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This review examines the role of Pseudomonas spp. bacteria as biocontrol agents 
against crop diseases, focusing on their mechanisms of action, efficacy, and 
potential applications in sustainable agriculture. Pseudomonas spp., ubiquitous in 
soil ecosystems and root microbiomes, have attracted attention for their ability to 
suppress phytopathogens and enhance plant health through various mechanisms. 
These include direct competition for nutrients, production of antimicrobial 
compounds and volatile organic compounds, competition using type VI secretion 
systems, and indirect induction of systemic resistance. Our review shows that 
Pseudomonas strains effectively control a wide range of diseases across diverse 
plant species, with some strains demonstrating efficacy comparable to chemical 
fungicides. However, the review also highlights challenges in achieving consistent 
performance when using Pseudomonas inoculants under field conditions due to 
various biotic and abiotic factors. Strategies to optimize biocontrol potential, such as 
formulation techniques, application methods, and integration with other management 
practices, are discussed. The advantages of Pseudomonas-based biocontrol for 
sustainable agriculture include reduced reliance on chemical pesticides, enhanced 
crop productivity, and improved environmental sustainability. Future research 
directions should focus on understanding the complex interactions within the 
plant microbiome, optimizing delivery systems, and addressing regulatory hurdles 
for commercial deployment. This review underscores the significant potential 
of Pseudomonas spp. in sustainable crop protection while acknowledging the 
need for further research to fully harness their capabilities in agricultural systems.
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1 Introduction

The UN’s Sustainable Development Goals, released in 2015, outline 17 urgent objectives 
to be achieved through global collaboration. Among these, Goal 2 aims to end hunger, achieve 
worldwide food security, improve nutrition, and promote sustainable agriculture. As the 
world’s population increases, the demand for food production also rises. This increases the 
pressure on agricultural systems globally (United Nations, 2015). One important development 
that will help address these issues is the growing popularity in some countries of plant-based 
diets as an alternative to traditional meat and dairy consumption.

Chemical fertilizers play a crucial role in meeting the increasing demand for plant-
based food by maximizing crop yields (Bhatti et al., 2017; Hera, 1995; Pahalvi et al., 
2021). The three primary nutrients in commercial fertilizers, nitrogen (N), phosphate 
(P), and potassium (K) are used extensively in modern agriculture (McGuire, 2015). 
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However, these fertilizers can also disrupt natural soil processes, 
leading to reduced water retention, imbalanced soil fertility, 
declined the agricultural soil quality with the reduction in soil 
organic matter (Dar et  al., 2016; Dinesh et  al., 2010; Ongley 
et al., 2010).

Similarly, the widespread use of pesticides to combat crop 
diseases poses significant environmental and health risks. Many 
pesticides are toxic to humans, animals, and non-target organisms, 
including essential pollinators (Brevik and Burgess, 2012; Geiger 
et  al., 2010; Lee and Choi, 2020; Sponsler et  al., 2019). The 
ecological impacts of many pesticides extend to soil and water 
systems. These chemicals disrupt microbial communities and 
reduce soil fertility (Law et al., 2017; Pimentel et al., 1993; Viaene 
et  al., 2016). The loss of beneficial microbial species in the 
agricultural soil can exacerbate pathogen invasions and compromise 
ecosystem resilience (Jacobsen and Hjelmsø, 2014; Meena et al., 
2020). Since microbial communities are the primary drivers of soil 
nutrient cycling, due to their various metabolic activities, their 
relevance in moderating ecosystem function cannot be understated 
(Balser et al., 2002).

In response to these challenges, there is a growing imperative to 
explore sustainable alternatives to conventional agricultural practices 
(Vasilescu et al., 2023). In this regard, microbiological tools, such as 
biofertilizers and biocontrol agents, have emerged as promising 
solutions. Biofertilizers, containing beneficial microorganisms, 
enhance soil fertility and promote plant growth through natural 
processes (Verma et al., 2019). Biocontrol agents offer non-chemical 

methods for managing plant diseases by leveraging the antagonistic 
properties of microorganisms against pathogens (Bhardwaj et  al., 
2014; Bonaterra et al., 2022; Parani and Saha, 2012).

The bacterial genus Pseudomonas, characterized by its metabolic 
diversity and abundance in various environments, has garnered 
particular attention for its potential applications in agriculture 
(Palleroni, 2015). Members of this genus show considerable metabolic 
and genetic diversity (Peix et  al., 2009); its various secondary 
metabolites are known to form virulence factors, pigments, and 
biofilms (Drenkard and Ausubel, 2002; Moissenet and Khedher, 2011; 
Raio and Puopolo, 2021; Stover et  al., 2000). A large number of 
Pseudomonas strains are known for plant growth-promoting potential 
by producing various substances such as siderophores, 
1-aminocyclopropane-1-carboxylate (ACC) deaminase and 
lipopeptides (Leontidou et al., 2020; Pršić and Ongena, 2020). Using 
microbes such as Pseudomonas offers a promising approach to 
sustainable farming, offering solutions that support plant health while 
minimizing environmental impacts (Hamid et  al., 2021; Khatoon 
et al., 2020; Nikel et al., 2014; Sharma and Archana, 2016).

Here, we provide a comprehensive overview of Pseudomonas spp. 
as microbiological tools for sustainable agriculture, examining their 
status and potential applications in crop production, particularly in 
cereal crops. We discuss the mechanisms by which Pseudomonas spp. 
act as biocontrol agents, including direct inhibition of phytopathogens 
and induction of systemic resistance in plants. Additionally, we explore 
approaches for optimizing the efficacy of Pseudomonas-based 
biocontrol strategies, such as improved delivery methods and genetic 
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engineering. Finally, we address the challenges and future directions 
in harnessing Pseudomonas for sustainable crop protection, 
emphasizing the importance of ongoing research in advancing 
environmentally friendly agricultural practices.

2 Diversity and plant interactions of 
Pseudomonas species

Key interactions between plants and microbes occur in the soil 
surrounding plant roots (Berg et al., 2014; Gaiero et al., 2013; Jain 
et al., 2020). The rhizosphere, the immediate soil layer influenced by 
root exudates, is a hotspot for microbial colonization, fostering diverse 
communities of bacteria, fungi, and other microorganisms (Berg et al., 
2014; Gaiero et al., 2013; Jain et al., 2020). Pseudomonas spp. are often 
major components of the rhizosphere microbiome and engage in 
multifaceted interactions with plants, exerting significant influence on 
plant health, nutrient cycling, and ecosystem functioning (Botelho 
and Mendonça-Hagler, 2006; Chaudhary et  al., 2021; Raio and 
Puopolo, 2021).

Pseudomonas spp. display remarkable adaptability to diverse 
environmental conditions, thriving in various soil types and 
agricultural settings (Palleroni, 2015). Their metabolic versatility 
and genetic plasticity enable them to colonize plant roots and 

establish intricate symbiotic relationships with their host plants 
(Palleroni, 2015; Peix et  al., 2009). Many studies have 
demonstrated the enrichment of Pseudomonas spp. in the roots 
and rhizosphere of diverse plants such as Arabidopsis thaliana, 
potatoes, rice, wheat, and barley (Andreote et al., 2009; Buddrus-
Schiemann et al., 2010; Jain et al., 2020; Lawongsa et al., 2008; 
Persello-Cartieaux et al., 2001; Raio and Puopolo, 2021; Wang 
et al., 2012). The adaptability of Pseudomonas spp. to different 
plant environments might have evolved due to selective pressures, 
leading to the development of metabolic pathways conducive to 
nutrient acquisition from plant-derived compounds (Imperato 
et al., 2019; Rainey, 1999).

At the molecular level, plant-Pseudomonas interactions are 
orchestrated through intricate signaling pathways and molecular 
dialogs (Girard et al., 2020; Preston, 2004). Root exudates, comprising 
a diverse array of largely low molecular weight, organic compounds 
serve as chemoattractants, guiding Pseudomonas migration toward the 
rhizosphere (Drigo et al., 2009; Jain et al., 2020; Marilley et al., 1999; 
Waldon et al., 1989; Wang et al., 2017). Upon encountering plant 
roots, Pseudomonas spp. employ chemotaxis and quorum sensing 
systems to modulate their behavior and adapt to changing 
environmental cues (Loh et al., 2002; Schikora et al., 2016).

