
Frontiers in Microbiology 01 frontiersin.org

Multi-omics analysis reveals 
interactions between host and 
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Introduction: There are complex interactions between host and gut microbes 
during weaning, many of the mechanisms are not yet fully understood. Previous 
research mainly focuses on commercial pigs, whereas limited information has 
been known about the host and gut microbe interactions in miniature pigs.

Methods: To address the issue in Bama miniature piglets that were weaned 30 
days after birth, we collected samples on days 25 and 36 for metabolomics, 
transcriptomics, and microgenomics analysis.

Results and discussion: The average daily weight gain of piglets during weaning 
was only 58.1% and 40.6% of that during 0-25 days and 36-60 days. Metabolomic 
results identified 61 significantly different metabolites (SDMs), of which, the 
most significantly increased and decreased SDMs after weaning were ectoine 
and taurocholate, respectively, indicating the occurrence of inflammation. 
Metagenomic analysis identified 30 significantly different microbes before 
and after weaning. Bacteria related to decreasing intestinal inflammation, 
such as Megasphaera, Alistipes and Bifidobacterium, were enriched before 
weaning. While bacteria related to infection such as Chlamydia, Clostridium, 
Clostridioides, and Blautia were enriched after weaning. The carbohydrate 
enzymes CBM91, CBM13, GH51_1, and GH94 increase after weaning, which 
may contribute to the digestion of complex plant fibers. Furthermore, we found 
the composition of antibiotic resistance genes (ARGs) changed during weaning. 
Transcriptomic analysis identified 147 significantly differentially expressed 
genes (DEGs). The upregulated genes after weaning were enriched in immune 
response categories, whereas downregulated genes were enriched in protein 
degradation. Combining multi-omics data, we identified significant positive 
correlations between gene MZB1, genera Alistipes and metabolite stachydrine, 
which involve anti-inflammatory functions. The reduced abundance of bacteria 
Dialister after weaning had strong correlations with the decreased 2-AGPE 
metabolite and the downregulated expression of RHBDF1 gene. Altogether, 
the multi-omics study reflects dietary changes and gut inflammation during 
weaning, highlighting complex interactions between gut microbes, host genes 
and metabolites.”
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1 Introduction

Weaning represents a pivotal stage in mammalian development, 
characterized by complex metabolic and physiological 
transformations, including the maturation of the digestive system, 
alterations in immune function, and restructuring of the gut 
microbiome (Dogra et al., 2021; Modina et al., 2021; Ames et al., 
2023). Nutritional and environmental conditions during this period 
can exert profound and long-lasting effects on health, both in animals 
and humans. A thorough understanding of these early influences is 
crucial for the development of preventive health strategies and 
interventions aimed at mitigating chronic diseases (Moeser et  al., 
2017). Importantly, weaning is also associated with an increased risk 
of diseases such as diarrhea, which can have severe consequences for 
piglets, including high mortality rates and diminished growth 
performance. Understanding the nutritional requirements and 
physiological status during weaning is thus essential for optimizing 
feeding strategies, ultimately enhancing survival and growth efficiency.

The gut microbiome, a key determinant of host health and 
disease, plays a significant role in nutrient absorption, immune 
regulation, and pathogen defense, influenced by shifts in microbial 
composition and function (Pickard et al., 2017). Weaning, a critical 
developmental milestone in the mammalian lifecycle, involves a 
significant dietary transition from liquid milk to solid food, leading 
to substantial alterations in the gut microbiome composition 
(Rodríguez et al., 2015). During breastfeeding, milk oligosaccharides 
and host-derived glycans act as unique carbon sources for the gut 
microbiome(Mach et al., 2015), while early colonizing gut bacteria 
facilitate the host’s adaptation to complex carbohydrates after weaning 
(Guevarra et al., 2018). Weaning is also associated with increased 
susceptibility to diarrhea, with studies revealing an enrichment of 
Enterobacteriaceae prior to its onset, indicating potential microbial 
biomarkers for predicting diarrheal risk (Loh et al., 2017). From birth 
to about 20 days, gut microbes fluctuate significantly (Patil et  al., 
2019; Wang et al., 2019), and this fluctuation can occur again, more 
briefly and dramatically after weaning (De Rodas et al., 2018). While 
the gut microbiota changes within a week after weaning, the initial 
changes in the microbial community after weaning are quite 
dramatic(Wei et al., 2017; De Rodas et al., 2018; Patil et al., 2019; 
Wang et al., 2019; Wang C. et al., 2021). A stable composition of the 
gut flora will appear at 14 weeks of age (O’Mahony et al., 2005) or 
even longer at 6 months (Kim et al., 2011). Investigating these short-
term shifts can enhance our understanding of how gut microbes 
rapidly respond to dietary changes, providing a basis for early 
interventions and improving their effectiveness. Furthermore, after 
weaning, microorganisms that are better adapted to a high-fiber diet 
proliferate, while some microbes become linked to intestinal 
infections and inflammatory responses.

The gut microbiome undergoes profound transformations during 
weaning, impacting the host significantly. Complex interactions exist 
between gut microbes, host metabolites and genes. Recent advancements 
in metagenomics, metabolomics, and transcriptomics have offered new 
insights into these intricate mechanisms, making this an area of intense 
research interest. Studies have demonstrated an increase in microbial 
diversity after weaning (Massacci et  al., 2020), with changes in the 
predominant bacterial populations closely correlating with dietary shifts 
(Mach et al., 2015; Guevarra et al., 2018). Certain bacterial taxa, notably 
Enterobacteriaceae, are found to proliferate post-weaning and are 

strongly associated with intestinal inflammation (Loh et al., 2017; Wang 
et al., 2019). Weaning also significantly alters the metabolic profile of 
pigs, with notable changes in amino acid, bile acid, and lipid metabolism 
(Zhao et  al., 2018). After weaning, the expression of inflammation-
related genes and immune response genes is upregulated, suggesting an 
activation of the immune system during this critical period (Tang et al., 
2022). Although numerous studies have explored the biological changes 
in weaning piglets, the mechanisms governing host-microbe-metabolite 
interactions remain inadequately understood, particularly when relying 
on individual omics datasets.

Extensive researches have investigated the effects of weaning on 
gut microbiota changes (Massacci et  al., 2020), gene expression 
regulation (Tang et al., 2022), and the complex interactions between 
gut microbiota and the host (Patil et al., 2019). However, the majority 
of these studies have been centered on commercial meat pigs. 
Compared to commercial meat pigs, miniature pigs exhibit significant 
differences in growth rate, developmental cycle, reproduction, and 
gene expression (Wang et al., 2017; Shang et al., 2018; Koo and Lee, 
2021). For instance, Koo and Lee (2021) demonstrated that miniature 
pigs have a slower growth rate and a shorter gestation period. Notable 
differences in gut microbiota composition and metabolic profiles 
have also been documented across different pig breeds (Patil et al., 
2019). Weaning represents a critical phase in the growth and 
development of pigs, and the associated alterations in gut microbiota 
and metabolites may differ substantially in Bama miniature pigs 
compared to those observed in commercial meat pigs. Bama 
miniature pigs are a unique Chinese breed, characterized by their 
small body size and early sexual maturity, and they are the most 
widely utilized pig breed for biomedical research in China, 
understanding the weaning stress on the gut microbiota and host 
metabolites and gene expression is critical to the health development 
of the Bama miniature pigs industry. Meanwhile, with the 
development of omics technologies, multi-omics approaches offer 
many advantages in elucidating complex relationships between gut 
microbiota and the host during weaning. Studies have confirmed that 
multi-omics approaches enable a systematic exploration of complex 
biological processes and mechanisms with comprehensiveness, 
reliability, and personalization (Zhong et al., 2024). In this study, 
we  utilizes a multi-omics approach, integrating metagenomic, 
metabolomic, and transcriptomic analyses to investigate the 
mechanistic interactions between gut microbiota and the host in the 
same 12 Bama miniature pigs, both before and after weaning. This 
approach will facilitate a comprehensive understanding of the 
changes occurring during weaning, thereby advancing our knowledge 
of weaning-related physiological transitions in this important 
biomedical model.

