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Over the past decade, the prevalence of inflammatory bowel disease (IBD) has 
significantly increased, making early detection crucial for improving patient survival 
rates. Medical research suggests that changes in the human gut microbiome are 
closely linked to IBD onset, playing a critical role in its prediction. However, the 
current gut microbiome data often exhibit missing values and high dimensionality, 
posing challenges to the accuracy of predictive algorithms. To address these 
issues, we proposed the comprehensive data optimization and risk prediction 
framework (CDORPF), an ensemble learning framework designed to predict IBD 
risk based on the human gut microbiome, aiding early diagnosis. The framework 
comprised two main components: data optimization and risk prediction. The data 
optimization module first employed triple optimization imputation (TOI) to impute 
missing data while preserving the biological characteristics of the microbiome. 
It then utilized importance-weighted variational autoencoder (IWVAE) to reduce 
redundant information from the high-dimensional microbiome data. This process 
resulted in a complete, low-dimensional representation of the data, laying the 
foundation for improved algorithm efficiency and accuracy. In the risk prediction 
module, the optimized data was classified using a random forest (RF) model, and 
hyperparameters were globally optimized using improved aquila optimizer (IAO), 
which incorporated multiple strategies. Experimental results on IBD-related gut 
microbiome datasets showed that the proposed framework achieved classification 
accuracy, recall, and F1 scores exceeding 0.9, outperforming comparison models 
and serving as a valuable tool for predicting IBD onset risk.
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1 Introduction

Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn’s 
disease (CD), is a group of chronic inflammatory disorders of the gastrointestinal tract (Flynn 
and Eisenstein, 2019). IBD is associated with an increased risk of intestinal malignancies (Faye 
et al., 2022), and it can also lead to complications involving the joints, skin, eyes, and central 
nervous system (Rogler et al., 2021). Additionally, patients with IBD frequently experience 
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comorbid depression and anxiety (Bisgaard et al., 2022). Although no 
specific pathogen has been definitively implicated in the etiology of 
IBD, a growing body of evidence suggests a significant association 
between the human gut microbiome and the development of IBD 
(Kostic et al., 2014).

The development of high-throughput sequencing technologies 
has enabled researchers to capture a comprehensive snapshot of the 
microbial community of interest (Almeida et al., 2019). Among these, 
16S rRNA gene sequencing stands out as an efficient and cost-effective 
method for identifying and classifying bacteria and archaea within 
microbial populations (Johnson et al., 2019).

Although new technologies have significantly enhanced our 
ability to characterize the human gut microbiome and its potential in 
predicting IBD, several key challenges remain in effectively utilizing 
these data to construct predictive models. Firstly, due to the high-
dimensional sparsity of microbiome data and the limitations of 
sequencing technologies, data missingness is a prevalent issue. Most 
current studies employ simple mean imputation, zero-filling methods 
or K-nearest neighbors (KNN) imputation (Liñares-Blanco et  al., 
2022), which fail to adequately capture the intrinsic structure and 
complex relationships within the data, potentially leading to decreased 
model performance. While multiple imputation by chained equations 
(MICE) is widely utilized for data imputation, it possesses several 
constraints. Its performance could be considerably influenced if the 
data fails to meet the assumption of missing completely at random 
(MCAR) (Azur et al., 2011). Furthermore, MICE is susceptible to the 
selection of model parameters (Doove et al., 2014), particularly with 
non-linear relationships or interactions, which might result in less 
reliable imputation outcomes. The approach also brings in uncertainty, 
as the results may vary across different datasets or subsets of the same 
dataset. Most crucially, MICE is inclined to overfitting when dealing 
with high-dimensional data (Tang and Ishwaran, 2017). Hence, 
considering the high-dimensional characteristic of gut microbiome 
data, MICE might not be the optimal choice for imputation in this 
context. Secondly, the human gut microbiome involves thousands of 
genes or microbial features, many of which are irrelevant or noisy, 
obscuring the relationship between key features and health, leading to 
overfitting. High-dimensional risk factors increase computation time 
(Wang et al., 2023a), and complex interrelationships reduce prediction 
accuracy. In situations with a small sample size, a large number of 
features can lead to the curse of dimensionality, rendering the data 
sparse within the feature space. 

A review (Armstrong et  al., 2022) evaluates dimensionality 
reduction techniques for microbiome data, including principal 
component analysis (PCA), non-metric multidimensional scaling 
(nMDS), t-SNE and UMAP. PCA and nMDS are not suitable for 
handling sparse data, whereas t-SNE and UMAP, although effective in 
capturing non-linear patterns, are highly sensitive to parameter 
settings, making their results less reliable and harder to reproduce.
Additionally, some studies have also explored nonlinear techniques 
such as Variational Autoencoders (VAE) (Rezende et al., 2014), which 
introduce probabilistic generative models and nonlinear 
transformations to achieve more representative low-dimensional 
representations (Li et al., 2020). However, these models encounter 
challenges such as training instability, slow convergence, and the issue 
of vanishing gradients when dealing with ultra-high-dimensional 
datasets. Thirdly, individual machine learning models exhibit variable 
performance across different datasets, resulting in inconsistent 

predictions and limited generalization (Ansarullah and Kumar, 2019). 
While deep learning models can enhance prediction accuracy, they 
require substantial data, computational resources and face challenges 
in multi-dimensional data processing (Yekkala et al., 2017). Ensemble 
learning has yielded promising results across various prediction tasks 
(Peng et  al., 2023; Kalaiselvi and Geetha, 2024). Similarly, it has 
demonstrated efficacy in predicting the risk of IBD (Alfonso Perez and 
Castillo, 2023). Studies have shown that random forest (RF), as an 
ensemble learning method, performs exceptionally well in predicting 
IBD. One study demonstrated that RF model based on laboratory 
markers exhibit high accuracy in classifying IBD, particularly 
achieving AUC values of 97% for Crohn’s disease and 91% for 
ulcerative colitis (Kraszewski et al., 2021). A study developed a RF 
model using baseline clinical and serological parameters, achieving an 
AUC of 0.90 to successfully predict CD patients’ response to IFX 
treatment, outperforming a logistic regression model (Li et al., 2021). 
Moreover, research by Alfonso Perez and Castillo (2023) further 
confirmed that RF models excel in handling complex medical data, 
making them an excellent choice for IBD prediction, outperforming 
many other commonly used machine learning algorithms. In addition, 
hyperparameter settings significantly impact ensemble learning model 
accuracy. Traditional hyperparameter optimization methods like 
random search (RS) and grid search (GS) are computationally 
intensive (Hutter et  al., 2019), while Bayesian optimization (BO) 
(Chen et al., 2023) and particle swarm optimization (PSO) (Wang 
et  al., 2023b), and Gray Wolf optimization (GWO) (Mafarja and 
Mirjalili, 2017) can get trapped in local optima. Direct use of aquila 
optimizer (AO) (Abualigah et al., 2021) also risks local optima issues.