Pseudomonas species actively participate in nutrient cycling 
processes, facilitating the uptake and assimilation of essential 

FIGURE 1

A summary of the major mechanisms by which Pseudomonas biocontrol strains can protect cereal crops from disease. Indirect mechanisms include 
competitive exclusion and induction of plant immunity through phytohormone modulation (SA, JA, ET) and ACC deaminase activity. Direct 
mechanisms encompass the production of anthelmintic, antimicrobial, and antifungal compounds; deployment of the type VI secretion system (T6SS); 
and secretion of siderophores and volatile organic compounds (VOCs). These diverse strategies collectively contribute to effective disease suppression 
and improved crop health. SA, salicylic acid; JA, jasmonic acid; ET, ethylene; ACC, 1-aminocyclopropane-1-carboxylate; T6SS, type VI secretion 
system; VOCs, volatile organic compounds.
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nutrients by plants (Botelho and Mendonça-Hagler, 2006; 
Chaudhary et  al., 2021; Raio and Puopolo, 2021). Through the 
production of plant growth-promoting substances, such as 
phytohormones and siderophores (Leontidou et  al., 2020), 
Pseudomonas species stimulate root growth, enhance nutrient 
acquisition, and confer resistance to environmental stresses (Raio 
and Puopolo, 2021; Sun et al., 2022). Moreover, Pseudomonas spp. 
produce a wide range of antimicrobial secondary metabolites. This 
diversity enables them to outcompete other microorganisms for 
niche space and carbon resources provided by plants (Figure  1) 
(Raio and Puopolo, 2021; Validov et al., 2005).

In addition to promoting plant growth and nutrient 
acquisition, Pseudomonas spp. play a pivotal role in suppressing 
plant pathogens and mitigating disease incidence (Hernández-
León et  al., 2015; Lahlali et  al., 2022; Validov et  al., 2005; 
Vivekananthan et  al., 2004). Through the production of 
antimicrobial compounds, lytic enzymes, and volatile organic 
compounds, Pseudomonas spp. inhibit the proliferation of 
phytopathogens and confer protection to their host plants 
(Hernández-León et al., 2015; Mehmood et al., 2023; Raio and 
Puopolo, 2021; Validov et al., 2005; Vivekananthan et al., 2004). 
Furthermore, Pseudomonas-mediated induction of systemic 
resistance within host plants primes the plants for enhanced 
defense responses, bolstering their resilience against pathogen 
attacks (Haney et al., 2018; Leeman et al., 1995).

These attributes position Pseudomonas spp. as promising 
candidates for biocontrol agents in agriculture, as they not only 
contribute to plant protection but also promote plant growth under 
various environmental conditions, including high salinity and drought 
(Cheng et al., 2007; Forni et al., 2017; Orozco-Mosqueda et al., 2019; 
Rangarajan et al., 2003). However, it is essential to acknowledge that 
while many Pseudomonas strains act as beneficial or passive colonizers 
of the plant microbiome, certain species may exhibit phytopathogenic 
traits (Leontidou et al., 2020; Montes-Osuna et al., 2022; Pršić and 
Ongena, 2020; Young, 1991). One well-documented example is 
Pseudomonas syringae, known for causing various plant diseases by 
producing virulence factors such as coronafacic acid, ice nucleation 
protein, and the type III secretion system (T3SS) and its associated 
type III secreted effector (T3SE) proteins (Alattas et  al., 2023; 
Bundalovic-Torma et al., 2022; Büttner, 2016; Weiler et al., 1994; Xin 
et al., 2018).

3 Pseudomonas as a plant pathogen

P. syringae is a highly diverse bacterial species complex known for 
its ability to cause disease in a wide range of plant hosts. The complex 
is currently divided into at least 13 phylogenetic groups or 
phylogroups, with 7 considered primary phylogroups that contain 
most of the recognized pathogenic strains (Dillon et  al., 2021). 
Although strains are often classified into pathovars based on the host 
they were isolated from, there is not always a strong correlation 
between phylogeny and host specificity. Many closely related strains 
can infect different hosts, while strains isolated from the same host 
may be  phylogenetically diverse (Baltrus et  al., 2017; Morris 
et al., 2019).

Key factors in P. syringae pathogenicity are the T3SS and T3SE 
proteins. The T3SS protein allows the bacteria to inject effector 

proteins directly into plant cells, where they can manipulate host 
processes to promote infection (Büttner, 2016). P. syringae strains 
typically possess 20–30 different T3SE proteins, with over 70 
distinct T3SE families identified across the species complex 
(Dillon et  al., 2019). However, only a small number of core 
effectors are conserved across most strains. The diversity and 
composition of effector repertoires plays a major role in 
determining host range and virulence capabilities (Laflamme 
et al., 2020).

T3SE proteins have a range of virulence functions in plants, 
including suppressing immune responses, altering hormone 
signaling, disrupting cellular processes, and creating favorable 
conditions for bacterial growth (Khan et al., 2018). Some effectors, 
like HopZ1a, demonstrate remarkable functional diversity, 
targeting multiple unrelated plant proteins to suppress immunity, 
alter phytohormone signaling, and disrupt microtubule integrity 
(Jiang et al., 2013; Lee et al., 2012; Rufián et al., 2021). However, 
plants have evolved immune receptors capable of recognizing 
many effectors, triggering strong defense responses called 
effector-triggered immunity (ETI) (Jones and Dangl, 2006). This 
creates an evolutionary arms race, with bacteria evolving new or 
modified effectors to evade detection, and plants evolving 
new receptors.

Interestingly, recent research has found that a relatively small 
number of plant immune receptors are capable of recognizing effectors 
from a wide range of P. syringae strains, providing broad-spectrum 
resistance. For example, in Arabidopsis thaliana, the ZAR1 and CAR1 
receptors can detect effectors from 95% of P. syringae strains 
(Laflamme et al., 2020). The ZAR1 receptor in particular shows a 
remarkably broad recognition profile, capable of detecting at least six 
unrelated T3SE families through association with multiple kinase 
proteins (Martel et al., 2020).

The evolution and diversity of P. syringae effector repertoires is 
shaped by several key processes (Dillon et al., 2019). Horizontal 
gene transfer allows effectors to move between strains, potentially 
expanding host range. Gene loss or pseudogenization can occur 
when effectors are recognized by plant defenses. Mutational changes 
in effector sequences may alter their function or allow evasion of 
host recognition (Dillon et  al., 2019). Some effectors show 
functional redundancy, allowing loss of one effector to 
be compensated for by others (Kvitko et al., 2009). Additionally, 
some effectors can suppress the immune responses triggered by 
other effectors, a phenomenon known as meta effector interactions 
(Wei et al., 2018).

The importance of environmental factors in P. syringae infections 
should not be overlooked. Temperature, humidity, and leaf wetness 
play crucial roles in disease development. For example, optimal 
conditions for infection include temperatures around 15–25°C and 
periods of high humidity or leaf wetness (Xin et al., 2018). These 
environmental factors influence both bacterial growth and the plant’s 
immune responses. P. syringae is not limited to agricultural settings, 
it has also been isolated from various environmental sources including 
aquatic habitats, rain, and wild plants (Morris et  al., 2013). This 
environmental ubiquity may contribute to the emergence of new plant 
diseases as strains adapt to new hosts or environmental 
conditions change.

Despite the existence of pathogenic strains, the vast majority of 
isolated and characterized Pseudomonas strains are beneficial or 
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benign (Palleroni, 2015; Peix et  al., 2009). Only a fraction of 
Pseudomonas strains, out of the numerous species identified, are 
pathogenic (Palleroni, 2015), highlighting the potential for screening 
diverse strains to identify those suitable for biocontrol applications. 
Below, we  examine the diverse mechanisms through which 
Pseudomonas spp. contribute to the suppression of cereal crop 
diseases. Additionally, we explore the practical applications of these 
strains in agriculture and discuss the factors influencing their 
competitiveness and efficacy as biocontrol agents.

4 Control of plant diseases in cereal 
crops

Pseudomonas spp. offer significant potential for managing plant 
diseases in cereal crops. For instance, when rice seeds undergo 
treatment with Pseudomonas fluorescens PF1 before sowing, at the time 
of sowing, and again at 30 days after sowing, the resulting seedlings 
display enhanced resistance to Xanthomonas oryzae pv. pryzae 
(Vidhyasekaran et  al., 2001). This treatment led to a significant 
decrease in disease incidence from 6.8 to 1.2%. In both greenhouse and 

field conditions, P. fluorescens strains PF1 and FP7 exhibit the ability to 
inhibit the mycelial growth of the sheath blight fungus Rhizoctonia 
solani. This inhibition contributes to improved seedling vigor and 
increased yield in rice plants (Nandakumar et al., 2001). Moreover, the 
treatment of rice cv. IR50 with the same Pseudomonas strains induces 
systematic resistance against R. solani, accompanied by an increase in 
chitinase and peroxidase activity (Nandakumar et al., 2001).

Field trials conducted with rice across different seasons evaluate 
the efficacy of P. fluorescens strain Pf-1 in controlling Hirschmanniella 
gracilis, root endoparasitic nematodes that are common in aquatic 
environments. The seed treatment with this biocontrol strain leads to 
a high level of bacterial colonization, suppression of nematodes, and 
a 13% increase in rice yield (Ramakrishnan et al., 1998).