2 Materials and methods

2.1 Sample collection

Bama miniature pigs were sourced from Chengdu Dossy 
Experimental Animal Co., Ltd. Twelve piglets were from six different 
litters, with each litter one male and one female piglet. The piglets 
raised with their mothers and were nursed until weaning on day 30 
after birth. All piglets received the same diet and housing conditions, 
and they stayed in the same pens after weaning.
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The piglets are primarily breastfed before weaning, supplemented 
with creep feed (comprising extruded corn, soybean meal, fish meal, 
whey powder, dicalcium phosphate, limestone powder, sodium 
chloride, vitamins, pantothenic acid, etc.). The creep feed was 
provided twice daily at 50 g per litter for piglets. After weaning, each 
piglet was fed 50 g of creep feed daily for the first 3 days. From day 4 
to day 7 after weaning, each piglet was fed 50 g of creep feed and 25 g 
of piglet compound feed type I (comprising corn, soybean meal, corn 
germ meal, wheat flour, bran, dicalcium phosphate, limestone powder, 
sodium chloride, vitamins, etc.).

Weight of the 12 piglets were recorded at 0, 5, 25, 36 and 60 days 
after birth. Blood and fresh fecal samples were collected on days 25 
and 36. Fecal samples were collected using sterile instruments within 
10 min of defecation. Samples were directly picked up and stripped of 
the outer layer that came into contact with the collection tray, stored 
in 50 mL sterile tubes, frozen, and transported to the laboratory, then 
stored at −80°C for subsequent metagenomic analysis. Fresh blood 
samples were collected by professionals and stored in PAXgene blood 
RNA tubes. They were initially stored at −20°C for about 2 h then 
transferred to a − 80°C freezer for subsequent transcriptomic analysis. 
Serum samples were collected in coagulation-promoting tubes, gently 
inverted 4–5 times immediately after collection to mix the specimens, 
left at room temperature for 30–60 min, then centrifuged at 3000 rpm 
for 10 min. The serum was transferred to 1.5 mL centrifuge tubes and 
stored at −80°C for subsequent metabolomic analysis.

To reduce bias caused by individual difference, this study tracked 
changes in the same 12 Bama miniature piglets before and after 
weaning, and collected totaling 72 samples for the sequencing analysis. 
This finally generated 68 usable datasets for following comparison. In 
total, our study integrated results from 23 transcriptome data, 24 
metabolome data and 21 metagenome data for the following analysis. 
The dataset includes 24 serum metabolomic samples, 23 blood 
transcriptomic samples, and 21 fecal metagenomic samples. Three 
fecal samples (one from 25-day group and two from 36-day group) 
were removed for metagenomic analysis and one blood sample (from 
25-day group) were removed for transcriptomic analysis due to 
contamination, library preparation or sequencing (Supplementary  
Table S1). Corresponding study sequences diligently archived in the 
Sequence Read Archive (SRA) of the National Center for 
Biotechnology Information (NCBI) website,1 accessible under the 
BioProject designation PRJNA1147800.

This study was approved by the Ethics Committee of the College 
of Life Sciences, Sichuan University (No. SCU240521001). All sample 
collection and utility protocols were carried out in strict adherence to 
the guidelines of the Management Committee of Experimental 
Animals of Sichuan Province, China (SYXKSichuan, 2019–192).

2.2 Metabolomics analysis

2.2.1 Sample extraction and UPLC-Q-TOF 
analysis

After slow thawing at 4°C, an appropriate volume of the sample 
was mixed with pre-chilled methanol/acetonitrile/water solution 

1 https://www.ncbi.nlm.nih.gov/

(2:2:1, v/v), vortexed, ultrasonicated at low temperature for 30 min, 
left at −20°C for 10 min, and then centrifuged at 14,000 g at 4°C for 
20 min. The supernatant was vacuum-dried and reconstituted in 
100 μL of acetonitrile-water solution (acetonitrile:water = 1:1, v/v) for 
mass spectrometry analysis. After vortexing, it was centrifuged at 
14,000 g at 4°C for 15 min, and the clear supernatant was used for 
sample analysis. All samples were mixed to prepare QC (Quality 
Control) samples.

Samples were separated by Ultra-High Performance Liquid 
Chromatography (UHPLC, Agilent 1,290 Infinity LC). Throughout 
the analysis, samples were kept in an autosampler at 4°C. To minimize 
the impact of instrument detection signal fluctuations, samples were 
analyzed in a randomized order. QC samples were inserted into the 
sample queue to monitor and assess system stability and data 
reliability. After separation by the Agilent 1,290 Infinity LC system, 
samples were analyzed using a Triple TOF 6600 mass spectrometer 
(AB SCIEX) to collect primary and secondary spectra, using 
electrospray ionization (ESI) in both positive and negative ion modes.

2.2.2 Data processing
Raw data were converted to mzXML format using ProteoWizard 

and then processed with XCMS software for peak alignment, retention 
time correction, and peak area extraction. Data extracted by XCMS 
underwent metabolite structure identification and data preprocessing 
before evaluating experimental data quality and proceeding to 
data analysis.

The processed data were imported into SIMCA-P software for 
further analysis (version 14.1, Umetric, Umea, Sweden). After being 
log10 transformed, the peak intensity data were Par scaled. Differential 
metabolites were screened using both univariate and multivariate 
statistical analyses. Univariate statistical analysis visualized metabolites 
with significant fold changes (FC > 1.5 or FC < 0.67, p < 0.05) using 
volcano plots. Multivariate statistical analysis primarily involved 
orthogonal partial least squares discriminant analysis (OPLS-DA). 
The model’s fit was evaluated through 200 permutation tests. Potential 
biomarkers between groups were identified using Variable Importance 
in Projection (VIP) scores derived from OPLS-DA, with significant 
differential metabolites (SDMs) selected based on VIP > 1 and 
p <  0.05. Identified metabolites were mapped onto the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database using KEGG 
mapper (Kanehisa, 2017). KEGG pathway enrichment analysis of 
differential metabolites was performed using MSEA (Metabolite Sets 
Enrichment Analysis) (Deng et al., 2021), and a Venn diagram was 
drawn using the web application: http://jvenn.toulouse.inra.fr/app/
index.html.