To address these issues, we  proposed the CDORPF, a 
comprehensive data optimization and risk prediction framework. This 
framework was divided into two main modules: data optimization and 
risk prediction. In the data optimization module, we first employed 
triple optimization imputation (TOI) to impute missing data while 
preserving the biological characteristics of the gut microbiome data. 
Next, we introduced the importance-weighted variational autoencoder 
with integrated evaluation (IWVAE) method, which incorporated 
feature importance ranking and a comprehensive scoring approach 
based on VAE, to enhance the dimensionality reduction process by 
retaining critical features. This resulted in a more complete dataset and 
a low-dimensional representation, laying a solid foundation for 
improving algorithm efficiency and accuracy. In the risk prediction 
module, the optimized data was classified using the RF model, while 
the improved aquila optimizer (IAO), enhanced with multiple 
strategies, was employed for global hyperparameter optimization of 
the RF model. The effectiveness of the CDORPF framework had been 
validated through multiple comparative experiments.

2 Materials and methods

2.1 CDORPF

The overall framework structure of CDORPF is illustrated in 
Figure 1.

Where, the input is a N*M matrix, and the output is a N′*M′ 
matrix. N represents the number of original data items, M refers to the 
feature dimension of the data items, and N′ and M′ denote the sample 
size and feature dimension, respectively, after data optimization.
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The workflow of the model is as follows:

 (1) Data optimization: TOI is applied to impute missing data in the 
original dataset. IWVAE is then utilized for dimensionality 
reduction, and SMOTE (Feng et  al., 2023) is employed to 
address sample imbalance, ensuring consistency and reliability 
of the human gut microbiome data while maintaining 
biological accuracy.

 (2) Predictive model construction: Initial parameter ranges for the 
RF model are set, including n_estimators, max_depth, min_
samples_split and min_samples_leaf. IAO optimizes these 
parameters through iterative searches. Enhancements such as 
dynamic adjustment Sobol sequence (DASS), adaptive 
parameter adjustment, and dynamic mutation rates are 
introduced. The optimized hyperparameters are used to train 
the RF model, which is then evaluated on a validation set.

 (3) Model evaluation: Performance metrics for the predictive 
model are proposed and compared with classical and widely-
used models to assess CDORPF.

2.2 Data imputation based on TOI

Gut microbiome data frequently exhibit high-dimensional sparsity 
(Xie and Lederer, 2021), and multicollinearity may be present among 
the features (Die et al., 2022). For sparse data, relying solely on KNN 
often encounters challenges in identifying sufficiently similar 
neighboring samples, while using MICE alone may fail to capture 
strong feature correlations. KNN excels at managing locally similar 
samples and effectively captures local structural characteristics between 
them, whereas MICE employs regression models that leverage global 
feature correlations for imputation. By combining KNN and MICE, 
both local and global information can be  leveraged to more 
comprehensively fill in missing values. Additionally, introducing ridge 
regression during MICE imputation can effectively reduce model 

instability caused by multicollinearity, enhancing the robustness of the 
model and making the imputation results more stable and accurate. 
Ridge regression achieves this through regularization, which prevents 
overfitting to noise inherent in sparse data while preserving reasonable 
correlations among features.

Based on the above three methods, we proposed TOI. TOI not 
only preserves the dataset’s integrity but also retains the intrinsic 
structure and relationships within the microbiome data, supporting 
reliable subsequent analysis and model development.

The process is as follows:
Step  1. Initial imputation: For a dataset X containing missing 

values, the KNN is employed for preliminary imputation.
 (1) Distance calculation: The distance between record i and other 

records in the dataset is computed using the appropriate 
Equation 1.
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 (2) Select nearest neighbors: Based on the calculated distances, 
select the k records that are closest.

 (3) Calculate mean: Compute the mean of feature j across these k 
nearest neighbors using Equation 2 and use this value to 
impute the missing data.

 ( )
, ,

1

K

i j n j
n N i

x x
k

∧

∈
= ∑

 
(2)

where, ,i jx
∧

 represents the imputed value of feature j for record i, 
( )kN i  denotes the set of indices corresponding to the k nearest 

neighbors of record i, ,n jx  refers to the values of feature j among these 
nearest neighbors.

FIGURE 1

Flow work of CDORPF.
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Step 2. Iterative optimization of imputation: Building on the initial 
imputation, multiple imputation is performed with iterative 
refinement. In each iteration, a Bayesian ridge regression model is 
used to predict the imputed values.

 (1) Target feature selection: In each iteration, select feature j as the 
target variable, with the remaining features serving as predictors.

 (2) Model construction: Using the other feature values ( )
,
t

i jx ¬  of 
record i, construct the Bayesian Ridge Regression model jf  and 
compute the regression coefficients β

∧
, as shown in Equation 3.

 ( ) 1T TX X I X yβ λ
∧ −
= +

 
(3)

 (3) Based on the Equation 4, predictions are made to obtain 
updated imputed values.
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( )( ) ( )
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where, 
( )1

,

t

i jx
+∧

 represents the imputed value of feature j for record 
i in the t + 1 iteration, jf  denotes the regression model for feature j, 
( )
,
t

i jx ¬  refers to all feature values of record i excluding feature j in the t 
iteration, ( )

,
t

i jε  is the residual value.
Step 3. Iterative refinement: Repeat the iterative process, selecting 

each feature for imputation and continuously optimizing the imputed 
values until convergence is achieved or the maximum number of 
iterations is reached.

Step  4. Final imputation results: Obtain the final optimized 
imputation results, filling in all missing values.

In summary, TOI combines the simplicity of KNN, the iterative 
refinement capability of MICE, and the regularization strength of 
Bayesian ridge regression. TOI effectively captures both linear and 
nonlinear relationships in the data, ensuring data integrity and 
enhancing model prediction performance for more accurate and 
stable missing data handling.

2.3 Data dimensionality reduction based on 
IWVAE

Building on VAE, we propose IWVAE, which integrates feature 
importance ranking and a comprehensive scoring mechanism to 
effectively reduce data dimensionality while maintaining high 
classification performance.

Step 1. Calculate feature importance: Feature importance scores 
are computed using RF, and features are ranked accordingly. This 
approach prioritizes the retention of the most critical features for 
classification tasks, enhancing the efficiency of the dimensionality 
reduction process.