In the case of wheat (Triticum aestivum L.), studies have shown 
that two Pseudomonas strains, GRP3 and PRS9, play a role in 
promoting wheat growth in terms of root-shoot length and plant 
weight (Sharma et al., 2011). P. fluorescens strain PSR21, when applied 
as a wheat seed treatment and later as a foliar spray during the spring, 
results in a significant decrease in the average degree of culm damage 
(where the culm is the above-ground stem of a grass or sedge) (Kita 
et  al., 2004). Further research has highlighted the efficacy of 

TABLE 1 Effects of Pseudomonas spp. against plant bacteria and fungi pathogens.

Pseudomonas 
species

Target organism Effect
Molecules/molecular 
systems

References

P. fluorescens PF1 X. oryzae pv. pryzae, R. solani Growth inhibition – Nandakumar et al. (2001) and 

Vidhyasekaran et al. (2001)

P. fluorescens FP7 R. solani Growth inhibition Pyrrol o[1,2-a] pyrazine- 

1,4-dione, hexahydro −3-(2-

meth ylpropyl)- and Pyrrol 

o[1,2-a] pyrazine- 1,4-dione, 

hexahy dro-3-(pro pylmethyl)

Marrez et al. (2019) and 

Nandakumar et al. (2001)

P. fluorescens strain PSR21 Unspecified plant pathogen Decrease in culm damage – Kita et al. (2004)

P. fluorescens Pf2-79r Tilletia laevis Growth inhibition – McManus et al. (1993)

P. fluorescens Pf-52 Setaria italica, Magnaporthe oryzae Growth inhibition Bacteriocins Karthikeyan and 

Gnanamanickam (2008)

P. fluorescens 2–79 Gaeumannomyces graminis var. tritici Growth inhibition Phenazines Thomashow and Weller (1988)

P. fluorescens Pf-5 Pyrenophora tritici-repentis Growth inhibition Pyrrolnitrin, c-Acetyl 

phloroglucinols

Loper and Gross (2007)

P. fluorescens DR54 R. solani, Pythium ultimum Growth inhibition Viscosinamide Loper and Gross (2007)

P. fluorescens 96.578 R. solani, Pythium ultimum Growth inhibition Tensin Nielsen et al. (2000)

P. fluorescens SS101 Phytophthora infestans Growth inhibition Massetolide Tran et al. (2007)

P. putida A12 Fusarium spp. Mitigated Fusarium wilts – Lemanceau and Alabouvette 

(1993) and Van Peer et al. (1990)

P. fluorescens Mst 8.2 R. solani Growth inhibition – Gull and Hafeez (2012)

P. fluorescens Lp1 Aspergillus flavus, Curvularia spp., 

Fusarium spp.

Growth inhibition – Kanimozhi and Perinbam (2011)

Pseudomonas sp. PICF6 Verticillium spp., Fusarium spp., 

Rhizoctonia spp.

Growth inhibition Volatile organic compounds Montes-Osuna et al. (2022)

P. simiae PICF7 Verticillium spp., Fusarium spp., 

Rhizoctonia spp.

Growth inhibition Volatile organic compounds Montes-Osuna et al. (2022)

P. putida KT2440 Xanthomonas campestris Growth inhibition T6SS Bernal et al. (2017)

P. mosselii BS011 Magnaporthe oryzae Growth inhibition Xantholysin Wu et al. (2018)
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P. fluorescens in reducing disease incidence, such as that caused by the 
fungal pathogen Helminthosporium sativum in wheat. Interestingly, 
following treatment, the bacterial population tends to decrease toward 
the root tip in wheat plants (Srivastava et al., 1999; Wang et al., 1999). 
Moreover, a recent study has investigated the effectiveness of eight 
Pseudomonas strains as biocontrol agents (Clough et  al., 2022). 
Among these, Pseudomonas protegens CHA0 was identified as the 
most potent strain, significantly inhibiting the growth of Ralstonia 
solanacearum, a pathogen causing bacterial wilt in plants. This 
inhibitory activity was linked to the production of key secondary 
metabolites, including orfamides, pyoluteorin, and 
2,4-diacetylphloroglucinol (DAPG) (Clough et al., 2022).

Pseudomonas spp. hold immense potential for combating plant 
diseases in cereal crops, offering multifaceted strategies for disease 
management. From rice to wheat, the application of various 
Pseudomonas strains has shown remarkable results, including reduced 
disease incidence, enhanced seedling vigor, and increased crop yield. 
These findings underscore the importance of developing microbial-
based solutions in agriculture to mitigate the impact of plant 
pathogens on crop production.

5 Direct inhibition of phytopathogens

5.1 Antimicrobial and antifungal 
compounds

In the pursuit of novel biocontrol agents, Pseudomonas spp. have 
garnered considerable attention for their potential to inhibit some of 
the most damaging cereal crop pathogens. Efforts to isolate 
Pseudomonas strains from diverse environments have revealed 
promising candidates capable of combating phytopathogens 
(Chaudhary et al., 2021; Lv et al., 2023). Several studies have identified 
Pseudomonas species with the ability to inhibit numerous cereal crop 
pathogens, including Magnaporthe oryzae (causing rice blast), 
Gaeumannomyces graminis var. tritici (a fungus responsible for wheat 
take-all disease), Fusarium spp. (associated with head blight, root rot, 
wilt, and grain contamination), Pyrenophora tritici-repentis (a fungal 
pathogen that is the cause of tan spot disease), and Rhizoctania solani 
(a wide-host-range soil-borne pathogen) (Garbeva et  al., 2004; 
Karthikeyan and Gnanamanickam, 2008; Lemanceau and Alabouvette, 
1993; Rangarajan et al., 2003; Thomashow and Weller, 1988) (Table 1). 
These findings mark the initial steps in the quest to identify effective 
biocontrol agents, demonstrating the ability of isolates to confer plant 
protection in vivo, through greenhouse experiments and field trials.

Several greenhouse and growth chamber studies have explored 
the use of bioactive compounds purified from cultures of Pseudomonas 
species (Table 1) (Ligon et al., 2000; Wu et al., 2018). For instance, 
metabolites from Pseudomonas mosselii BS011 exhibited broad-
spectrum inhibition against phytopathogenic fungi including 
M. oryzae (Wu et al., 2018). Importantly, Pseudomonas strains have 
demonstrated equal inhibition of pathogens compared to standard 
chemical fungicides (Ligon et al., 2000). For example, culture filtrates 
of P. fluorescens strain BL915 exhibited equal efficacy against R. solani 
compared to quintozene, a conventional chemical fungicide (Ligon 
et al., 2000).

Pseudomonas spp. Metabolites multiple compounds which 
contribute to their antagonistic properties. For example, the 

antagonistic properties of P. protegens FD6 were examined against 
pathogenic fungi such as Botrytis cinerea and Monilinia fructicola 
(Zhang et  al., 2020). Genomic analysis identified 12 gene clusters 
responsible for the production of key secondary metabolites, including 
2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin (PLT), and 
pyrrolnitrin (PRN), all essential for its antifungal activities. Mutant 
analysis revealed that the pltD mutant, lacking PLT production, 
exhibited only 30% inhibition of grey mold disease, while the phlC 
mutant, deficient in 2,4-DAPG production but with a marked increase 
in PLT, demonstrated 65% inhibition. In contrast, the wild-type FD6 
strain showed complete suppression of the pathogen, with no visible 
disease lesions on tomato fruits after 5 days of treatment. These 
findings underscore the critical roles of PLT and 2,4-DAPG, with PLT 
being particularly crucial for the high-level inhibition of fungal 
pathogens. The inverse relationship between the production of these 
two metabolites highlights the complexity of the biocontrol 
mechanisms in P. protegens FD6 (Zhang et al., 2020).

For wheat take-all disease, Pseudomonas spp. have been used as 
potential alternatives to conventional chemical treatments. 
Pseudomonas species offer resilience under unfavorable conditions 
and exhibit promising colonization abilities with cereal crop roots (Al 
Zadjali et al., 2023; Capper and Higgins, 1993; Dowling and O'Gara, 
1994; Thomashow and Weller, 1988; Xu et  al., 2021). Thus, the 
exploration of Pseudomonas-based biocontrol agents holds significant 
promise in augmenting sustainable agricultural practices, heralding a 
new era in crop protection strategies.

5.2 Siderophores

Siderophores constitute a group of secondary metabolites 
synthesized by various bacteria, fungi, yeast, and specific plants in 
response to iron scarcity (Dwivedi and Johri, 2003). These low 
molecular weight molecules, typically ranging from 500–1,500 
Daltons, exhibit a strong binding affinity for iron (III) (Hider and 
Kong, 2010). The term “siderophore” is derived from the Greek, 
meaning “iron carrier” (Neilands, 1995); the first siderophore was 
isolated during 1949–1952 (Hider and Kong, 2010). The first 
crystalline form of siderophore was isolated by Neilands (Neilands, 
1952), sparking research into these iron-chelating compounds 
(Chincholkar et  al., 2000). Kloepper et  al. (1980) provided initial 
evidence of siderophores from plant growth-promoting bacteria 
(PGPB) acting as biocontrol agents. The ability of an organism to 
produce siderophores is closely related to cyanide production, and 
their absence can impact the biocontrol activity of the microbes and 
their ability to restrict iron access to target pathogens (Ho et al., 2021; 
Jha et al., 2011). Iron plays an important role in the life of nearly all 
living organisms (Krewulak and Vogel, 2008).