2.2.3 Weighted gene co-expression network 
analysis

A co-expression network for the metabolite peak intensity matrix 
was constructed using the R package WGCNA v1.721 (Zhang and 
Horvath, 2005; Langfelder and Horvath, 2008). An initial similarity 
matrix was obtained through Pearson correlation. The appropriate 
soft-thresholding power (β) for network construction was determined 
using the “pickSoftThreshold” function within the WGCNA package. 
The “blockwiseModules” function was used to construct gene 
co-expression networks and detect genomic modules. The 
“moduleEigengenes” function calculated the module eigengenes 
(ME), representing the first principal component of gene expression 
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for a given module. Finally, the Pearson correlation coefficients 
between the module (ME) and traits (stages), between each gene and 
the module’s expression levels [module membership (MM)], and 
between each gene and the traits’ expression levels [gene significance 
(GS)] were calculated. This analysis generated a correlation matrix for 
all metabolites with stages, and metabolites significantly related to 
stages were identified using a correlation coefficient criterion of 
|r| > 0.5 and p < 0.05. Hub metabolites were selected based on gene 
significance (GS) and module membership (MM), with criteria of 
MM > 0.8 and GS > 0.2.

2.3 Metagenomics analysis

2.3.1 Sample extraction, library preparation and 
sequencing

Total DNA from fecal samples was extracted using the Tiangen 
DNA Stool Magnetic Bead Kit (Tiangen Biotech, China) according to 
the manufacturer’s protocol. DNA purity and integrity were assessed 
using 1% agarose gel electrophoresis (AGE). DNA quantification was 
performed using the Qubit® dsDNA Assay Kit on a Qubit® 2.0 
Fluorometer (Life Technologies, CA, United States).

Fecal samples underwent metagenome sequencing at Novogene 
(Beijing, China) on the Illumina NovaSeq 6,000 platform. For library 
construction, 1 μg of genomic DNA was used for library construction 
with the NEBNext® Ultra DNA Library Prep Kit for Illumina (NEB, 
USA). Then the initial quantification was conducted with Qubit 2.0, 
followed by insert size verification using the Agilent 2,100. After 
confirming the expected insert size, the effective concentration of the 
library was accurately quantified using Quantitative Real Time 
Polymerase Chain Reaction (Q-PCR) (library effective 
concentration > 3 nM) to ensure library quality. Sequencing was 
performed using the Illumina platform, with a paired-end sequencing 
length of 150 bp (PE150).

2.3.2 Data analysis
Quality control and identification. Following the acquisition of 

raw metagenome data, adapters and low-quality reads were removed 
using Trimmomatic v0.39 (Bolger et al., 2014). The Bama miniature 
pig reference genome was downloaded from NCBI (S. scrofa, 
Sscrofa11.1). High-quality reads processed were aligned to this 
reference genome, and potential host sequences were removed using 
Bowtie2 v2.5.1 (Langmead and Salzberg, 2012). The quality of the 
metagenomes was assessed using the FastQC v0.11.9. The microbial 
taxa in the fecal metagenomes were identified using Kraken2 v2.0.7 
(Wood and Salzberg, 2014). The results of Kraken2 were corrected 
using Bracken v2.9 (Lu et al., 2017) to recalculate the actual abundance 
of each classification unit based on the classification distribution and 
length distribution information output by Kraken 2.

Gene assembly, functional prediction, and quantification. 
Metagenomes were assembled using MEGAHIT v1.2.9 to obtain 
contigs longer than 300 bp (Li et al., 2015). Open reading frames 
(ORFs) were predicted from the assembled contigs using Prodigal 
v2.6.3 (Hyatt et al., 2010). A non-redundant gene set was constructed 
using CD-HIT v4.8.1 (Fu et al., 2012) with a similarity threshold of 
95% and coverage over 90%. The genes were translated into amino 
acid sequences using Biopython. Functional annotation was 
performed by aligning the amino acid sequences against protein 

databases from the Carbohydrate-Active enZYmes Database2 and the 
Comprehensive Antibiotic Resistance Database3 using Diamond 
v2.1.8.162.

Gene family abundances and microbial metabolic pathways 
were quantified using HUMAnN 3.0 v3.8 based on the 
ChocoPhlAn database (chocophlan_v296_20190) and the 
UniRef90 database (uniref90_v201901) (Suzek et al., 2007; Beghini 
et al., 2021).

Differences in microbial abundance before and after weaning were 
determined using LEfSe v1.1.2 (Linear Discriminant Analysis, 
LDA > 3, p <  0.05; Segata et  al., 2011). Significant differences in 
CAZymes, Antibiotic resistance genes, and functional pathways before 
and after weaning were identified using the Wilcoxon test with False 
Discovery Rate (FDR) for multiple testing corrections (p < 0.05 for 
CAZymes and ARGs, p < 0.01 for functional pathways).

2.4 Transcriptomics analysis

2.4.1 Sample extraction, library preparation and 
sequencing

Total RNA was extracted from blood samples using the PAXgene 
Blood RNA Kit, according to the manufacturer’s instructions. RNA 
quality was assessed using an Agilent 4,200 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, United  States). Preliminary 
quantification was performed using a NanoDrop  2000 
spectrophotometer, followed by precise concentration measurement 
with the Agilent 4,200. Blood samples with an RNA Integrity Number 
(RIN) greater than 6.0 were used for subsequent library construction 
and sequencing (sample BM12 36d had a RIN of 4.4 and was riskily 
processed for library construction).Transcriptome sequencing of 
blood samples was performed at Berry Genomics (Beijing, China) 
using the Illumina NovaSeq 6,000 platform.

2.4.2 Data analysis
Quality control and reads alignment. The quality of raw 

sequencing data was assessed using FastQC v0.12.1. The NGSQC 
Toolkit v2.3 was used to remove adapters and low-quality reads based 
on stringent criteria: removing sequences with adapters, sequences 
with more than 5% N bases, and sequences where more than 70% of 
bases with a quality score ≤ 20 were discarded (Liu et  al., 2012). 
Subsequently, a genome index was constructed for Sscrofa11.1, and 
high-quality reads were mapped to the reference genome using 
HISAT2 v2.1.0 (Kim et al., 2015). SAM files were converted to BAM 
files using SAMtools v1.19.2, and sorted.bam files were organized for 
subsequent assembly. Finally, raw read count matrices for each gene 
and transcript were obtained using featureCounts v2.0.6 (Liao et al., 
2014), and low-expression genes were removed.

High expression gene screening. Fragments Per Kilobase of exon 
model per Million mapped fragments (FPKM) and Transcripts Per 
Million (TPM) were calculated to normalize raw count data in each 
sample. Genes with a TPM ≥ 20.0 were selected as criteria for high-
expression genes. A gene with a TPM value ≥20.0  in both 

2 CAZy, http://www.cazy.org/

3 CARD, https://card.mcmaster.ca/
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before-weaning and after-weaning samples was identified as a 
commonly high-expressed gene. A gene expressed with a TPM ≥ 20.0 
only in the before-weaning or after-weaning phase was identified as a 
stage-specific high-expressed gene.

Differentially expressed gene screening. Differential expression 
analysis was conducted using the R package edgeR v4.0.3 (Robinson 
et al., 2010). The fold change (FC) was used to screen for differentially 
expressed genes (DEGs), and genes meeting the criteria of 
|log2FC| ≥ 1.5 and an FDR ≤ 0.05 were considered significantly 
differentially expressed.

Weighted gene co-expression network analysis (WGCNA) and 
hub gene selection. A co-expression network was constructed using 
the R package WGCNA. The method was consistent with the 
metabolome analysis. Hub genes were selected based on gene 
significance (GS) and module membership (MM) (MM > 0.8 and 
GS > 0.2).