Step 2. Definition of VAE: The encoder maps high-dimensional 
data into a low-dimensional latent space, while the decoder 
reconstructs the high-dimensional data from this latent representation. 
The encoder outputs include the latent mean µ  and the latent 
log-variance ( )2log σ , with the KL divergence loss term constraining 
the distribution in the latent space as shown in Equation 5.
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The decoder reconstructs the data using the latent variable z, and 
the reconstruction error is computed based on the following 
Equation 6:
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where, ix  represents the original data, ix
∧

 represents the 
reconstructed data, N  denotes the sample size.

Step 3. Preliminary screening stage: Features are selected at intervals 
of 1/10 of the total dimensionality. The trained VAE model is used to 
calculate reconstruction errors, and RF is trained on the dimensionally 
reduced data. Classification accuracy is evaluated through cross-
validation. By balancing reconstruction error and classification accuracy, 
the introduction of a comprehensive score avoids bias and overfitting, 
enabling a more thorough model evaluation and ensuring an optimal 
balance between preserving data features and predictive capability. Both 
the reconstruction error and classification accuracy are standardized 
using specific Equations 7, 8, and a comprehensive score is computed 
using Equation 9. The optimal latent dimensions are then recorded.

 

( )
( ) ( )

Reconstruction error min reconstruction error
SRE

max Reconstruction error min Reconstruction error
−

=
−  

(7)

 

( )
( ) ( )

Modelaccuracy min Modelaccuracy
SMO

max Modelaccuracy min Modelaccuracy
−

=
−  

(8)

 ( )Combinedscore SRE 1 SMO= + −  (9)

Step  4. Refined screening phase: Conduct a more detailed 
screening around the optimal latent dimensions identified in the 
preliminary screening phase. All steps from the preliminary screening 
are repeated within this refined range to ensure precision.

2.4 IAO-RF risk prediction model 
construction

2.4.1 IAO
The traditional AO initializes the population randomly, which may 

result in insufficient exploration during the early stages and an increased 
risk of becoming trapped in local optima. Furthermore, its fixed parameter 
selection and singular search strategy can cause an imbalance between 
global exploration and local exploitation. To overcome these limitations, 
IAO incorporates multiple strategies to enhance AO, achieving a balance 
between local and global optimization while improving search efficiency. 
The following optimizations have been implemented:

 (1) DASS is employed to initialize the population, enhancing the 
diversity of the initial population.
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The Sobol sequence is a quasi-random sequence used to generate 
low-discrepancy samples. The DASS refines this by incorporating 
feature importance information to adjust the search space dynamically, 
overcoming the limitation of the traditional Sobol sequence, which 
cannot adapt to problem-specific characteristics.

 a Calculate feature importance: The importance of each feature is 
calculated using a baseline model, as described in Equation 10.

 
( )

trees

trees 1

1importance Gini
= ∆

= ∑
n

i t
t

i
n

 
(10)

where, ( )Gini∆ t i  represents the contribution of feature i to the 
Gini index in the t-th tree.

 b Dynamic adjustment of search space: The search space is 
adjusted based on feature importance. If a feature’s importance 
exceeds a certain threshold, its search range is expanded as 
specified in Equation 11.
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, if importance
bounds

if importance,
j high j j

j
jj j

x x

x x
θ
θ
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(11)

where, θ  is a predefined threshold.

 c Sobol sequence generation: The Sobol sequence is used to generate 
uniformly distributed points, as defined in Equation 12.

 ( )Sobol ,u d N=  (12)

where, u is a d × N matrix, d represents the dimensionality of the 
hyperparameters, N refers the population size.

 d Mapping to the dynamically adjusted search space: Using 
Equation 13, the values from the Sobol sequence in the range of 
[0, 1] are mapped to the dynamic adjustment range of 
each parameter.

 ( )min, max, min,ij j ij j jx x u x x= + ⋅ −  (13)

where, ijx  represents the j-th parameter of the i-th individual, 
min, jx  and max, jx  denote the minimum and maximum ranges of the 

j-th parameter.
Figure 2 shows the distribution of a 2D initial population of size 

200 generated using the DASS, the traditional Sobol sequence, and 
random generation methods. It is evident that the population generated 
by the dynamically adjusted Sobol sequence is more uniformly 
distributed, providing broader coverage of the solution space. Notably, 
within the parameter ranges of higher feature importance, this method 
maintains better population diversity, which can enhance the 
optimization speed and convergence accuracy of the algorithm.

 (2) Adaptive parameter adjustment and dynamic mutation rates 
are introduced to adaptively modify the search range and 
mutation rates at different stages of the optimization process. 

This effectively balances global exploration and local 
exploitation, thereby enhancing overall 
optimization performance.

 a Adaptive parameter adjustment: As shown in the Equation 14, 
parameters are dynamically adjusted based on the number of 
iterations. This approach strengthens global exploration in the 
early iterations and enhances local exploitation in the later 
stages, preventing premature convergence.

 

max_ iterations iteration
max_ iterations

α −
=

 
(14)

 b Dynamic mutation rate: As shown in the Equation 15, the 
mutation rate is dynamically adjusted based on the number of 
iterations, enhancing population diversity and preventing 
premature convergence.

 

iterationmutation _ rate 0.1 1
max_ iterations

 
= × − 

  
(15)

 (3) Incorporate a position update strategy, as different strategies 
can facilitate exploration and exploitation during the 
optimization process.

 a Exploration strategy: The position of individuals is updated 
using the current best individual ( bestx ) as a reference point. A 
wide range of movement is achieved through a random factor 
(rand) and an adaptive parameter (α ), expanding the search 
space and enhancing global exploration capabilities. As shown 
in the Equation 16:

 ( )new
besti i ix x rand x xα= + ⋅ ⋅ −  (16)

where, new
ix  represents the new position of individual i, ix  is the 

current position of individual i, α  is an adaptive parameter that 
gradually decreases with the number of iterations, rand is a random 
number between 0 and 1.

 b Exploitation strategy: The position of individuals is updated 
using the current worst individual ( worstx ) as a reference point. 
Local exploitation is achieved through a random factor (rand) 
and an adaptive parameter (α ), enhancing local search 
capabilities. This allows for finer exploration within the current 
search region, preventing premature convergence to local 
optima. As shown in the Equation 17:

 ( )new
worsti i ix x rand x xα= + ⋅ ⋅ −  (17)

 c Levy flight: Individual ix  approaches the current best individual 
( bestx ) using a random step length ( )Levy β  based on the Levy 
distribution and an adaptive parameter (α ), as shown in 
Equations 18, 19. This strategy helps to overcome the 
limitations of local optima and further enhances global 
exploration capabilities. The formula is as follows:
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 ( ) ( )new
bestLevyi i ix x x xα β= + × × −  (18)

 
( ) 1Levy u

v β
β =

 

(19)

where, u and v are random variables that follow a normal 
distribution, and meanx  is a parameter of the Levy distribution.

 d Gradual convergence strategy: In the middle to late stages of 
the optimization process, individuals gradually converge 
toward the population mean, as shown in Equation 20. This 
approach balances global exploration and local exploitation, 
leading to a gradual convergence. The formula is as follows:

 ( )new
meani i ix x rand x xα= + ⋅ ⋅ −  (20)

 (4) Introduce diversity measurement and adaptive strategy 
selection to dynamically adjust optimization strategies, 
enabling the algorithm to better balance exploring new solution 
spaces and optimizing the current solution space.