Plants rely heavily on iron for various vital processes such as 
photosynthesis, oxygen metabolism, DNA and RNA synthesis, and 
more (Aznar et al., 2015; Rout and Sahoo, 2015). However, in many 
natural environments with aerobic conditions and neutral pH levels, 
iron exists mainly in its oxidized ferric (Fe3+) state, which is largely 
insoluble and limits its availability to plants (Colombo et al., 2014). 
The siderophores act as high-affinity chelating agents to solubilize 
ferric ions and transport them to the plant or bacterial cell where it is 
converted to Fe2+ (Kramer et  al., 2020). Moreover, restricting the 
supply of iron to pathogens acts as a strategy to hinder their growth, 
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owing to the insolubility of ferric iron forms (Kramer et al., 2020; Lau 
et al., 2016).

Siderophores can take up the iron available in the surrounding 
environment, and subsequently, iron is acquired by the organisms 
possessing receptors for that siderophore-iron complex, making it 
unavailable to their competitors (Hakim et al., 2021). Besides being 
used as iron carriers, bacterial siderophore-iron complexes can also 
be utilized by certain plants aiding in their better growth (Pathak 
et al., 2017). Among the Gram-negative bacteria where over 90% of 
the bacterial population produces siderophores, the most dominant 
genera are Enterobacter and Pseudomonas (Tian et al., 2009). Among 
Pseudomonas species, pyoverdine is the predominant siderophore 
observed (Cornelis and Matthijs, 2002; Ghssein and 
Ezzeddine, 2022).

Siderophores primarily contribute to the survival and fitness of 
microbial populations, directly and indirectly enhancing the activity 
of biocontrol species (Gull and Hafeez, 2012; Kanimozhi and 
Perinbam, 2011). For example, siderophores from P. fluorescens strain 
Mst 8.2 were shown to be a potent inhibitor against R. solani, with 70% 
disease reduction in wheat (Gull and Hafeez, 2012). Similarly, 
siderophores from P. fluorescens Lp1 have been used to inhibit plant 
fungal pathogens such as Aspergillus flavus, Curvularia spp., and 
Fusarium spp. (Kanimozhi and Perinbam, 2011).

5.3 Volatile organic compounds

Pseudomonas species are known to produce a wide array of 
volatile organic compounds (VOCs) with various functions and 
applications in agricultural settings (Hernández-León et al., 2015). 
These VOCs are small molecules characterized by low molecular 
weights and high vapor pressures, allowing them to diffuse effectively 
through soil pores and influence microbial communities and plant 
health (Wheatley, 2002).

Pseudomonas strains can generate complex mixtures of VOCs, 
although the full extent of their functional diversity is still being 
elucidated (Schmidt et  al., 2015). Some VOCs produced by 
Pseudomonas spp. exhibit antimicrobial properties against 
phytopathogens, making them potential candidates for biocontrol 
applications. For instance, studies have identified Pseudomonas-
derived VOCs with antifungal activity against a range of plant 
pathogens, including Verticillium spp., Fusarium spp., and Rhizoctonia 
spp. (Cordero et al., 2014; Elkahoui et al., 2015; Montes-Osuna et al., 

2022). Pseudomonas sp. PICF6 produces 20 VOCs, that include 
compounds with reported antifungal (e.g., 1-undecene, 
(methyldisulfanyl) methane and 1-decene) or plant growth promoting 
(e.g., tridecane, 1-decene) activities (Montes-Osuna et  al., 2022). 
These findings suggest that Pseudomonas-derived VOCs could serve 
as biofumigants to mitigate the proliferation of pathogenic species and 
promote plant health.

Further studies have investigated the antifungal activity of VOCs 
produced by P. fluorescens ZX against postharvest fungal pathogens 
(Wang et al., 2021; Yue et al., 2023). The research demonstrates that 
P. fluorescens ZX VOCs effectively inhibit the growth of both 
Penicillium italicum and Botrytis cinerea, causative agents of blue mold 
in citrus and gray mold in various fruits, respectively (Wang et al., 
2021; Yue et al., 2023). The VOCs significantly suppressed mycelial 
growth, conidial germination, and sporulation of these pathogens in 
vitro and reduced disease incidence and lesion size on infected fruits 
in vivo. Mechanistically, the VOCs primarily act by damaging the 
pathogens’ cell membrane integrity and permeability, leading to 
cellular content leakage, decreased ergosterol biosynthesis, and 
increased malondialdehyde content (Wang et  al., 2021; Yue et  al., 
2023). Additionally, the VOCs interfere with pathogen respiration by 
inhibiting key enzymes such as ATPase, malate dehydrogenase, and 
succinate dehydrogenase, causing energy metabolism disruption and 
reactive oxygen species accumulation. Transcriptomic analysis 
revealed significant changes in gene expression related to membrane 
components and amino acid metabolism pathways in treated 
pathogens (Wang et al., 2021; Yue et al., 2023).

However, to fully harness the potential of Pseudomonas VOCs for 
practical applications, further investigations are necessary to fully 
characterize their production within the plant root system and assess 
their efficacy under natural environmental conditions. By exploring 
the roles of Pseudomonas-derived VOCs in plant-microbe interactions, 
researchers can unlock valuable insights into sustainable strategies for 
crop protection and soil management.

5.4 Anthelmintic compounds

Pseudomonas spp., in addition to their antimicrobial activities, 
have also demonstrated the capability to produce potent anthelmintic 
compounds, they can destroy parasitic worms and nematodes 
(Devaraj et al., 2019; Lee C. H. et al., 2000). While not as extensively 
studied in Pseudomonas as in Streptomyces, the potential for nematode 

TABLE 2 Effects of Pseudomonas spp. on nematodes and insects.

Pseudomonas species Target organism Effect
Molecules/molecular 
systems

References

P. fluorescens Pf-1 Hirschmanniella gracilis Nematode suppression – Ramakrishnan et al. (1998)

P. fluorescens Meloidogyne javanica Reduced nematode 

infection, egg mass 

destruction, decreased egg 

hatching

– Norabadi et al. (2014)

P. chlororaphis PcR3-3 Plagiodera versicolora High insecticidal activity Chitinase C, phospholipase C Wang et al. (2024a)

P. fluorescens, P. aeruginosa Pratylenchus loosi Strong nematicidal activity Metalloproteases, serine 

proteases

Rahanandeh et al. (2024)

P. simiae MB751 Meloidogyne incognita Nematicidal activity Cyclo(L-Pro-L-Leu) Sun et al. (2021)
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control exists within this bacterial genus (Table 2) (Devaraj et al., 2019; 
Lee C. H. et al., 2000; Rahanandeh et al., 2024; Spiegel et al., 1991; 
Wang et al., 2024a; Wang et al., 2024b).

Root-knot nematodes (Meloidogyne spp.) are among the most 
economically damaging plant-parasitic nematodes worldwide, causing 
significant yield losses in many crops (Sun et  al., 2021). These 
microscopic roundworms infect plant roots, forming characteristic 
galls or “knots” that disrupt water and nutrient uptake. Meloidogyne 
incognita is one of the most widespread and studied species, with a 
broad host range and short generation time that makes it particularly 
difficult to control.

One study investigated the potential of a strain of P. fluorescens as 
a biocontrol agent against Meloidogyne javanica, another important 
root-knot nematode species (Norabadi et al., 2014). In greenhouse 
and laboratory experiments, P. fluorescens application significantly 
reduced nematode infection compared to the control group. The 
bacteria destroyed the nematode egg mass matrix and decreased 
egg-hatching levels. Additionally, P. fluorescens inoculation led to 
increased activities of peroxidase (POX) and phenylalanine ammonia 
lyase (PAL), key enzymes associated with plant defense mechanisms 
(Norabadi et al., 2014). These observations suggest that P. fluorescens 
effectively suppress nematode populations by disrupting egg structures 
and inducing systemic resistance in plants.