Gene function enrichment analysis. Gene Ontology (GO) and 
KEGG pathway enrichment analyses were performed using g: Profiler 
to calculate the gene ratio to explore the biological functions of stage-
specific highly expressed genes, DEGs, and hub genes (Raudvere et al., 
2019). The analysis used Sus scrofa as the background species.

2.5 Correlation analysis

The correlation between microbes, genes, and metabolites was 
calculated using the R package psych v2.4.6.26, and visualization was 
performed with the R package ggplot2 v3.5.0. Cytoscape v3.10.1 was 
used to visualize interactions with a correlation coefficient greater 
than 0.8.

3 Results

3.1 Weight changes of piglets during 
weaning

We recorded the weight changes in the 12 Bama miniature piglets 
from birth to 60 days. The statics results showed that during the 
weaning period (25–36 days), the piglets had an average daily weight 
gain of 0.054 ± 0.015 kg. It was only 58.1 and 40.6% of the average 
daily weight gain in piglets of 0–25 days and 36–60 days, indicating a 
significant slowdown in growth rate during the weaning (Table 1).

3.2 Changes on serum metabolites in 
piglets during weaning

UPLC-Q-TOF-based metabolomics analysis of serum from the 
12 piglets identified 660 metabolites in positive ion mode and 
608 in negative ion mode (Supplementary Table S2). In total, the 

1,268 metabolites primarily consisted of lipids and lipid-like 
molecules (27.8%), organic nitrogen compounds (18.4%), organic 
acids and their derivatives (14.4%), and benzenoids (12.9%) 
(Figure 1A). KEGG annotations indicated that these metabolites are 
primarily involved in pathways associated with amino acid 
metabolism (e.g., valine, leucine, and isoleucine biosynthesis), lipid 
metabolism (e.g., primary bile acid biosynthesis), among others 
(Supplementary Figure S1A). Regarding relative abundance, there 
was a notable decrease in lipids and lipid-like molecules, organic 
nitrogen compounds, and organic acids and their derivatives, 
whereas benzenoids and organic oxygen compounds exhibited an 
increase after weaning (Table 2).

3.2.1 Differential metabolite before and after 
weaning

Supervised OPLS-DA revealed a clear distinction between 
metabolites from the two time points (Figure  1B), highlighting 
significant differences in the metabolic profiles of Bama miniature 
piglets before and after weaning. Differential analysis of all metabolites 
was visualized using volcano plots (FC > 1.5 or FC < 0.67, p < 0.05; 
Supplementary Figure S1B). In total, 60 significantly differential 
metabolites (SDMs) were identified between days 25 and 36 (VIP > 1 
and p < 0.05). Among these, 16 SDMs were significantly upregulated, 
while 44 SDMs were significantly downregulated post-weaning. 
Ectoine (fold change = 7.59) demonstrated the highest increase, 
whereas taurocholate (fold change = 0.12) showed the most substantial 
decrease in the piglets following weaning (Supplementary Table S3). 
Enrichment analysis of the SDMs identified five significant KEGG 
pathways (p < 0.05) that were downregulated after weaning, including 
valine, leucine, and isoleucine biosynthesis, taurine and hypotaurine 
metabolism, glycerophospholipid metabolism, pantothenate and CoA 
biosynthesis, and lysine degradation (Figure 1C).

3.2.2 Hub metabolite screening
WGCNA was employed to identify metabolites correlated with 

weaning. Metabolites were grouped into 11 modules, with three of 
these showing significant module-trait correlations with weaning 
(p < 0.05; Figure  1D). The turquoise module (r = 0.86, p = 6e-8), 
yellow module (r = 0.61, p = 0.002), and blue module (r = 0.51, 
p = 0.01) exhibited significant positive correlations with the 25-day 
group and negative correlations with the 36-day group. The turquoise 
module contained 219 metabolites (including 33 SDMs), the yellow 
module contained 178 metabolites (including 11 SDMs), and the blue 
module contained 212 metabolites (including 11 SDMs; 
Supplementary Table S4).

Combining MM > 0.8 and GS > 0.2 criteria, 82 metabolites were 
identified across the three modules, of which 24 were also SDMs and 
positively correlated with the 25-day group (hub metabolites) 
(Supplementary Table S5). Notably, 16 metabolites, such as isobutyryl-
L-carnitine, L-palmitoylcarnitine, acetyl-L-carnitine, and securinine, 
were more abundant prior to weaning, whereas 8 metabolites, 

TABLE 1 Changes in weight of the 12 piglets from 0 to 60 days after birth.

Time (after weaning) 0d 25d 36d 60d

Weight (average value/kg) 0.695 ± 0.136 3.021 ± 0.706 3.617 ± 0.868 6.804 ± 1.649

Average daily weight gain (/kg) – 0.093 ± 0.023 0.054 ± 0.015 0.133 ± 0.033
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TABLE 2 Relative abundance of metabolite superclass in piglets.

Metabolite 25d 36d Trend

Organic oxygen compounds 5.66% 6.86%

Up

Benzenoids 5.45% 6.65%

Phenylpropanoids and polyketides 0.69% 0.73%

Organosulfur compounds 0.06% 0.07%

Alkaloids and derivatives 0.05% 0.21%

Organic acids and derivatives 41.67% 40.67%

Down

Lipids and lipid-like molecules 28.00% 26.75%

Organic nitrogen compounds 6.16% 5.89%

Organoheterocyclic compounds 5.91% 5.48%

Nucleosides, nucleotides, and analogs 0.54% 0.45%

FIGURE 1

Metabolomic analysis of Bama miniature pigs before and after weaning. (A) Metabolite superclass. (B) OPLS-DA score plots of serum metabolites 
before and after weaning. (C) KEGG enrichment results of all DEMs (D) Correlation heatmap between modules and different stages (metabolites). 
(E) Abundance of hub metabolites before and after weaning.
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including stachydrine, trigonelline, ectoine, and salicylic acid, were 
more abundant post-weaning (Figure 1E).

3.2.3 Biomarker screening
Receiver Operating Characteristic (ROC) analysis of hub 

metabolites identified 15 potential biomarkers (Area Under the 
Curve, AUC > 0.9), including securinine, isobutyryl-L-carnitine, 
L-palmitoylcarnitine, DL-arginine, DL-proline, 1,2-diamino-2-
methylpropane, stachydrine, trigonelline, ectoine, L-valine, 
2,3-dihydroxybenzoic acid, phlorobenzophenone, 2′-chloro-2-
hydroxy-5-methylbenzophenone, D-proline, and alpha-
ketoisovaleric acid. Among these, 2,3-dihydroxybenzoic acid 
exhibited the highest predictive accuracy, with an AUC of 0.986 
(Supplementary Figure S1C).

3.3 Changes on gut microbiota in piglets 
during weaning

Following quality control, metagenome sequencing generated an 
average of 43,985,77 high-quality clean read pairs per sample 
(Supplementary Table S6). Rarefaction curves reached a plateau, 
confirming sufficient sequencing depth (Supplementary Figures S2A,B). 
The gut microbiota of piglets comprised 40 phyla, 1,296 genera, and 

4,141 species. At the species level, 3,752 microbial species were shared 
between piglets pre- and post-weaning, while 137 and 252 species 
were unique to piglets before and after weaning, respectively 
(Figure 2A). The gut microbiota was primarily dominated by the phyla 
Firmicutes, Proteobacteria, and Bacteroidetes, with Lactobacillus 
being the predominant genus, and Lactobacillus amylovorus the most 
dominant species (Figure 2B). Diversity analysis revealed a increase 
in richness (Figure 2C).