IAO dynamically selects different search strategies at various 
optimization stages based on population diversity. When diversity is 
high, the algorithm favors the exploration strategy and Levy flight to 
expand the search space. Conversely, when diversity is low, it leans 
toward the exploitation strategy and gradual convergence strategy to 
optimize the current solution. The standard deviation across each 
dimension of the population is calculated using Equation 21 to 
measure population diversity, effectively reflecting the distribution of 
the population within the search space.

 1

1 n
j

j
D

n
σ

=
= ∑

 
(21)

where, D represents the population diversity, n is the number of 
dimensions, and jσ  is the standard deviation of the population in the 
j-th dimension.

2.4.2 The algorithmic process of IAO-optimized 
RF

The key steps in optimizing RF with IAO are as follows:
Step  1: Initialize parameters: population size, parameter 

dimensions (dim), parameter ranges (x_min and x_max) and 
maximum iterations (max_iterations).

Step 2: Define the fitness function.
Step 3: Initialize the population using DASS.
Step 4: Iterative optimization process:

 • Calculate the population mean ( meanx ) and the worst 
individual ( worstx ).

 • Calculate adaptive adjustment parameters based on the 
Equation 14.

 • Compute the dynamically adjusted mutation rate using the 
Equation 15.

 • Retain the current best individual ( bestx ) using an elite strategy.
 • Execute the search strategy for each individual:

Select the search strategy based on population diversity.
Implement exploration, exploitation, Levy and gradual 
convergence strategies.

 • Calculate the fitness of new individuals and update 
the population.

Step 5: Output the optimal parameters to construct the IAO-RF 
model for prediction tasks.

2.5 Model performance measures

Using stratified random sampling to maintain class distribution 
consistency, the dataset was divided into two subsets: 80% for the 
training dataset and 20% for the test dataset. The training dataset was 
used to train the machine learning models, and the test dataset was 
used to evaluate model performance. Ten-fold cross-validation was 
performed. Based on the test dataset and the model predicted target 
variables, five statistical measures were used to evaluate the model 
performance: accuracy, precision, recall, F1-score and AUC.

FIGURE 2

Comparison of population initialization.
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2.6 Baseline methods

To demonstrate the effectiveness of the proposed model, 
we  compared it with several widely used models across different 
categories. For evaluating the effectiveness of various imputation 
methods, we employed classifiers such as logistic regression (LR), 
SVM, MLP, XGBoost, LightGBM and RF. To assess the performance 
of dimensionality reduction methods, we compared PCA, VAE and 
IVAE. For evaluating parameter optimization methods, we compared 
RS, GS and BO.

3 Results

3.1 Data selection

The experimental data used in this study is from the Inflammatory 
Bowel Disease Multi’omics Database (IBDMDB) within the Integrated 
Human Microbiome Project (iHMP) (Lloyd-Price et  al., 2019). 
Microbial community structure and diversity were analyzed using 16S 
rRNA gene sequencing, specifically targeting the V4 region. This gut 
microbiome dataset comprises 178 participant records, in which 137 
with IBD and 41 without. Each record consists of 983 fields. Notably, 
one field serves as an indicator for the presence or absence of IBD, 
while the remaining 982 fields represent an array of microbial features. 
However, many feature values in most samples are either close to zero 
or exactly zero, leading to a sparse data distribution in high-
dimensional space. Despite this overall sparsity, some samples exhibit 
high abundance in specific feature dimensions, creating locally dense 
regions. Additionally, approximately 491 features have missing values, 
with missing rates ranging from 0.56% to 9.55%, and an average 
missing rate of 5.27%.

In summary, this dataset is characterized by high-dimensional 
sparsity, the presence of missing values, differences in class 
distribution, and local density regions.

3.2 Data optimization

3.2.1 Data imputation based on TOI and 
effectiveness analysis

3.2.1.1 Validation of the rationale for using TOI
Data missingness can be  classified as missing completely at 

random (MCAR), missing at random (MAR) and not missing at 
random (NMAR). To validate the rationale for using the TOI for data 
imputation, the first step is to identify the type of missing data within 
the dataset.

3.2.1.1.1 Analysis of missing data types in the dataset
A correlation matrix was used to analyze the types of missing data 

by displaying the correlations between missing values across different 
features. The matrix colors range from blue (negative correlation) to 
red (positive correlation). Blue indicates that when one feature is 
missing, another is likely to be present, while red suggests that missing 
values in two features tend to occur together.

As shown in Figure 3, the correlation matrix of missing values in 
the IBD dataset is predominantly blue, indicating no significant 

correlation between the missing values of different variables. This 
suggests that the missing values in this dataset are likely to be MAR, 
meaning that the missingness of certain variables may be related to 
other observed variables, but not to the missing data itself. The red 
areas are mainly along the diagonal, showing that each variable is 
perfectly correlated with its own missing values, which is expected. 
Therefore, this figure suggests that most variables have independent 
missing values, indicating the missingness mechanism in this dataset 
is likely MAR.

3.2.1.1.2 Analysis of grouped statistical analysis and hypothesis 
testing results

Grouped statistical analysis provides a statistical comparison 
between missing and non-missing groups by analyzing their means 
and standard deviations. Hypothesis testing, through t-tests on key 
variables, evaluates whether significant differences exist between 
missing values and other variables. Selected experimental results are 
shown in Table 1.

Most variables show no significant differences between missing 
and non-missing samples (p-value >0.05), indicating a weak 
association with missingness. However, some features exhibit 
significant differences (p-value <0.05), suggesting a potential 
relationship, while others show near-significant differences (p-value 
close to 0.05), indicating a possible but not conclusive association. 
These findings suggest that the majority of missing data in the dataset 
are not significantly related to other variables, implying a likely MAR.