Recent research has expanded our understanding of Pseudomonas 
spp. potential for control of both nematodes and insect pests (Wang 
et  al., 2024a; Wang et  al., 2024b). For example, Pseudomonas 
chlororaphis PcR3-3, isolated from willow roots, exhibited high 
insecticidal activity against the coleopteran pest Plagiodera versicolora 
(Wang et al., 2024a). This leaf beetle is a significant pest of willow and 
poplar trees. While this study primarily focused on insecticidal 
activity, it highlights the diverse capabilities of Pseudomonas strains 
against different invertebrates. The genome of P. chlororaphis PcR3-3 
was found to contain several genes potentially involved in insect 
pathogenicity, including those encoding chitinase C and 
phospholipase C (Wang et  al., 2024b). These enzymes have been 
previously associated with the disruption of insect gut structures and 
could potentially play a role in nematode control as well.

Other studies have demonstrated the nematicidal potential of 
Pseudomonas spp. against the root lesion nematode Pratylenchus loosi, 
a significant pest of tea plants (Rahanandeh et al., 2024). It was found 
that P. fluorescens and Pseudomonas aeruginosa strains, which were 
isolated from tea rhizosphere, produced proteases with strong 
nematicidal activity. These proteases were capable of completely 
degrading Pratylenchus loosi nematodes within 8 h of exposure 
(Rahanandeh et al., 2024). Characterization of the proteases revealed 
them to be metalloproteases and serine proteases, classes of enzymes 
known to be involved in the degradation of nematode cuticles.

Although the research exploring Pseudomonas spp. as a source of 
anthelmintic compounds is relatively limited in Pseudomonas 
compared to other prokaryotes, these studies have indicated the 
potential of certain Pseudomonas strains to control populations of 
both plant-parasitic nematodes and insect pests. Given the diverse 
array of natural products synthesized by Pseudomonas strains and 
their interactions within soil ecosystems, it is likely that additional 
anthelmintic compounds may be discovered among Pseudomonas spp. 
Metabolites (Devaraj et al., 2019). This highlights the potential of 
Pseudomonas species as versatile biocontrol agents capable of 
addressing multiple agricultural pest problems.

5.5 Type VI secretion system

The Type VI Secretion System (T6SS) has emerged as a pivotal 
weapon in bacterial warfare, allowing bacteria to deliver toxic effectors 
directly into neighboring cells (Mougous et al., 2006; Pukatzki et al., 
2006). T6SSs are present in more than 25% of gram-negative bacteria 
(Ho et al., 2014). The T6SS is a contact-dependent secretion system 
that plays a crucial role in interbacterial competition (Mougous et al., 
2006; Pukatzki et  al., 2006). It provides a selective advantage to 
producer strains by annihilating competitors either in an 
indiscriminate manner or in response to danger signals (Basler et al., 
2013; Durán et al., 2021; Ho et al., 2014; Hood et al., 2010). The T6SS 
was originally described in Vibrio cholerae and P. aeruginosa as a 
proteinaceous nanomachine that translocates specific proteins directly 
into target cells (Mougous et al., 2006; Pukatzki et al., 2006). It was 
later observed and analyzed in many other bacterial pathogens 
(Burtnick et  al., 2011; De Pace et  al., 2010; Murdoch et  al., 2011; 
Suarez et al., 2008). However, the analytical description of T6SS in 
non-pathogenic bacteria is underrepresented in the scientific literature 
(Bernal et al., 2017; Durán et al., 2021; Marchi et al., 2013).

The killing activity conferred by antibacterial T6SSs can 
be  extremely potent during in vitro co-culture experiments, with 
T6SS-wielding cells often able to virtually eliminate similar numbers 
of susceptible competitor cells within a few hours (Basler et al., 2013; 
Durán et al., 2021; Ho et al., 2014). Antibacterial T6SSs are frequently 
found in both pathogenic and symbiotic or beneficial plant-associated 
bacteria (Bernal et al., 2018; Durán et al., 2021). This suggests that 
antibacterial T6SSs may be involved in establishing and protecting 
beneficial plant-associated communities from invasion of these 
communities by pathogens. For example, the T6SS-dependent 
antibacterial activity in the rhizosphere bacterium P. putida KT2440 
contributes to reducing colonization and necrosis induced by the 
phytopathogen Xanthomonas campestris when both are co-infiltrated 
into Nicotiana benthamiana leaves (Bernal et al., 2017).

Further in planta studies show that T6SS in P. fluorescens MFE01 
play crucial role in protecting potato tubers from Pectobacterium 
atrosepticum infection (Bourigault et  al., 2023). Fluorescence 
microscopy revealed that MFE01 exhibits an aggressive T6SS behavior 
with continuous and intense firing activity, causing rounding and lysis 
of target P. atrosepticum cells. The study identified a putative T6SS-
secreted amidase effector, Tae3Pf, as a major contributor to MFE01’s 
antibacterial activity. This effector was found to be  toxic when 
produced in the periplasm of Escherichia coli, with its toxicity 
neutralized by the inner membrane immunity protein Tai3Pf. While 
Tae3Pf plays a significant role, the research suggests that other T6SS 
effectors likely contribute to MFE01’s overall antibacterial activity 
(Bourigault et al., 2023). These findings highlight the importance of 
the T6SS in P. fluorescens MFE01’s biocontrol capabilities, offering new 
perspectives on bacterial antagonism in the context of plant protection 
and potentially leading to the development of more effective 
biocontrol strategies in agriculture.

6 Indirect inhibition of 
phytopathogens

In addition to direct inhibition via the production of antagonistic 
compounds, Pseudomonas spp. demonstrate a remarkable capacity to 
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indirectly inhibit plant pathogens (Haney et al., 2018; Leeman et al., 
1995). Competitive exclusion is one of the primary mechanisms 
through which Pseudomonas strains exert their inhibitory effects 
(Archetti et al., 2011; Buddrus-Schiemann et al., 2010; Rainey, 1999). 
By occupying niche spaces and consuming available resources, these 
strains effectively thwart the colonization efforts of pathogens, 
preventing them from establishing robust populations and causing 
harm to plants (Archetti et al., 2011; Buddrus-Schiemann et al., 2010; 
Rainey, 1999). This strategy, however, does not operate in isolation; 
rather, it complements direct antagonism, wherein Pseudomonas spp. 
secretes antimicrobial compounds that further hinder pathogen 
growth and proliferation (Haney et al., 2018; Leeman et al., 1995). 
These antimicrobials may arise as byproducts of interference 
competition over resources provided via plant root exudates or 
organic matter in the soil, illustrating the multifaceted nature of 
Pseudomonas-mediated inhibition.

Pseudomonas spp. possess the ability to activate host resistance 
pathways, thereby inducing systemic resistance (ISR) in plants 
(Table 3) (Chen et al., 1999; Elsharkawy et al., 2022; Haney et al., 2018; 
Hoffland et  al., 1996; Leeman et  al., 1995; Meziane et  al., 2005; 
Nandakumar et al., 2001). ISR is a state of enhanced defensive capacity 
developed by a plant reacting to specific biotic or chemical stimuli. 
Pseudomonas spp. mediate ISR through phytohormone defense 
signaling pathways such as jasmonic acid/ethylene (JA/ET) or salicylic 
acid (SA) (Chen et al., 1999; Pangesti et al., 2016). For instance, a study 
investigated the efficacy of Pseudomonas corrugata strain 13 and 
Pseudomonas aureofaciens strain 63–28  in inducing systemic 
resistance against Pythium aphanidermatum in cucumber roots (Chen 
et al., 1999). Both bacterial strains were found to produce SA in vivo 
and induced cucumber roots to accumulate endogenous SA within a 
day of inoculation (Chen et al., 1999). Notably, plants treated with a 
Pseudomonas strain showed significantly elevated SA levels compared 
to the control, persisting from 1 to 5 days post-bacterization (Chen 
et al., 1999). Interestingly, SA inhibited the mycelial growth of the 
pathogen P. aphanidermatum at higher SA concentrations (Chen 
et al., 1999).

In response to infections by various pathogens, such as fungi, 
bacteria, or nematodes, plants often produce stress ethylene (Abeles 
et al., 1992; Iqbal et al., 2017). The symptoms observed in an infected 
plant largely stem from the stress caused by the pathogen (Iqbal et al., 
2017; Van Loon, 1984). A significant portion of the damage to infected 
plants results from the plant’s response to increased levels of stress 
ethylene (Stearns and Glick, 2003). Exogenous ethylene can exacerbate 
pathogen infections, while chemical inhibitors of ethylene synthesis 

can reduce their severity (Stearns and Glick, 2003; Yang et al., 2017). 
Additionally, pretreating plants with ACC deaminase-containing plant 
growth-promoting bacteria can provide significant protection against 
ethylene-induced damage from pathogen infections (Glick et al., 1995; 
Hao et al., 2011; Toklikishvili et al., 2010; Wang et al., 2000). Some 
bacteria that promote plant growth encode the enzyme ACC 
deaminase, which breaks down ACC exudates from plants, the direct 
precursor of ethylene production, and lowers the amount of ethylene 
that plants produce in response to different stressors (Glick et al., 
1995; Hao et al., 2011). Many other studies showed that the application 
of ACC-deaminase-producing plant-growth-promoting bacteria was 
found to inhibit the growth of phytopathogens in crops (Toklikishvili 
et al., 2010; Wang et al., 2000).