3.3.1 Significant differential microbes
OPLS-DA analysis revealed distinct differences in microbiota 

composition between the two time periods, indicating significant 
changes in gut microbiota during weaning (Figure  2D). LEfSe 
analysis identified 30 significantly differential genera between 
piglets at 25 days and 36 days (LDA > 3, p < 0.05; Figure  2E). 
Genera significantly enriched at 25 days included Megasphaera, 
Alistipes, Lachnoclostridium, Fusobacterium, Cloacibacillus, 
Acidaminococcus, Parabacteroides, Olsenella, Bifidobacterium, and 
Dialister. In contrast, genera significantly enriched at 36 days 
included Corynebacterium, Chlamydia, Faecalibacterium, 
Eubacterium, Collinsella, Clostridium, Clostridioides, Blautia, 
Salmonella, Laceyella, Treponema, Staphylococcus, Pediococcus, 
Anaerostipes, Staphylococcus, Novibacillus, Faecalitalea, Yersinia, 
Jiangella, Mordavella.

FIGURE 2

Analysis of the composition of the gut microbiota. (A) Venn diagram of the number of species before and after weaning. (B) Relative gut microbiota 
abundance at the phylum, genus, species level before and after weaning. (C) Alpha diversity of gut microbiota in piglets before and after weaning. 
(D) OPLS-DA plots of fecal metagenomics before and after weaning. (E) LEfSe analysis before and after weaning.
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ROC analyses of the significantly different microbes identified 
Faecalibacterium, Alistipes, Dialister, Corynebacterium as several 
potential biomarkers with AUC values greater than 0.9. Of these, 
Faecalibacterium had the largest AUC value of 0.982 
(Supplementary Figure S2C).

3.3.2 Functional changes on microbiota
After assembling the clean data (Supplementary Table S6), 

CAZyme annotation of gut microbes identified six primary 
classifications and 382 secondary classifications. Glycoside Hydrolases 
(GHs) represented the highest number of genes, with GT2, GT4, GH3, 
GH1, and GH2 being the dominant enzymes within the GH family, 
mainly involved in carbohydrate and polysaccharide breakdown 
(Supplementary Figure S3A). Both the diversity and abundance of 
CAZymes were reduced in gut microbiota after weaning 
(Supplementary Figures S3B,C). Using Wilcoxon and FDR tests 
(p < 0.05), we identified 33 CAZymes that differed significantly in 
abundance between the two groups (Figure 3A), suggesting substantial 
differences in carbohydrate digestion and absorption during weaning. 
Notably, 6 CAZymes were more abundant post-weaning, including 

CBM91, CBM13, GH51_1, CE6, GH94, and GT58, which are 
primarily associated with the digestion of complex fibers.

To identify ARGs in the gut metagenomes of Bama miniature 
pigs before and after weaning, DIAMOND was used in BLASTP 
mode (Identity 90%, Query Coverage 90%) to align ORFs with the 
CARD database. A total of 231 ARGs were identified, and OPLS-DA 
analysis indicated that samples could be clustered separately before 
and after weaning (Supplementary Figure S3D). Among them, 178 
ARGs were identified in piglets before weaning, while 207 were 
found after weaning. ARGs diversity was higher after weaning 
(Supplementary Table S7), although ARGs abundance was lower 
(Figures 3B,C). These ARGs conferring resistance to 19 antibiotics 
classes (Figure  3D), belonging to three major resistance 
mechanisms, antibiotic inactivation, antibiotic target protection, 
and antibiotic efflux (Figure  3E). Among these, glycopeptide 
antibiotic resistance was not found before weaning, while resistance 
to the other 18 antibiotic existed both before and after weaning. 
Genes related to tetracycline, aminoglycoside, beta-lactam, and 
macrolide-lincosamide-streptogramin (MLS) were more abundant 
and widely distributed than other ARGs. Tetracycline resistance 

FIGURE 3

Functional analysis of the gut microbiota. (A) Heatmap of relative abundance clustering of carbohydrate enzymes with significant differences before 
and after weaning. (B) Diversity of ARGs before and after weaning. (C) Abundence of ARGs before and after weaning. (D) Distribution of antibiotic 
classes. (E) The antibiotic resistance mechanisms of the ARGs. (F) The abundance of pathway before and after weaning. (G) The abundance of pathway 
before and after weaning.
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was the most abundant, accounting for 32 and 42% of all ARGs in 
piglets before and after weaning, respectively. After weaning, the 
abundance of antibiotic resistance genes such as tetracycline, 
aminoglycoside and peptide increased (Figure 3D).

Using the ARG risk assessment framework by Zhang et  al., 
we  categorized the identified ARGs into four risk levels: ARGs 
unrelated to humans (Rank IV), non-mobile ARGs (Rank III), ARGs 
with potential future risks but not yet present in pathogens (Rank II), 
and ARGs already found in pathogens (Rank I)(Zhang et al., 2021). 
The number of ARGs in each category was 62 (Rank IV), 44 (Rank 
III), 16 (Rank II), and 19 (Rank I) (Supplementary Table S8). Before 
weaning, 15.7% of ARGs belonged to Ranks I and II, while after 
weaning, this proportion increased to 16.4%, indicating elevated 
ARG risks after weaning(Table  3). Among the six ARGs that 
increased in Ranks I and II after weaning, five encoded resistance to 
aminoglycosides, and one to MLS.

A total of 154 ARGs were shared by both piglets, with 24 ARGs 
unique before weaning and 53 unique after weaning in piglets. Nine 
ARGs showed significant differences before and after weaning 
(Wilcoxon test and FDR, p < 0.01). Specifically, Bado_rpoB_RIF, 
Bbif_ileS_MUP, and ErmQ were more abundant before weaning, 
while AAC(6′)-Im, ANT(2″)-Ia, tet(33), tet(O), tet(O/M/O), and tet(Z) 
were significantly enriched after weaning. The significantly different 
ARGs after weaning largely conferred resistance to aminoglycosides 
and tetracyclines.

Network analysis revealed interactions between significantly 
different ARGs and microbe genus (p < 0.01; Figure 3F). ANT(2″)-Ia 
gene showed the highest degree, with significant associations with 68 
genera of microbes, primarily from bacteriophage and the phyla 
Proteobacteria and Bacteroidetes, suggesting that ANT(2″)-Ia is a 
highly mobile resistance gene. Aminoglycoside resistance genes were 
most influenced by microbial interactions, followed by tetracycline 
resistance genes. Lawsonia, Bacteroides, and Ethanoligenens were 
associated with both tet(Z) and tet(33), which may indicate that these 
genera predominantly affect the abundance of tetracycline 
resistance genes.

Functional profiling of gut bacteria using HUMAnN3 revealed 10 
pathways with significant differences between piglets before and after 
weaning (Wilcoxon test, FDR, p < 0.01). Pathways related to energy 
metabolism, including 1,4-dihydroxy-6-naphthoate biosynthesis II 
(PWY-7371), superpathway of L-tyrosine biosynthesis (PWY-6630), 
L-histidine degradation III (PWY-5030), 5,6-dimethylbenzimidazole 
biosynthesis I  (aerobic) (PWY-8131), L-glutamate degradation XI 
(PWY-8190), L-glutamate degradation V (P162-PWY), and phytate 
degradation I  (PWY-4702), were enriched prior to weaning. In 
contrast, pathways associated with infection and immune responses, 
such as norspermidine biosynthesis (PWY-6562), the superpathway 
of polyamine biosynthesis III (PWY-6565), and mycothiol 
biosynthesis (PWY1G-0), were enriched following weaning 
(Figure 3G).

