of the Lachnospiraceae and Monoglobaceae. 
Oscillospirales are considered as potential next-generation probiotic 
candidates (Murtaza et al., 2024). Oscillospira is negatively correlated 
with obesity, obesity-related chronic inflammation, and metabolic 
diseases (Yang et  al., 2021). The abundance of Oscillospirales is 
positively correlated with low body mass index and can be used as an 
indicator for predicting the development of childhood obesity (Chen 
et  al., 2020). Members of the Lachnospiraceae family primarily 
influence the host by producing short-chain fatty acids, and converting 
primary bile acids into secondary bile acids (Cesic et al., 2023; Telle-
Hansen et al., 2022; Borton et al., 2017). Several studies have shown 
that the reduction of Lachnospiraceae is associated with various 
conditions such as allergies, inflammatory bowel disease, and 
metabolic disorders (Liu et al., 2023; Thipart et al., 2023; Huang et al., 
2023). Lachnospiraceae and its metabolite butyric acid have significant 
anti-inflammatory effects, which can regulate immune responses, 
reduce inflammatory reactions, and promote the differentiation of 
CD4+ T cells into regulatory T cells (Cesic et al., 2023; Sun et al., 2022). 
The relative abundance of Lachnospiraceae in the intestines of breast 
cancer patients decreased (Di Modica et al., 2021; Donati Zeppa et al., 
2023). A study showed that the decline in the abundance of 
Monoglobaceae bacteria in the elderly may affect their immune 
response (Gamez-Macias et al., 2024). Therefore, after breast cancer 
patients have received treatment, they may need to adjust their diet or 
use drug intervention to affect the abundance of gut microbiota after 
receiving treatment.

Our research has revealed significant shifts in gut metabolites of 
breast cancer patients after endoscopic surgery, marked by enriched 
bile secretion, cholesterol metabolism, and ascorbate and aldarate 
metabolism. Bile acids and their derivatives have been shown to 
inhibit various tumor cell lines, including colon cancer, breast cancer, 
pancreatic cancer and leukemia (Zhu et al., 2022; Wu et al., 2022; 
Wang et al., 2022). Lithocholic acid (LCA) can inhibit the adipogenesis 
of breast cancer cells and induce apoptosis of these cells through its 
putative cytotoxic effects (Kovacs et  al., 2019). Bile acids signal 
through their receptors such as farnesoid X receptor (FXR) and 
G-protein-coupled bile acid receptor 1 (TGR5) (Baumeister et al., 
2024). FXR agonism by the bile acid mimetic known commercially as 
ocaliva, or obeticholic acid, significantly reduced breast cancer 
progression and overall tumor burden in a pre-clinical model (Joseph 
et al., 2024). In breast cancer, cholesterol and its metabolites have been 
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FIGURE 4

Differential metabolite analysis. (A) Cluster analysis of differential metabolites. ROC analysis (B) and abundance (C) of differential metabolites in breast 
cancer patients after endoscopic surgery.

FIGURE 5

Correlation analysis between differential metabolites and microbiota. The right-hand side of the figure lists the names of the differential metabolites, 
while the base presents the gut microbiota. Each cell within the matrix represents the correlation between two attributes—metabolites and associated 
characteristics. The varying colors within the cells denote the magnitude of the correlation coefficients between the attributes. Asterisks indicate the 
significance of the p-values, with the following designations: *p < 0.05, **p < 0.01, and ***p < 0.001.
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found to promote tumor progression (Zeng et  al., 2024). 
Hypercholesterolemia is considered a risk factor for estrogen receptor 
positive breast cancer and is associated with decreased tumor 
response to endocrine therapy (Nelson et  al., 2013). In addition, 
obesity and altered lipid metabolism are also one of the risk factors 
for breast cancer in premenopausal and postmenopausal women, 
partly due to the effect of cholesterol on biophysical properties of cell 
membranes and the impact of these changes on signaling events 
initiated on membranes (McDonnell et  al., 2014). Cholesterol 
metabolites such as 27-hydroxycholesterol play a particularly 
significant role in breast cancer. 27-hydroxycholesterol can not only 
promote the growth of estrogen receptor-positive breast cancer cells, 
but also stimulate cell proliferation and metastasis in several breast 
cancer models (Vini et al., 2022; DeRouen et al., 2023). Furthermore, 
27-hydroxycholesterol functions as an endogenous regulator of lipid 
metabolism by interacting with nuclear liver X receptor (LXR) α and 
LXR β. It inhibits the anti-tumor immune response and recruits 
pro-angiogenic and immunosuppressive neutrophils, thereby 
promoting tumor progression (Molostvov et al., 2023; Krawczynska 
et  al., 2024). The metabolism of ascorbate and aldarate involves 
multiple proteins and metabolites, which are metabolized in the 
cytoplasm and endoplasmic reticulum. By modulating these 
pathways, the level of ascorbate can be controlled, thereby influencing 
the growth and survival of tumor cells (Sanookpan et  al., 2023). 
Ascorbic acid exerts its anticancer activity through two main 
mechanisms: induction of oxidative stress by hydrogen peroxide and 
DNA demethylation mediated by the activation of eleven translocase 
enzymes (Steers et al., 2023; Zarakowska et al., 2024). This suggests 
that ascorbic acid may have a role in cancer treatment through 
different biological pathways, including direct cytotoxic effects and 
indirect effects on genome stability (Zarakowska et  al., 2024). 
Therefore, endoscopic surgery may impact the metabolic function of 
gut microbiota in breast cancer patients, which in turn may affect 
the prognosis.

Conclusion

In conclusion, although endoscopic surgery has a certain impact 
on the intestinal microbial diversity of breast cancer patients, there is 
only a slight change in the β diversity of intestinal microorganisms 
before and after surgery. However, there is still a significant difference 
between the groups, indicating that surgery may lead to a partial 
change in the composition of microorganisms. After surgery, the 
proportion of some bacterial groups, such as Firmicutes and 
Bacteroidetes, changed significantly, especially in the QJ3 and QJ7 
groups. Furthermore, the types and quantities of metabolites produced 
by patients’ gut microbes have also changed. Although the current 
study provides us with some preliminary understanding of the impact 
of endoscopic surgery on the gut microbes of breast cancer patients, 
the specific mechanisms and long-term effects still require further 
in-depth study.
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