The ability of Pseudomonas spp. to induce plant disease resistance 
holds significant promise for its application as a biocontrol agent 
(Haney et al., 2018; Leeman et al., 1995). Strains that exhibit such 
abilities may prove highly effective at protecting their plant hosts 
against pathogenic infections in situ, even if they demonstrate poor 
bioactivity against phytopathogens in vitro. This underscores the 
importance of screening for biocontrol strains based not only on their 
performance in traditional in vitro bioactivity assays but also on their 
ability to elicit host defenses and confer protection to host plant 
species in vivo. As research in this field progresses, better proxies, and 
methodologies for evaluating the efficacy of Pseudomonas strains as 
biocontrol agents should be  developed, considering the intricate 
interplay between bacterial-induced plant defenses and 
pathogen susceptibility.

7 The potential use of Pseudomonas 
species as effective biocontrol agents

Many studies demonstrate promise in laboratory settings but 
exhibit inconsistent efficacy in agricultural settings (Arora et al., 2008; 
Garbeva et al., 2004; Lee H. S. et al., 2000; Rini and Sulochana, 2007). 
The inconsistent results of biocontrol treatments show we need to 
better understand what affects soil and root microbes. Abiotic factors 
such as soil type, climate, and farming practices, along with biotic 
factors like host crop species and root exude profiles, profoundly 
influence microbial assemblages and biocontrol success (Babin et al., 
2019; Classen et al., 2015; Edwards et al., 2015; Glick and Gamalero, 
2021; Rousk et al., 2010). Efforts such as the Microbiome Stress project 
aim to understand bacterial community responses to environmental 
stressors, aiding in the development of robust biocontrol strategies 

TABLE 3 Pseudomonas species inducing systemic resistance (ISR) in plants.

Pseudomonas species Host plant Pathogen/Pest controlled References

P. protegens CHA0 Tomato Meloidogyne javanica Siddiqui and Shaukat (2002)

P. fluorescens WCS417r Arabidopsis, Tomato Various pathogens Ab Rahman et al. (2018)

P. putida WCS358 Arabidopsis Various pathogens Meziane et al. (2005)

P. fluorescens Pf1 Rice R. solani Nandakumar et al. (2001)

P. fluorescens FP7 Rice R. solani Nandakumar et al. (2001)

P. fluorescens 63–28 Cucumber P. aphanidermatum Chen et al. (1999)

P. fluorescens SS101 Tomato Phytophthora infestans Tran et al. (2007)

P. simiae MB751 Tomato Meloidogyne incognita Sun et al. (2021)
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resilient to changing environmental conditions and advancing 
sustainable agriculture practices (Rocca et al., 2019).

7.1 Abiotic factors influencing biocontrol 
efficacy

Numerous studies have focused on enhancing the effectiveness 
and consistency of Pseudomonas spp. biocontrol agents through 
various agricultural practices and interventions (Zhang et al., 2015). 
This includes the identification of several minerals and carbon sources 
that have a differential influence on the production of the antibiotics 
2,4-diacetylphloroglucinol, pyoluteorin and pyrrolnitrin and the 
salicylic acid and pyochelin by disease-suppressive strains of 
P. fluorescens (Duffy and Défago, 1999). For example, the addition of 
glycerol, zinc and ammonium molybdate to P. protegens CHA0 has 
shown promise in increasing its biocontrol efficacy against 
Meloidogyne javanica (Hamid et  al., 2003; Siddiqui and Shaukat, 
2002). Additionally, adding zinc to soil containing P. fluorescens PfAs1 
has enhanced the expression of genes resistant to bacterial leaf blight 
in rice, while also significantly reducing bacterial leaf blight in rice 
caused by X. oryzae pv. oryzae (Sharma et  al., 2020). Similarly, 
supplementing P. fluorescens NK2 with the zinc oxide nanoparticle 
(ZnO-NP) enhances the inhibition efficacy against the pathogenic 
bacterium Pseudomonas viridiflava NK2 in cucumber (Al-Karablieh 
et al., 2022).

Beyond strain inoculation, various agricultural practices 
significantly impact the composition and establishment of species 
within the plant root microbiome. Practices like irrigation, tillage, and 
cropping methods can play crucial roles (Babin et al., 2019; Dennert 
et al., 2018; Mavrodi et al., 2018). Agro-chemicals such as pesticides 
and fertilizers also shape the plant root and soil microbiome, offering 
protection against crop diseases (Ding et al., 2013; Shen et al., 2019). 
For instance, ammonia fumigation effectively suppresses Fusarium 
wilt disease in bananas (Musa acuminate Cavendish) while inducing 
shifts in the soil microbial community, notably reducing Fusarium 
species abundance (Shen et al., 2019). Studies suggest that combining 
organic fertilizers with biocontrol strains enhances disease suppression 
further. Thus, the addition of biocontrol strains to organic fertilizers 
before application creates a more conducive soil environment, 
fostering nutrient availability, root colonization, and biocontrol 
effectiveness, a strategy known as bio-organic fertilizer application, 
widely recognized for its efficacy in disease suppression (Ding et al., 
2013; Ketabchi et al., 2016; Watanabe et al., 1987).

Conversely, certain chemical additives and carbon compounds 
have been found to impede the biocontrol efficacy of Pseudomonas 
spp. For example, the addition of glucose can hinder the efficacy of 
P. protegens CHA0 against Meloidogyne javanica (Siddiqui and 
Shaukat, 2002). However, some Pseudomonas strains exhibit a high 
tolerance to commonly used fungicidal compounds, paving the way 
for synergistic approaches where chemical and biological pest control 
methods can be combined to enhance efficacy while reducing the 
overall pesticide dose (Anand et al., 2010; Kataria et al., 2002).

While these findings suggest the potential for optimizing 
farming practices to maximize disease suppression, comprehensive 
research in this area remains limited. The complexity of agricultural 
ecosystems and the variability in pathogen dynamics necessitates 
further investigation to identify the most effective strategies tailored 

to specific pathogens, climatic conditions, and soil characteristics. 
Nonetheless, exploring the interplay between Pseudomonas spp. 
biocontrol agents, agricultural practices, and chemical additives 
hold promise for sustainable disease management and 
crop protection.

Optimizing biocontrol delivery systems 
involving Pseudomonas

Numerous methods exist for delivering biocontrol strains to 
crops, each potentially influencing the consistency of biocontrol 
strategies (Jambhulkar et  al., 2016; Preininger et  al., 2018). Foliar 
spraying may seem appealing, especially in developed countries with 
available spraying equipment, but microbial suspensions can damage 
or clog machinery due to settling out of solution, and stresses from 
spraying apparatus (e.g., heat stress, shearing forces) can reduce 
biocontrol strain viability (Figure  2) (Preininger et  al., 2018). 
Moreover, foliar spray that is suitable for microbial inoculants 
targeting foliar diseases (Jambhulkar et al., 2016) is often less effective 
for controlling root diseases like wheat take-all. Soil inoculation, 
another recommended method, is often employed if biocontrol strains 
are susceptible to desiccation (Jambhulkar et al., 2016). As discussed 
earlier, methods such as bio-organic fertilizer application (Ding et al., 
2013; Ketabchi et  al., 2016; Watanabe et  al., 1987) can enhance 
biocontrol strain success. However, these strategies may increase the 
expense and complexity of applying disease-suppressive measures, 
while also potentially altering soil chemistry and microbiome 
composition with unknown or conflicting effects (Babin et al., 2019; 
Shen et al., 2019).

Direct inoculation of biocontrol strains onto plant roots offers 
a strategy to bypass challenges associated with soil-survivability as 
the strain bypasses exposure to an environmental medium before 
colonizing roots (Jambhulkar et al., 2016; Pill, 1991). Techniques 
like fluid drill inoculation and root transplant dip exemplify this 
approach, allowing biocontrol agents to colonize roots under 
controlled conditions (Jambhulkar et al., 2016; Pill, 1991). In root 
dip, seedling roots are immersed in a liquid cell suspension before 
field transfer, while in fluid drill methods, seeds pre-germinate 
within a gel containing the biocontrol strain (Jambhulkar et al., 
2016; Pill, 1991). Root dip has demonstrated enhanced root 
colonization by Pseudomonas compared to soil inoculation in some 
cases (Pathak et  al., 2004), effectively protecting crops against 
R. solani. Other studies showed that root dip was effective for 
P. fluorescens SBW25 to colonize the root of wheat (Guan et al., 
2024). However, pre-germinating plants and manually inoculating 
roots are labor-intensive processes compared to purchasing 
pre-coated seeds (O’Callaghan, 2016). Similarly, fluid drill methods 
have shown increased root colonization by inoculated bacterial 
strains, in limited studies, indicating efficient disease suppression 
(Clarkson et al., 2002; Hardaker and Hardwick, 1978). Nevertheless, 
research exploring the ecological impact of fluid drill gel application 
remains sparse.