3.4 Changes on the gene expression in 
piglets during weaning

Upon quality control, an average of 29,682,072 high-quality clean 
read pairs were obtained per sample (Supplementary Table S9). The 
average alignment rate of clean data to the Sscrofa11.1 reference genome 
was 97.27% (Supplementary Table S9), confirming the high alignment 
quality suitable for subsequent analyses. Principal Component Analysis 
(PCA) revealed a clear distinction in gene expression profiles between 
piglets before and after weaning (Figure 4A).

3.4.1 The highly expressed genes
Based on TPM expression levels (TPM ≥ 20), shared and 

specifically highly expressed genes were identified in piglets before and 
after weaning. A total of 197 and 477 genes were highly expressed 
specifically at 25 days and 36 days, respectively (Figure  4B). 
Enrichment analysis indicated that genes highly expressed pre-weaning 
were enriched in pathways related to intracellular anatomical 
structures, while those highly expressed post-weaning were enriched 
in immune system-related pathways (Supplementary Figure S4A).

3.4.2 Significantly differentially expressed genes
A total of 147 DEGs were identified (|logFC| > 1 and FDR < 0.05), 

with 25 upregulated and 122 downregulated after weaning 
(Figure  4C). Heatmap showed that the expression of DEGs was 
different before and after weaning (Figure 4D). A relatively large 
number of DEGs were down-regulated after weaning. 
ENSSSCG00000053814, ENSSSCG00000040986, and CORO6 were 
the top three genes that were up-regulated with the highest fold 
change after weaning, whereas the ones that were down-regulated 
with the highest fold change were IL20RB, MAFF, and TGM5. 
Among them, IL20RB was related to interleukin 20, and MAFF might 
be involved in cellular stress. Although there were some differences 
between individuals, the majority of individuals showed the same 
trend. After weaning, the upregulated DEGs were enriched in 
immune response-related categories, while downregulated DEGs 
were enriched in protein degradation categories (Figure  4E), 
suggesting complex immune responses and inflammatory might 
occur during weaning.

WGCNA identified genes correlated with weaning, grouping all 
genes into 35 modules. One module (blue module) was significantly 
correlated with weaning (Supplementary Figure S4B). This module 
contained 701 genes and was significantly positively correlated with 
the 25-day group and negatively correlated with the 36-day group 
(R2 = 0.62, p = 0.002). Filtering for MM > 0.8 and GS > 0.2, 256 genes 
were identified, of which 80 were also DEGs, potentially playing key 
roles during weaning (hub genes). Enrichment analysis of these genes 
indicated their involvement primarily in protein synthesis and 
metabolic pathways, with higher expression at 25 days compared to 
36 days (Supplementary Table S10).

TABLE 3 Risk classification at each level of the ARGs.

Risk levels I II III IV Notassessed Total

25d 17 11 38 40 72 178

36d 18 16 38 56 79 207

Total 19 16 44 62 90 231
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3.5 Correlation analysis on the SDMs, 
differential microbes, and DEGs

To explore correlations between SDMs, differential microbes, and 
DEGs, a correlation matrix was constructed using Spearman’s 
correlation coefficient. A total of 57 SDMs were significantly correlated 
with 29 differential microbial genera, resulting in 421 significant 
correlations (|r| > 0.4, p < 0.05), including 198 positive and 223 
negative correlations (Figure 5A). Furthermore, 54 SDMs showed 
significant correlations with 139 DEGs, with 4,147 significant 
correlations, comprising 3,018 positive and 1,129 negative correlations 
(Supplementary Table S11). Additionally, 27 differential microbial 
genera were significantly correlated with 147 DEGs, with 558 
significant correlations, including 467 positive and 91 negative 
correlations (Supplementary Table S12).

Notably, 6 upregulated DEGs in piglets after weaning were 
related to immune-related biological processes, among which, gene 
ENSSSCG00000033640 was significantly positively correlated with 
bacteria Alistipes, Blautia, Pediococcus and Acidaminococcus, and 
significantly negatively correlated with metabolites acetyl-l-
carnitine, DL-arginine and L-carnitine. Similarly, gene 
ENSSSCG00000041880 was significantly positively correlated with 
bacteria of genera Pediococcus, and was significantly negatively 
correlated with metabolites acetyl-l-carnitine. Gene MZB1 was 
significantly positively correlated with bacteria of genera Alistipes 
and metabolites stachydrine, indole and trigonelline. These 

metabolites and microbes were all reported to be  related to 
immune responses.

Network analysis demonstrated correlations between SDMs, 
differential microbes, and hub genes (correlation coefficient > 0.8, 
p < 0.05; Figure 5B). A total of 113 pairs of highly positively correlated 
relationships were identified. Pe 38:4, Dialister, and TD1 were the 
top-ranked SDMs, significantly different microbe, and hub gene, 
respectively. Pe 38:4 was significantly correlated with 25 hub genes, 
including TD1 and YPEL5, as well as one significantly differential 
bacterium, Dialister. Dialister was significantly correlated with four 
SDMs, including Acetylcholine and Valeric acid, and five hub genes, 
including TD1, NPRL3, PPP1R15A, RHBDF1 and 
ENSSSCG00000033037. Notably, a high correlation was found 
between the bacteria of the genus Dialister, the metabolite 2-AGPE, 
and the gene RHBDF1, all of which are reported to be associated with 
gut inflammation and they were showed downregulated in piglets 
after weaning.

4 Discussion

Weaning is a critical stage in the growth and development of pigs, 
during which significant changes occur in the intestinal microbiome, 
metabolites, and gene expression. These transformations have 
profound implications for the growth, immune function, and overall 
health of pigs. This study conducted a longitudinal analysis combining 

FIGURE 4

Transcriptomics analysis of Bama miniature pigs before and after weaning. (A) PCA plot of gene expression. (B) Venn diagrams of highly expressed 
genes (TPM ≥ 20) before and after weaning. (C) Volcano plot of DEGs. (D) Heatmap of DEGs. (E) Sankey plot of GO and KEGG enrichment results for 
DEGs (Top 10).
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multi-omics data (metabolome, transcriptome, and metagenome) in 
Bama miniature pigs before and after weaning (25 days and 36 days 
after birth), providing comprehensive data on the gut microbiota, 
metabolite profile and gene expression profile during weaning, which 
will deepen our understandings on the host-microbe-metabolite 
interactions during weaning.