The combined results of both experiments confirm that the 
missing data mechanism in the IBD dataset is MAR, supporting the 
rationale for using TOI for imputation.

3.2.1.2 TOI-based data imputation

3.2.1.2.1 Imputation results of the dataset
The original IBD dataset contains 491 features with missing 

values, with missing rates ranging from 0.56 to 9.55%. TOI successfully 
imputed all missing values. A comparison of the dataset before and 
after imputation is presented in Figure 4.

3.2.1.2.2 Comparison of distributions before and after 
imputation

By comparing the data distributions before and after TOI 
imputation, the impact of TOI on the data was visually assessed, 
validating the effectiveness and fidelity of the imputed data. If the 
post-imputation distribution aligns with the original data, it indicates 
that the imputation method is appropriate. Selected experimental 
results are shown in Figure 5.

Figure 5 illustrates the comparative distributions of variables with 
substantial missing rates, both prior to and following imputation. 
Each subplot displays the distribution of an individual variable, where 
the original data are depicted in green and the imputed data in purple. 
The histograms illustrate the frequency distribution of the variables, 
and by contrasting the green and purple histograms, one can distinctly 
perceive the alterations in data frequency across diverse value ranges 
before and after imputation. The kernel density estimation (KDE) 
curves offer a smooth estimation of the probability density, further 
highlighting the distribution tendencies of the data.

The outcomes imply that the distribution of the variable__
Erysipelotrichaceae_UCG_003 remains highly consistent before and 
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after imputation, indicating that the imputed data effectively preserves 
the traits of the original data. For the variable__Defluviitaleaceae_
UCG_011.2, the imputed data fills the sparse regions of the original 
distribution, leading to a more smoother distribution, which attests to 
the efficacy of the imputation technique. On the whole, the imputed 
distributions (purple) closely resemble the original distributions 
(green) for the majority of variables, as evidenced by the similarity in 
the histograms and KDE curves in each subplot. These findings 
indicate that our imputation methodology effectively preserves the 
key distributional properties of the original dataset. For variables 
exhibiting long-tailed distributions, the imputed data preserve this 

characteristic, thereby underscoring the efficacy of the imputation 
technique in addressing sparsity.

3.2.1.3 Evaluation of imputation results validity
To further validate the effectiveness of TOI, comparative 

experiments were conducted using datasets imputed with KNN, 
MICE and TOI. Classifier models such as LR, SVM, MLP, XGBoost, 
LightGBM and RF were selected for analysis. The experimental results 
are presented in Figure 6.

Figure  6 compares the performance of different imputation 
methods across various classifier models: red for TOI, green for MICE 

FIGURE 3

Missing value correlation matrix.

TABLE 1 Results of grouped statistical analysis and hypothesis testing.

Feature Variable Mean (missing) Mean (non-missing) t-statistic p-value

_Tepidimonas _Bacteroides 3348.25 2366.95679 −1.136126196 0.257484265

_Tepidimonas _Bacteroides.6 2147.166667 1618.566265 −0.617270031 0.537854396

_Prevotella _Bacteroides 1857.416667 2477.388889 0.716181482 0.474850527

_Prevotella _Faecalibacterium.2 1785.666667 2335.963855 0.737912748 0.461550206

_Prevotella _Escherichia_Shigella 447.6666667 626.9036145 0.300885428 0.763857015

_Belnapia _Bacteroides.6 434 1661.096045 0.426897256 0.669975915

_Belnapia _Dialister.2 318 147.3619632 −0.662256296 0.508748001

_Belnapia _Lachnoclostridium.1 272 86.81920904 −0.781271529 0.435692463
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FIGURE 4

Example of data tables before and after imputation (partial sample).

FIGURE 5

Distribution of variables before and after imputation.
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and blue for KNN. The results show that the TOI imputation method 
achieves the highest AUC values in the evaluations of LR, SVM, MLP, 
LightGBM and RF models, indicating superior classification 
performance. Although MICE slightly outperforms TOI in the 
XGBoost, the AUC difference is only 0.0042. Overall, the TOI 
imputation method provides better classification performance, 
demonstrating excellent generalization capability and robustness.

Furthermore, when comparing the performance of various 
imputation methods, the RF model stands out as particularly 
exceptional across the entire dataset. With the TOI, the RF achieves 
an AUC of 0.7896, which is higher than that of most other models 
using the same method. For example, the AUC for the SVM, LR and 
XGBoost models under the TOI are 0.7561, 0.7326 and 0.7346, 
respectively. Additionally, even with the MICE and KNN, the RF’s 
AUC values remain highly competitive, outperforming those of most 
other models. These results indicate that the RF model not only 
maintains a high level of classification performance when handling 
imputed data but also demonstrates greater stability across different 
imputation methods, making it the optimal choice for this dataset.

3.2.2 Data dimensionality reduction based on 
IWVAE and effectiveness analysis

3.2.2.1 Selection of data dimensions
Figure 7 shows the impact of latent dimensions on reconstruction 

error (blue curve), model performance (red curve) and the combined 
score (green curve) during the refinement phase. The blue curve, 
representing reconstruction error, exhibits fluctuations but generally 
trends downward as the number of dimensions increases, indicating 
that data after dimensionality reduction effectively reconstructs the 
original dataset. The red curve illustrates variations in model 
performance, with accuracy oscillating between 0.765 and 0.795, 
suggesting that predictive capability remains relatively stable across 

different dimensionalities. The green curve, reflecting the combined 
score, demonstrates significant variability—particularly at higher 
dimensions—indicating that the dimensionality reduction method is 
more effective at specific levels. From this figure, it is evident that 
while both reconstruction error and model performance remain 
relatively stable as latent dimensions vary, the fluctuations in combined 
scores imply substantial changes in overall model efficacy across 
different dimensions. Based on this analysis, 147 dimensions were 
identified as optimal for achieving an ideal balance between 
minimizing reconstruction error and enhancing model performance.

3.2.2.2 Analysis of the effectiveness of dimensionality 
reduction

To further validate the effectiveness of IWVAE, comparative 
experiments were conducted using the imputed dataset as the 
experimental dataset. The RF model was applied to the full feature set, 
as well as to the feature sets reduced by PCA, VAE and IWVAE. The 
experimental results are presented in Table 2.

As shown in Table  2, IWVAE outperforms all other methods 
across all metrics, with accuracy, precision, recall and F1 scores all 
exceeding 0.8. This demonstrates that IWVAE has superior feature 
extraction capabilities when handling this type of data, significantly 
enhancing the overall performance of the model.