As mentioned, plants can also undergo colonization by coating 
the seed with a formulation of biocontrol strain spores or cells, 
employing various methods to adhere biocontrol strains to the seed 
surface. For instance, seeds may be  submerged in a microbial 
suspension and subsequently dried before seed germination (known 
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FIGURE 2

A summary of the major tools and methods available that could facilitate the application of biocontrol strains that can influence biocontrol efficacy in 
the field.

as bio-priming) (Callan et al., 1990), or a liquid cell suspension or 
adhesive may be utilized to coat the seed in bacterial cells (referred to 
as film coating) (O’Callaghan, 2016). Seed coating technologies 
effectively deliver biocontrol strains directly to the soil surrounding a 
germinating seed and the rhizosphere (Jambhulkar et  al., 2016; 
O’Callaghan, 2016), with numerous instances demonstrating the 
efficacy of seed coating approaches in disease suppression in both field 
and laboratory settings (Ardakani et al., 2010; Callan et al., 1990; 
El-Mougy and Abdel-Kader, 2008; Ma et al., 2019; Prathuangwong 
et al., 2013). This includes several studies showcasing the effectiveness 
of seed coatings as delivery methods for Pseudomonas spp. biocontrol 
strains (Ardakani et al., 2010; Prathuangwong et al., 2013). In addition, 
scientists have recently reported developing a unique procedure to 
introduce endophytic bacteria into plant seeds so that it was no longer 
necessary to treat the seeds before planting (Glick and Gamalero, 2021).

While the focus of this review is on Pseudomonas as biocontrol 
agents, it is worth noting an emerging trend in the use of nanoparticle-
based Pseudomonas biofertilizers. Although primarily applied for 
plant growth promotion rather than disease control, this innovative 
approach may have implications for biocontrol strategies. 
Nanoparticle-based biocontrol formulations have shown significant 
potential in overcoming delivery challenges (El-Ghamry et al., 2018). 
In these formulations, plant growth-promoting bacteria and nutrients 
are encapsulated within nanoscale polymers (nanoencapsulation) 
(Golbashy et al., 2017). This method enhances soil microbial activity, 
improves aeration, and supports natural fertilization (Itelima et al., 
2018). For instance, selenium nanoparticles combined with 
Pseudomonas spp. have been used to improve crop nutrition and soil 
quality (Sonali et al., 2024) However, not all nanoparticles interact 
synergistically with Pseudomonas spp. (Dimkpa et al., 2012a; Dimkpa 

et al., 2012b). For example, zinc nanoparticles were found to enhance 
siderophore production more effectively than copper nanoparticles, 
which inhibited the expression of genes related to siderophore 
transport (Dimkpa et al., 2012a). These findings suggest that while 
nanoparticle-based biocontrol formulations hold significant promise 
in enhancing soil health and crop productivity, their interactions with 
specific biocontrol strains, such as Pseudomonas spp., are complex and 
not always synergistic.

The successful delivery of biocontrol strains remains a key 
challenge in modern agriculture, with methods ranging from foliar 
sprays to seed coatings and root inoculation. While each approach 
offers distinct advantages, the complexity of balancing cost, labor, and 
ecological impact must be carefully considered. Recent advancements, 
such as nanoparticle-based biocontrol formulations, hold great 
potential for improving efficacy and sustainability. However, the 
variability in interactions between nanoparticles and biocontrol 
strains like Pseudomonas spp. underscores the need for further 
research to optimize these technologies for widespread 
agricultural use.

7.3 Exploiting plant recruitment 
mechanisms to improve biocontrol agent 
outcomes

In addition to increasing the competitiveness of bacterial strains 
when applied to seeds and soil, leveraging the mechanisms by which 
plants selectively recruit microbial species from the soil could enhance 
the efficacy of biocontrol strains (Ryan et al., 2009; Zhang et al., 2015). 
Plants release approximately 20–40% of photosynthetically fixed 
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carbon through their roots into the soil, comprising various 
compounds like ions, amino acids, sugars, phenolics, mucilage, 
polysaccharides, and proteins (Badri et al., 2013; Bais et al., 2006; el 
Zahar Haichar et al., 2016; Zhalnina et al., 2018). This root exudation 
triggers a surge in microbial abundance and activity in the soil 
surrounding the roots, known as the “rhizosphere effect,” as many 
microbes are attracted to the carbon-rich nutrients exuded from the 
roots (Bais et al., 2006); soil microbes come to plant rhizospheres to 
feed. Moreover, exudates potentially act as a filtering mechanism, 
enabling plants to selectively enrich for specific microbial species with 
certain metabolic capabilities (Bais et al., 2006). Experiments profiling 
the root exudates of Arabidopsis thaliana have shown that specific 
exudate compounds correlate with the abundances of specific bacterial 
taxa, indicating their role in microbial recruitment (Badri et al., 2013; 
Chaparro et al., 2013; Chaparro et al., 2014). Stable isotope probing 
experiments have further revealed that different microbial taxa 
metabolize plant root exudates based on differences in exudate 
composition (el Zahar Haichar et  al., 2016; Haichar et  al., 2008; 
Haichar et al., 2012). Additionally, root exudation can be influenced 
by abiotic and biotic factors, including responses to pathogens, which 
alter the microbial community composition (Jousset et  al., 2011; 
Lanoue et al., 2010).

Beyond changes in their relative abundance, root exudates may 
alter the functionality of the root microbiome by modifying microbial 
gene expression (Chaparro et al., 2014). For instance, benzoxazinoid-
related compounds, exuded by maize roots, correlate with an increased 
number of microbial transcripts related to beneficial P. putida, which 
resulted in significantly higher numbers of P. putida cells colonizing 
the root (Neal et al., 2012).

Understanding the relationships between root exudate 
composition, microbial community structure, and microbiome 
functionality offers promising avenues for enhancing crop productivity 
and health. Engineering plants to produce specific root exudates could 
improve the colonization potential and efficacy of beneficial species 
and biocontrol agents, such as Pseudomonas spp. (Ali and Glick, 
2024). Arabidopsis mutant lines engineered with altered root 
exudation profiles have shown increased recruitment of beneficial 
rhizobacteria, suggesting similar approaches could be applied to cereal 
crops through breeding or genetic modification (Badri et al., 2009; 
Bressan et al., 2009; Huang et al., 2019). However, there remains a 
substantial knowledge gap regarding the compounds acting as signals 
and nutrients for bacteria of interest. While cues are well-defined for 
certain plant-microbe symbioses, many other systems lack a detailed 
understanding. Advanced tools like stable isotope probing, 
metabolomics, dual RNA sequencing, and imaging mass spectrometry 
are beginning to elucidate some of these interactions, paving the way 
for a deeper understanding of plant-microbe dynamics in the future 
(Berry et al., 2013; Camilios-Neto et al., 2014; el Zahar Haichar et al., 
2016; Haichar et al., 2012; Zhalnina et al., 2018).

7.4 Engineered Pseudomonas for enhanced 
efficacy

It is generally assumed that suppression of plant pathogens by 
Pseudomonas spp. is based on two primary features: (1) production of 
natural products (direct inhibition), and (2) stimulation of ISR, which 
activates the plant defense system against harmful microbes and 

viruses. The expression of genes and natural products of Pseudomonas 
is influenced by growth and environmental conditions (Chin-A-
Woeng et  al., 2003; Hamid et  al., 2003). These conditions can 
negatively affect the efficacy of Pseudomonas spp. as biocontrol strains 
(Nadeem et al., 2016). For instance, biocontrol Pseudomonas strains 
may perform well in one location or field season but not the next, 
owing to a wide range of biotic and abiotic factors in the soil 
environment that can adversely impact the Pseudomonas strain’s root 
colonization, expression of genes involved in biocontrol and/or 
activity of biocontrol metabolites (Babin et al., 2019; Classen et al., 
2015; Edwards et al., 2015; Rousk et al., 2010).

Based on the increasing knowledge of the molecular mechanisms 
that underline natural product synthesis, the use of improved 
genetically modified biocontrol agents in agricultural seems feasible. 
However, the intentional release of genetically modified organisms 
(GMOs) requires extensive analysis of their potential ecological 
impact (Glick and Skof, 1986; Kolseth et al., 2015; Then et al., 2020). 
Moreover, the issue of whether GMOs could affect non-target 
organisms needs to be  addressed. Laboratory experiments must 
be conducted before the release of GMOs into the natural environment.