4.1 Multi-omics results indicate dietary 
change and malnutrition in piglets during 
weaning

According to feeding records, all 12 piglets were separated 
from the sow at 30 days of age and subsequently fed exclusively 
with artificial feed. This dietary transition was reflected in both 
metabolomic and metagenomic analyses. Metabolomic analysis 
revealed elevated levels of lipids and lipid-like molecules, as well 
as organic acids and their derivatives, in piglets prior to weaning. 
Consistent with our results, López-López et  al. found that 
variations in dietary composition lead to changes in fatty acid 
content in human infant feces(López-López et al., 2001), likely due 
to the presence of organic acids, high fat and caloric content in 
breast milk(González et al., 2023). Similarly, Andreas et al. noted 
that breast milk is rich in lipids and phospholipids, which are key 
components of cell membranes (Andreas et al., 2015). In our study, 
the elevated levels of three carnitine esters and four phospholipids 
observed in piglets prior to weaning reflect the active metabolic 
state characteristic of neonates. Furthermore, metagenomic data 
highlighted dietary changes associated with weaning. Initially, the 
gut microbiota is relatively sparse at birth, progressively becoming 
more complex and diverse with dietary shifts. Our study supports 

this finding, demonstrating an increase in gut microbial diversity 
following weaning. This is consistent with Wang et  al., who 
reported similar trends in the intestinal microbiome of pigs at 
various developmental stages (Wang et  al., 2019). Bacteria of 
genera Bifidobacterium, known to metabolize milk 
oligosaccharides, are prevalent in human infants during 
breastfeeding (Ma et  al., 2022). Correspondingly, our study 
identified a decrease in Bifidobacterium levels following weaning. 
During the breastfeeding phase, oligosaccharides and host-derived 
glycans serve as unique carbon sources for gut microbes. Following 
weaning, early colonizing gut bacteria facilitate adaptation to 
complex carbohydrates (Al Nabhani and Eberl, 2020). In our study, 
carbohydrate-active enzymes such as CBM91, CBM13, GH51_1, 
and GH94 were observed to increase in the gut microbiota of 
piglets post-weaning, aiding in the digestion of complex 
plant fibers.

During weaning, piglets may experience a brief period of anorexia, 
which leads to reduced growth rates and intestinal inflammation 
(Pluske, 2016; Meale et al., 2017; Blavi et al., 2021). Our results on the 
daily weight gain of piglet were consistent with the conclusion, 
showing a significant slowdown in growth during weaning compared 
with that before weaning (0–25 days) and after weaning (36–60 days). 
Acute stress caused by weaning also could induce significant shifts in 
metabolite levels. González et al. reported that sudden weaning stress 
increased the demand and utilization of tyrosine, reducing its blood 
concentration (González et al., 2023). In our study, hub metabolites, 
including four amino acids and their derivatives, were decreased in 
piglets after weaning. Stress caused by weaning might slow protein 
synthesis while increasing demand and utilization, resulting in lower 
observed levels. Nie et al. found that branched-chain amino acids 
stimulate protein synthesis (Nie et al., 2018). Thus, we hypothesize 

FIGURE 5

Multi-omics analysis of interactions. (A) Heatmap summarizing the correlation of SDMs and significantly different microorganisms (*p < 0.05, 
**p < 0.01, and ***p < 0.001). (B) Network correlation between SDMs, significantly different microorganisms and hub genes.
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that the observed downregulation of branched-chain amino acid 
(BCAA) biosynthesis and degradation during weaning may be linked 
to nutritional deficiencies during this period. Additionally, 
transcriptomic analysis indicated that hub genes before weaning were 
functionally enriched in pathways associated with protein synthesis 
and metabolic processes, further suggesting a reduction in protein 
synthesis and overall growth during weaning. Changes in gut 
microbiota structure and function also support the presence of 
nutritional deficiencies in piglets during weaning, as evidenced by a 
reduction in Lachnoclostridium abundance, a genus previously shown 
to positively correlate with nutrient absorption (Kang et al., 2021). 
Furthermore, comparative functional analysis of the gut microbiome 
before and after weaning revealed significant enrichment in metabolic 
pathways such as 1,4-dihydroxy-6-naphthoate biosynthesis II, 
5,6-dimethylbenzimidazole biosynthesis I, L-histidine degradation III, 
L-glutamate degradation XI, and L-glutamate degradation V before 
weaning. Previous studies have indicated that the downregulation of 
these pathways corresponds to an increased demand for energy 
metabolism (Reiner and Levitz, 2018; Weckmann et al., 2018; Li et al., 
2021). Therefore, our results suggest that piglets experience nutritional 
deficits during the weaning phase.

In alignment with previous research indicating that the 
abundance of antibiotic resistance genes (ARGs) dynamically 
fluctuates during lactation in cow manure (Liu et al., 2019), our study 
observed ARGs changed significantly in Bama miniature piglets 
during weaning. Specifically, the diversity of ARGs increased after 
weaning, coinciding with the increased diversity of gut microbiota in 
the piglets. Greater intestinal microbial diversity implies a higher 
potential for different types of ARGs, genetic exchange, and horizontal 
gene transfer, which collectively contribute to the emergence of new 
ARGs (Pal et al., 2016). Horizontal gene transfer allows resistance 
genes to spread among strains, thereby facilitating adaptation to 
environmental changes, dietary shifts, and antibiotic pressures 
(Thomas and Nielsen, 2005). This process contributes to the rise in 
ARG prevalence and potential risk level after weaning. Our findings 
revealed an increased proportion of high-risk ARGs (Ranks I and II) 
after weaning, with aminoglycoside resistance ARGs being the main 
contributors to this change. Interaction analyses with gut microbiota 
further showed that aminoglycoside resistance ARGs exhibited the 
highest mobility, suggesting that the elevated ARG risk levels after 
weaning may be  closely related to aminoglycoside resistance. 
Tetracycline resistance, one of the most commonly reported resistance 
types in pig farms worldwide(Xiao et al., 2016; Munk et al., 2018; Van 
Boeckel et al., 2019; He et al., 2020), represented 48% of all ARGs in 
adult and finishing pigs(Wang Y. et al., 2021b). Our study similarly 
found tetracycline resistance to be the most abundant ARG, with its 
proportion increasing from 32% before weaning to 42% afterward. 
Interestingly, correlation analysis identified significant associations 
between several beneficial bacteria, such as Lawsonia and Bacteroides, 
and tetracycline resistance genes. This suggests that dietary changes 
during weaning may caused re-establishment of intestinal microbial 
homeostasis, accompanied by the introduction of additional 
resistance genes. Our study indicates that weaning represents a 
critical period for the establishment of the future resistance gene 
profile in Bama miniature pigs, warranting careful attention to dietary 
and medical interventions during this stage. It is also noteworthy that 
not all ARGs are transcriptionally active. For example, Wang et al. 
found through metagenomic and metatranscriptomic analyses that 

49.4, 66.5, and 56.6% of ARGs were expressed in the gut microbiota 
of humans, chickens, and pigs, respectively, with a significant 
proportion of ARGs remaining transcriptionally inactive (Wang et al., 
2020). While our study has extensively explored changes in ARGs 
within the gut microbiota of Bama miniature pigs during the weaning 
period, information regarding ARG expression in these bacterial 
communities is still lacking. Future research should employ 
transcriptomic analyses to further investigate the functional states 
and ecological significance of high-risk ARGs in post-
weaning environments.