Following data optimization, the dataset comprises 274 samples 
with 147 features and no missing values. Of these, 137 samples are 
from IBD patients, while the remaining 137 are from healthy controls.

3.3 IBD risk prediction based on the IAO-RF

3.3.1 Sensitivity analyses
The primary role of sensitivity analysis is to evaluate the model’s 

response to variations in input parameters and to help identify key 

FIGURE 6

ROC curves comparison.
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parameters that have the most significant impact on the model’s 
output. Sensitivity analysis allows us to understand how the model 
performs under different parameter settings, determining its stability 
and robustness, thereby preventing overfitting or underfitting.

Figure 8 shows the sensitivity analysis of four hyperparameters on 
the accuracy of the RF model. The top-left plot indicates that 
increasing the n_estimators from 100 to 120 significantly improves 
accuracy, which then stabilizes beyond 120 trees, suggesting limited 
benefits from adding more trees after this point. The top-right plot 
demonstrates that increasing the max_depth improves accuracy until 
it plateaus at a depth of 10, implying that deeper trees capture data 
complexity better, but further increases do not boost accuracy. The 
bottom-left plot reveals that setting min_samples_split around 5 
achieves optimal accuracy, with further increases leading to a decline, 
indicating that too high a threshold for node splitting can cause 
underfitting. Lastly, the bottom-right plot indicates that setting min_
samples_leaf to 2 maximizes accuracy; further increases in this value 
negatively impact accuracy, implying that a higher number of samples 
in leaf nodes may reduce model complexity and predictive power.

In summary, hyperparameter selection is crucial for RF 
performance. Proper tuning of parameters like n_estimators and 
max_depth can significantly enhance accuracy, while excessively high 
values for min_samples_split and min_samples_leaf can hinder 
performance. Consequently, careful adjustment based on the dataset 
is essential for optimal results.

3.3.2 Parameter settings
The RF model includes multiple hyperparameters within a large 

parameter space. In this experiment, IAO was employed to optimize four 
key hyperparameters: n_estimators, max_depth, min_samples_split and 
min_samples_leaf. The optimization results are presented in Table 3.

Comparative experiments and model evaluation
To further validate the effectiveness of IAO, a comparative 

experiment was conducted using the processed dataset. The RF model 
was optimized using no optimization, RS, GS, BO and IAO. The 
experimental results are presented in Table 4.

As shown in Table 4, IAO outperformed all other methods on all 
metrics, achieving accuracy, precision, recall and F1 scores above 0.9, 
significantly surpassing other approaches. In contrast, BO and GS 
failed to notably improve model performance, and although RS 
provided some enhancement, it remained inferior to IAO. Overall, 
IAO exhibited a distinct advantage in parameter optimization, leading 
to enhanced model accuracy, precision, recall and F1 scores.

3.4 Effectiveness of CDORPF

To further validate the effectiveness of CDORPF, we conducted 
a comparative experiment. This experiment compared commonly 
used machine learning models with CDORPF and the results are 
presented in Table 5.

Table  5 clearly demonstrates that the CDORPF framework 
significantly outperforms other commonly used machine learning 
models across all evaluation metrics, confirming its superior accuracy 
and reliability. Moreover, CDORPF exhibits a notable level of 
consistency in accuracy, precision, recall and F1-score, which is 
critically important for practical applications.

4 Discussion and interpretation

We developed a framework named CDORPF to address the issue 
of missing values in microbiome data, transforming high-dimensional 

FIGURE 7

Optimal latent dimension selection.

TABLE 2 Results of IBD risk prediction using different dimensionality 
reduction strategies.

Method Accuracy Precision Recall F1-
score

Full features 0.7863 0.6888 0.7863 0.7098

PCA 0.7980 0.7817 0.7980 0.7711

VAE 0.7696 0.5926 0.7696 0.6695

IWVAE 0.8369 0.8459 0.8369 0.8146
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microbiome profiles into low-dimensional representations and 
constructing classification models based on these representations.

In the initial phases of this research, our primary objective was 
data imputation, as most machine learning algorithms are not 
designed to effectively handle missing values, which can lead to bias. 
We explored traditional KNN and MICE methods for imputation; 
however, the results were suboptimal. To preserve the inherent 
structure and relationships within microbiome data, we proposed the 
TOI method that integrates KNN, MICE and Bayesian ridge 
regression. By analyzing the types of missing data present in the IBD 

dataset, we  validated the rationale behind the TOI method and 
successfully imputed all missing values while maintaining internal 
structural integrity. As illustrated in Figure 5, experimental results 
indicate that the distribution of imputed data closely aligns with that 
of original data—demonstrating that TOI enhances completeness 
while preserving critical features—thereby laying a solid foundation 
for subsequent analyses and model development.

Building upon this groundwork, we  conducted dimensionality 
reduction experiments since high dimensionality in 16S rRNA data 
introduces noise detrimental to downstream predictions. Our proposed 
IWVAE method outperformed PCA and VAE by effectively reducing 
dimensions while retaining essential features. As presented in Table 2, 
IWVAE achieved superior performance across metrics such as accuracy, 
precision, recall and F1 score—significantly enhancing overall model 
efficacy and showcasing its exceptional capability in feature extraction.

FIGURE 8

Sensitivity analysis of RF hyperparameters.

TABLE 3 The hyper-parameters tuning results of IAO-optimized RF.

Hyper-
parameter

Description Parameter 
range

Tuning 
result

n_estimators The number of trees in the 

forest

[10, 200] 200

max_depth The maximum depth of the 

trees

[1, 50] 9

min_samples_

split

The minimum number of 

samples required to split an 

internal node

[2, 10] 2

min_samples_

leaf

The minimum number of 

samples required at a leaf 

node

[1, 5] 1

TABLE 4 Results of different parameter optimization methods.

Method Accuracy Precision Recall F1-
score

No optimization 0.8727 0.8731 0.8727 0.8726

BO 0.8545 0.8626 0.8545 0.8540

GS 0.8727 0.8775 0.8727 0.8725

RS 0.8909 0.8996 0.8909 0.8905

IAO 0.9043 0.9084 0.9043 0.9040
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In our model optimization experiments involving global 
hyperparameter tuning using IAO-RF demonstrated notable 
advantages over RS, GS and BO (Table 4). This further substantiates 
the effectiveness of IAO optimization strategies in improving model 
performance particularly when dealing with complex datasets 
characterized by enhanced accuracy and stability.