4.2 Multi-omics results indicate gut 
inflammation during weaning

Emerging evidence increasingly suggests that dysbiosis of the gut 
microbiota is associated with a wide range of diseases, including 
inflammatory bowel disease (IBD), cardiovascular disease, allergies, 
diabetes, and obesity (Bownik and Stępniewska, 2016; Koh et al., 
2022). Previous studies have demonstrated a decrease in the 
abundance of genera such as Megamonas, Anaerostipes, and 
Bifidobacterium in patients with IBD (Arboleya et al., 2016; Yachida 
et al., 2019; Mager et al., 2020; Parker et al., 2020; Ren et al., 2020). In 
our study, these bacterial populations similarly decreased after 
weaning, suggesting the onset of intestinal inflammation. 
Furthermore, Lachnoclostridium and Acidaminococcus are known to 
ferment polysaccharides and amino acids to produce short-chain 
fatty acids (SCFAs), such as butyrate and acetate, which play crucial 
roles in promoting the growth of intestinal epithelial cells, enhancing 
intestinal barrier function, and maintaining the integrity of the 
intestinal wall (Zhao et al., 2021). In our study, a decline in these 
beneficial microbes in piglets post-weaning implies potential 
disruption of intestinal integrity and the occurrence of inflammation. 
Moreover, our findings indicate that bacterial taxa related to 
pathogenicity, such as species of the genera Chlamydia, Clostridioides, 
Corynebacterium, Clostridium, and Pseudomonas, were enriched in 
piglets after weaning. Numerous studies have shown that the presence 
of these genera is typically indicative of infection (Rao and Malani, 
2020; Shirley et  al., 2023). Additionally, GH94 family enzymes, 
recognized for their anti-inflammatory and antioxidant properties 
(Gao et al., 2019), were found to increase in abundance in piglets after 
weaning, further suggesting an inflammatory response triggered by 
weaning. Functional enrichment analysis revealed that the 
superpathway of polyamine biosynthesis III was significantly 
enriched in piglets post-weaning, a pathway that is known to 
be  involved in microbial adaptation to diverse physiological and 
environmental stresses (Wagner et al., 2021).

Both transcriptomic and metabolomic analyses support the 
hypothesis of inflammation occurring in piglets during the weaning 
period. DEGs upregulated in piglets after weaning were functionally 
enriched in complex immune and inflammatory biological processes 
(Figure 4E). One such gene, MZB1, is known to suppress inflammation 
by modulating mitochondrial function or enhancing antibody 
secretion (Xiong et al., 2019; Zhang et al., 2020; Ricci et al., 2021). The 
upregulation of MZB1 expression post-weaning further supports the 
occurrence of inflammation in piglets. In metabolomic analysis, 
ectoine was identified as one of the most significantly upregulated 
metabolites, while taurocholate was significantly downregulated. 
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These metabolites suggest the presence of intestinal inflammation and 
may also imply adverse effects on the digestive system following 
weaning (Bownik and Stępniewska, 2016; Koh et  al., 2022). 
Furthermore, the downregulation of taurine and hypotaurine 
pathways after weaning may be linked to the inflammatory response, 
as studies have suggested that under certain disease conditions or 
severe stress, the demand for these compounds increases while their 
synthesis may be impaired (Singh et al., 2023).

4.3 Complex interactions between 
host-microbes-metabolites during 
weaning

Correlation analysis based on multi-omics data elucidated 
intricate interactions among genes, microbes, and metabolites in 
piglets undergoing weaning. Notably, there were significant 
correlations identified between the gene MZB1, the bacterial genus 
Alistipes, and the metabolite stachydrine. After weaning, the 
expression of the MZB1 gene and the concentration of stachydrine 
were all upregulated, and the relative abundance of Alistipes decreased 
in piglets. The MZB1 gene encodes the marginal zone B and B1 cell-
specific protein, which has been shown to enhance the secretion of 
IgA immunoglobulin and plays a critical role in mitigating gut 
inflammation (Xiong et al., 2019). Stachydrine, a metabolite with anti-
inflammatory and antioxidant properties (Liao et al., 2023). Alistipes 
are known to decrease when colitis occurs (Parker et  al., 2020). 
Dietary changes associated with weaning stress can trigger changes in 
the intestinal environment, and reductions in Alistipes may impair 
intestinal epithelial barrier function, leading to elevated levels of 
intestinal inflammation in pigs. The observed upregulation of the 
MZB1 gene represents a response to alleviate this stress. The increased 
expression of MZB1 may activate metabolic pathways that facilitate 
the synthesis of stachydrine, thereby contributing to the reduction of 
inflammation. This study emphasizes that weaning stress activates a 
network of genes, microbes, and metabolites, which collectively 
contribute to an adaptive response to both external and internal 
changes. However, the precise mechanisms underlying the interactions 
among MZB1, Alistipes, and stachydrine remain unknown and 
warrant further investigation.

Additionally, network analysis identified bacteria of the genus 
Dialister as having the highest degree of connectivity. The abundance 
of Dialister was reduced in piglets after weaning, and it exhibited 
strong correlations with the downregulation of the 2-AGPE metabolite 
and decreased expression of the RHBDF1 gene. Previous research by 
Joossens et al. noted ecological dysregulation and a reduction in the 
abundance of Dialister in patients with Crohn’s disease (Fukui, 2019). 
The arachidonic acid moiety of 2-AGPE serves as a precursor for the 
synthesis of a variety of biologically active lipids, including 
prostaglandins and leukotrienes, which are key mediators of 
inflammatory and immune responses (Trostchansky et al., 2021). The 
RHBDF1 gene has been implicated in the activation of epidermal 
growth factor receptor (EGFR)-mediated cell growth signals, as well 
as other activities that are essential for cellular responses under 
stressful conditions (Ji et al., 2022). Moreover, silencing the RHBDF1 
gene has been found to suppress inflammatory responses (Gao et al., 

2021). We propose that interactions among Dialister, 2-AGPE, and 
RHBDF1 may play a pivotal role in modulating the response to dietary 
changes and gut inflammation during weaning, though the detailed 
mechanisms require further elucidation.

5 Conclusion

Bama miniature pigs are the most widely used porcine model 
animals in China. With the multi-omics technology, this study found 
significant changes in the growth rate, gut microbiota, metabolites, 
and gene expression in Bama miniature pigs during weaning. 
Specifically, the reduction in metabolites of lipids and lipophilic 
molecules, the downregulated abundance of bacteria Bifidobacterium, 
and the increase of microbial carbohydrate enzymes were associated 
with the digestion of complex fibers, reflecting the dietary changes 
during weaning. Meanwhile, the beneficial bacteria such as 
Bifidobacterium reduced and bacteria Chlamydia associated with 
infection increased after weaning, indicating the occurrence of 
intestinal inflammation. The differential expression genes before and 
after weaning significantly enriched in immune and inflammatory 
pathways, and the significant changed metabolites, ectoine and 
taurocholate, were related to inflammation. Both results further 
support the inflammation in intestine during weaning. We found the 
composition and abundance of ARGs changed during weaning. 
Among the ARGs, tetracycline resistance was most abundant, 
accounting for 32 and 42% of all ARGs before and after weaning, 
respectively. Combining multi-omics data, we identified significant 
correlations between gene MZB1, genera Alistipes and metabolite 
stachydrine; and correlations between bacteria Dialister, 2-AGPE 
metabolite and RHBDF1 gene. Our study reveals complex 
interactions between gut microbes and host in response to the 
weaning stress in the Bama miniature pigs, providing scientific 
foundation for the development of health treatment strategies in 
miniature pig breeding. The results provide preliminary evidence for 
understanding the interactions between microbes and hosts during 
the weaning period, laying a foundation for future research with 
larger sample sizes. However, given the limited sample size of this 
study, further researches with more individuals and longer time 
periods are needed to validate and expand upon the findings of 
this study.
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