In summary, our CDORPF framework exhibits significant strengths 
in addressing issues related to incompleteness, high dimensionality and 
sparsity within microbiome datasets. As evidenced by Table 5, CDORPF 
surpasses traditional machine learning models across all evaluated 
metrics offering improved accuracy alongside consistency thus 
affirming its potential applicability within real-world scenarios.

By adeptly integrating components such as data imputation, 
dimensionality reduction and risk prediction, the CDORPF 
framework effectively confronts challenges associated with 
microbiome information. Future investigations could further validate 
this framework’s robustness on larger more intricate datasets whilst 
exploring prospective applications across diverse fields.

5 Conclusion

In recent years, IBD has become a global health challenge with a 
substantial treatment burden. Research has consistently shown a 
strong association between the human gut microbiome and IBD 
pathogenesis, making it crucial for risk prediction. To address the 
challenges of high-dimensional, sparse, and incomplete microbiome 
data, this paper introduces a novel integrated data optimization and 
risk prediction framework, CDORPF. Compared to traditional 
methods, this approach excels in handling complex microbiome data 
by preserving the inherent structure of the data, minimizing biases 
from missing data, and significantly enhancing data integrity and 
analytical reliability. Additionally, it effectively retains the core 
information during dimensionality reduction, while markedly 
improving model predictive performance. This approach offers a 
comprehensive solution to the challenges of missing values and high 
dimensionality commonly found in microbiome data.

In clinical workflows, CDORPF can serve as a complementary 
tool to existing diagnostic methods by providing additional risk 
assessment information through microbiome analysis. This not only 
enhances diagnostic accuracy but also optimizes the treatment 
process, making patient management more refined and personalized. 
For example, in the initial screening phase, CDORPF can leverage gut 
microbiome data to help identify high-risk patients, prioritizing 
further diagnostic or intervention measures and reducing unnecessary 

delays. Future research can further explore the performance of 
CDORPF in large-scale, multi-center clinical trials to validate its 
applicability and robustness across different populations and disease 
subtypes. Moreover, the successful application of the CDORPF 
framework offers new research directions for the early diagnosis of 
other complex diseases, such as cardiovascular disease or cancer, 
through microbiome analysis, thereby advancing broader applications 
in personalized medicine.
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TABLE 5 Effectiveness of CDORPF.

Model Accuracy Precision Recall F1-
score

XGBoost 0.7500 0.6481 0.6607 0.6535

LightGBM 0.7222 0.3889 0.5000 0.4375

CatBoost 0.7778 0.6563 0.5893 0.6000

SVM 0.7778 0.3889 0.5000 0.4375

Mice + RF 0.8333 0.8627 0.8333 0.7914

Mice + SVM 0.7778 0.6049 0.7778 0.6806

CDORPF 0.9043 0.9084 0.9043 0.9040

https://doi.org/10.3389/fmicb.2024.1483084
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://hmpdacc.org/ihmp/


Peng et al. 10.3389/fmicb.2024.1483084

Frontiers in Microbiology 14 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A. A., and 

Gandomi, A. H. (2021). Aquila optimizer: a novel meta-heuristic optimization 
algorithm. Comput. Ind. Eng. 157:107250. doi: 10.1016/j.cie.2021.107250

Alfonso Perez, G., and Castillo, R. (2023). Gene identification in inflammatory bowel 
disease via a machine learning approach. Medicina 59:1218. doi: 10.3390/medicina59071218

Almeida, A., Mitchell, A. L., Boland, M., Forster, S. C., Gloor, G. B., Tarkowska, A., 
et al. (2019). A new genomic blueprint of the human gut microbiota. Nature 568, 
499–504. doi: 10.1038/s41586-019-0965-1

Ansarullah, S. I., and Kumar, P. (2019). A systematic literature review on 
cardiovascular disorder identification using knowledge mining and machine learning 
method. Int. J. Recent Technol. Eng. 7, 1009–1015.

Armstrong, G., Rahman, G., and Martino, C. (2022). Applications and comparison of 
dimensionality reduction methods for microbiome data. Front. bioinform. 2:82186. doi: 
10.3389/fbinf.2022.821861

Azur, M. J., Stuart, E. A., Frangakis, C., and Leaf, P. J. (2011). Multiple imputation by 
chained equations: what is it and how does it work? Int. J. Methods Psychiatr. Res. 20, 
40–49. doi: 10.1002/mpr.329

Bisgaard, T. H., Allin, K. H., Keefer, L., Ananthakrishnan, A. N., and Jess, T. (2022). 
Depression and anxiety in inflammatory bowel disease: epidemiology, mechanisms and 
treatment. Nat. Rev. Gastroenterol. Hepatol. 19, 717–726. doi: 10.1038/s41575-022-00634-6

Chen, X., He, R., Chen, X., Jiang, L., and Wang, F. (2023). Optimizing dose-schedule 
regimens with Bayesian adaptive designs: opportunities and challenges. Front. 
Pharmacol. 14:1261312. doi: 10.3389/fphar.2023.1261312

Die, D., Zhu, J., Sun, C., Li, M., Liu, J., Wu, S., et al. (2022). GMrepo v2: a curated 
human gut microbiome database with special focus on disease markers and cross-
dataset comparison. Nucleic Acids Res. 50, D777–D784. doi: 10.1093/nar/gkab1019

Doove, L. L., Van Buuren, S., and Dusseldorp, E. (2014). Recursive partitioning for 
missing data imputation in the presence of interaction effects. Comput. Stat. Data Anal. 
72, 92–104. doi: 10.1016/j.csda.2013.10.025

Faye, A. S., Holmer, A. K., and Axelrad, J. E. (2022). Cancer in inflammatory bowel 
disease. Gastroenterol. Clin. N. Am. 51, 649–666. doi: 10.1016/j.gtc.2022.05.003

Feng, T., Peng, Y., and Wang, J. (2023). ISGS: a combinatorial model for hysteresis 
effects. Acta Electron. Sin. 51, 2504–2509. doi: 10.12263/DZXB.20220238

Flynn, S., and Eisenstein, S. (2019). Inflammatory bowel disease presentation and 
diagnosis. Surg. Clin. North Am. 99, 1051–1062. doi: 10.1016/j.suc.2019.08.001

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated machine learning: 
methods, systems, challenges. Cham: Springer.

Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., 
et al. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level 
microbiome analysis. Nat. Commun. 10:5029. doi: 10.1038/s41467-019-13036-1

Kalaiselvi, B., and Geetha, S. (2024). “Ensemble voting classifier-based machine 
learning model for predictive modeling of campus student placements” in Science and 
technology: recent updates and future prospects, 93–107.

Kostic, A. D., Xavier, R. J., and Gevers, D. (2014). The microbiome in inflammatory 
bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499. 
doi: 10.1053/j.gastro.2014.02.009

Kraszewski, S., Szczurek, W., Szymczak, J., Reguła, M., and Neubauer, K. (2021). 
Machine learning prediction model for inflammatory bowel disease based on laboratory 
markers. J. Clin. Med. 10:4745. doi: 10.3390/jcm10204745

Li, I., Fabbri, A., Hingmire, S., and Radev, D. (2020). R-VGAE: relational-variational 
graph autoencoder for unsupervised prerequisite chain learning. Proceedings of the 28th 
International Conference on Computational Linguistics

Li, Y., Pan, J., Zhou, N., Fu, D., Lian, G., Yi, J., et al. (2021). A random forest model 
predicts responses to infliximab in Crohn’s disease based on clinical and serological 
parameters. Scand. J. Gastroenterol. 56, 1030–1039. doi: 10.1080/00365521.2021.1939411

Liñares-Blanco, J., Fernandez-Lozano, C., Seoane, J. A., and López-Campos, G. (2022). 
Machine learning based microbiome signature to predict inflammatory bowel disease 
subtypes. Front. Microbiol. 13:872671. doi: 10.3389/fmicb.2022.872671

Lloyd-Price, J., Arze, C., Ananthakrishnan, A. N., Schirmer, M., Avila-Pacheco, J., 
Poon, T. W., et al. (2019). Multi-omics of the gut microbial ecosystem in inflammatory 
bowel diseases. Nature 569, 655–662. doi: 10.1038/s41586-019-1237-9

Mafarja, M. M., and Mirjalili, S. (2017). Hybrid whale optimization algorithm with 
simulated annealing for feature selection. Neurocomputing 260, 302–312. doi: 10.1016/j.
neucom.2017.04.053

Peng, Y., Liu, Y., Wu, H., Liu, L., and Wang, J. (2023). High-dimensional data mining 
algorithm based on SPCA-GWR. J. Nonlinear Convex Anal. 24, 1303–1314.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and 
approximate inference in deep generative models. Proceedings of the International 
Conference on Machine Learning. 1278–1286.

Rogler, G., Singh, A., Kavanaugh, A., and Rubin, D. T. (2021). Extraintestinal 
manifestations of inflammatory bowel disease: current concepts, treatment, and 
implications for disease management. Gastroenterology 161, 1118–1132. doi: 10.1053/j.
gastro.2021.07.042

Tang, F., and Ishwaran, H. (2017). Random forest missing data algorithms. Stat. Anal. 
Data Min. 10, 363–377. doi: 10.1002/sam.11348

Wang, J., Li, J., Wang, Z., Zhou, S., and Peng, Y. (2023a). An interpretable prediction 
model for heart disease risk based on improved whale optimized LightGBM. J. Beijing 
Univ. Posts Telecommun. 46:39. doi: 10.13190/j.jbupt.2023-015

Wang, J., Wang, Z., Li, J., and Peng, Y. (2023b). An interpretable depression prediction 
model for the elderly based on ISSA optimized LightGBM. J. Beijing Inst. Technol. 32, 
168–180. doi: 10.15918/j.jbit1004-0579.2023.010

Xie, F., and Lederer, J. (2021). Aggregating knockoffs for false discovery rate control 
with an application to gut microbiome data. Entropy 23:230. doi: 10.3390/e23020230

Yekkala, I., Dixit, S., and Jabbar, M. A. (2017). Prediction of heart disease using ensemble 
learning and particle swarm optimization. Proceedings of the 2017 International Conference 
on Smart Technologies for Smart Nation (SmartTechCon). IEEE. 691–698.

https://doi.org/10.3389/fmicb.2024.1483084
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.3390/medicina59071218
https://doi.org/10.1038/s41586-019-0965-1
https://doi.org/10.3389/fbinf.2022.821861
https://doi.org/10.1002/mpr.329
https://doi.org/10.1038/s41575-022-00634-6
https://doi.org/10.3389/fphar.2023.1261312
https://doi.org/10.1093/nar/gkab1019
https://doi.org/10.1016/j.csda.2013.10.025
https://doi.org/10.1016/j.gtc.2022.05.003
https://doi.org/10.12263/DZXB.20220238
https://doi.org/10.1016/j.suc.2019.08.001
https://doi.org/10.1038/s41467-019-13036-1
https://doi.org/10.1053/j.gastro.2014.02.009
https://doi.org/10.3390/jcm10204745
https://doi.org/10.1080/00365521.2021.1939411
https://doi.org/10.3389/fmicb.2022.872671
https://doi.org/10.1038/s41586-019-1237-9
https://doi.org/10.1016/j.neucom.2017.04.053
https://doi.org/10.1016/j.neucom.2017.04.053
https://doi.org/10.1053/j.gastro.2021.07.042
https://doi.org/10.1053/j.gastro.2021.07.042
https://doi.org/10.1002/sam.11348
https://doi.org/10.13190/j.jbupt.2023-015
https://doi.org/10.15918/j.jbit1004-0579.2023.010
https://doi.org/10.3390/e23020230

	Comprehensive data optimization and risk prediction framework: machine learning methods for inflammatory bowel disease prediction based on the human gut microbiome data
	1 Introduction
	2 Materials and methods
	2.1 CDORPF
	2.2 Data imputation based on TOI
	2.3 Data dimensionality reduction based on IWVAE
	2.4 IAO-RF risk prediction model construction
	2.4.1 IAO
	2.4.2 The algorithmic process of IAO-optimized RF
	2.5 Model performance measures
	2.6 Baseline methods

	3 Results
	3.1 Data selection
	3.2 Data optimization
	3.2.1 Data imputation based on TOI and effectiveness analysis
	3.2.1.1 Validation of the rationale for using TOI
	3.2.1.1.1 Analysis of missing data types in the dataset
	3.2.1.1.2 Analysis of grouped statistical analysis and hypothesis testing results
	3.2.1.2 TOI-based data imputation
	3.2.1.2.1 Imputation results of the dataset
	3.2.1.2.2 Comparison of distributions before and after imputation
	3.2.1.3 Evaluation of imputation results validity
	3.2.2 Data dimensionality reduction based on IWVAE and effectiveness analysis
	3.2.2.1 Selection of data dimensions
	3.2.2.2 Analysis of the effectiveness of dimensionality reduction
	3.3 IBD risk prediction based on the IAO-RF
	3.3.1 Sensitivity analyses
	3.3.2 Parameter settings
	3.4 Effectiveness of CDORPF

	4 Discussion and interpretation
	5 Conclusion

	References