Many studies have engineered Pseudomonas strains to enhance 
their biocontrol efficacy (Bakker et al., 2002; Barahona et al., 2011; 
Glandorf et  al., 2001; Leeflang et  al., 2002; Niemann et  al., 1997; 
Shaukat and Siddiqui, 2003; Viebahn et al., 2003; Xiao-Jing et al., 
2005). For instance, P. putida WCS358 was genetically modified to 
overproduce the antifungal compound 2,4-diacetylphloroglucinol 
(Phl) (Bakker et al., 2002; Glandorf et al., 2001; Leeflang et al., 2002), 
this genetically modified strain displays enhanced antifungal activity 
(Glandorf et  al., 2001). Modified derivatives of strain P. putida 
WCS358 caused transient shifts in the composition of bacterial and 
fungal communities in the rhizosphere of wheat. However, they had 
no effect on soil metabolic activities (Bakker et al., 2002; Glandorf 
et al., 2001; Leeflang et al., 2002). In addition, a hypermotile mutant 
of P. fluorescens F113 was superior to the wild-type strain in colonizing 
the plant rhizosphere and controlling Fusarium oxysporum and 
Phytophthora cactorum pathogenesis (Barahona et al., 2011).

By harnessing the power of genetic modification, researchers may 
be able to tailor Pseudomonas strains to target specific pathogens while 
minimizing unintended ecological impacts (Barahona et al., 2011; 
Glandorf et al., 2001; Leeflang et al., 2002; Viebahn et al., 2003). These 
advancements pave the way for sustainable and environmentally 
friendly strategies to combat crop diseases, contributing to the overall 
resilience and productivity of agricultural systems. Continued 
research and innovation in this area holds promise for further 
enhancing the biocontrol potential of genetically modified 
Pseudomonas strains, ultimately benefiting farmers and 
ecosystems alike.

7.5 The biosafety of Pseudomonas-based 
biocontrol agents

Beyond these logistical hurdles, the safety concerns regarding 
clinical toxicity and environmental persistence pose additional 
obstacles to the commercialization of Pseudomonas spp. as biocontrol 
agents, necessitating extensive screening processes that impede 
progress (Fravel, 2005). Many candidate biocontrol agents are not well 
characterized and lack a thorough assessment of their non-target 
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effects, leaving gaps in our understanding of their ecological impacts 
(Viaene et al., 2016; Winding et al., 2004).

An underlying concern with using antagonistic bacteria like 
Pseudomonas spp. as biocontrol agents is the diverse array of 
secondary metabolites they produce, which could potentially exert 
unintended non-target effects, including those detrimental to human 
health (Deising et al., 2017). While these metabolites effectively target 
pathogens, some may also pose risks to human cells by interacting 
with essential human metabolites, such as cholesterol (Zotchev, 2003). 
The actual production and concentration of antimicrobials by 
biocontrol agents in the soil remains inadequately explored (Deising 
et al., 2017; Winding et al., 2004). Some evidence suggests that the role 
of antimicrobials in inhibiting pathogens within the plant root niche 
might be minor compared to other traits like resource competition 
and immune system activation (Hennessy et al., 2017; Koch et al., 
2018). The tight regulation of gene clusters encoding secondary 
metabolites raises the possibility that their activation depends on the 
direct interaction with specific pathogenic species, potentially 
minimizing non-target effects compared to the widespread use of 
purified antimicrobial molecules (Bertrand et al., 2014; Van der Meij 
et al., 2017). Nonetheless, deeper insights into the in vivo behavior and 
concentration of secondary metabolites produced by biocontrol agents 
are essential to develop strategies that mitigate non-target effects.

Notwithstanding several studies highlighting the influence of 
Pseudomonas spp. on individual plant symbionts, broader 
investigations into the impacts of these bacteria on the soil ecosystem 
and root microbiome are relatively scant (Balser et al., 2002; Glick and 
Gamalero, 2021; Khatoon et al., 2020; Lv et al., 2023). The introduction 
of biocontrol strains at low densities, such as through seed coatings, 
may have limited effects on the indigenous microbial community, 
especially in highly diverse soils (Koch et al., 2018). However, larger 
inoculations could modify existing soil communities, with some 
studies demonstrating short-term alterations in microbial composition 
following biocontrol strain application (Schmidt et al., 2014; Winding 
et al., 2004). Understanding the long-term implications of biocontrol 
strain application on pathogen populations, soil microbiome 
functionality, and environmental processes requires meticulously 
designed experiments, incorporating indicators like mycorrhizal 
abundance and functional gene expression related to plant-beneficial 
processes (Schmidt et al., 2014; Sisaphaithong et al., 2012; Winding 
et al., 2004). Rigorous controls are imperative to delineate the specific 
impacts of biocontrol Pseudomonas strains on soil microbiomes, 
paving the way for informed decision-making in sustainable 
agriculture (Winding et al., 2004).

Genetically modified biocontrol agents offer several potential 
advantages over conventional chemical pesticides. They can 
be  engineered to have increased efficacy, broader host range, 
improved persistence in the environment, and enhanced production 
of antimicrobial compounds (Glandorf, 2019; Scheepmaker et al., 
2016; Tonui et al., 2022). For example, Pseudomonas strains have 
been modified to overproduce antifungal metabolites, leading to 
better suppression of plant pathogens (Glandorf, 2019; Scheepmaker 
et  al., 2016; Tonui et  al., 2022). Genetically modified biocontrol 
agents could provide more targeted pest control while reducing 
reliance on chemical pesticides, aligning with goals for integrated 
pest management and sustainable agriculture (Scheepmaker 
et al., 2016).

However, the development and use of genetically modified 
biocontrol agents also raise important biosafety concerns that require 
careful consideration. One primary concern is the potential for 
unintended ecological impacts. While these biocontrol agents are 
designed to target specific pests, their release into complex ecosystems 
could have unforeseen consequences on non-target organisms or 
broader ecological processes. For instance, there are questions about 
whether genetically modified biocontrol agents could outcompete 
native microbial populations or disrupt existing ecological balances 
(Glandorf, 2019; Scheepmaker et al., 2016; Tonui et al., 2022).

Another significant concern is the potential for horizontal gene 
transfer. Genetically modified biocontrol agents carry modified 
genetic material, and there is a possibility that these genes could 
be transferred to other microorganisms in the environment. This 
could potentially lead to the spread of engineered traits beyond the 
intended biocontrol agent, with unknown consequences for 
microbial ecology and potentially human health (Glandorf, 2019; 
Scheepmaker et al., 2016; Tonui et al., 2022). The likelihood and 
potential impacts of such gene transfer events need to be thoroughly 
assessed as part of the risk evaluation process for genetically 
modified biocontrol agents.

8 Registration and commercialization 
of Pseudomonas spp. as biocontrol 
strains

In contrast to the established practice of biocontrol for insects, 
biocontrol methods targeting plant diseases represent a relatively 
recent development. This notwithstanding, the bacterium, 
Agrobacterium radiobacter strain K 84 was registered by the 
United States Environmental Protection Agency (EPA) as a means of 
controlling crown gall disease in 1979. A decade later, the first fungus, 
Trichoderma harzianum ATCC 20476, received EPA approval and 
registration for combating plant diseases.

To date, biocontrol agents represent <5% of the entire crop 
protection industry (Devaraj et  al., 2019), despite their well-
documented efficacy. The limited availability of licensed products for 
plant disease biocontrol is largely attributed to challenges in 
technology transfer, particularly in developing countries, where the 
economic potential of these agents is not completely recognized. 
Moreover, the mass production of promising microbial candidates for 
phytopathogen biocontrol often faces obstacles due to a lack of 
organism-specific research methods and the high costs associated 
with in vivo production and licensing, making them less competitive 
compared to existing chemical agents (Gehlot and Singh, 2018; Sundh 
and Goettel, 2013).

Ensuring effective deployment of biocontrol agents presents 
logistical challenges, including timing and density of application, as 
well as maintaining their presence in the target environment. 
Ecological concerns also arise from the introduction of non-native 
organisms, which may become invasive and disrupt local ecosystems. 
Despite promising results demonstrated in laboratory settings, many 
biocontrol agents have shown limited efficacy under real-world 
conditions (Backer et al., 2018; Capper and Higgins, 1993; Deacon, 
1991; Mark et al., 2006), making them much less attractive to end 
users compared to chemical pesticides.
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The release of GMOs, including engineered Pseudomonas strains, 
adds another layer of complexity to the registration and 
commercialization process. Regulatory frameworks for GMOs are 
typically more stringent than those for non-modified organisms, 
reflecting concerns about potential ecological impacts and gene 
transfer to wild populations. In the United States, for instance, the EPA 
regulates genetically engineered microbial pesticides under the 
Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the 
Toxic Substances Control Act (TSCA). These regulations require 
extensive risk assessments, including evaluations of genetic stability, 
potential for horizontal gene transfer, and impacts on non-target 
organisms (Angelo, 2023; Jones et al., 2024). The European Union has 
even more restrictive policies on GMOs, which mandate a case-by-
case environmental risk assessment and post-market (Mizoguchi 
et al., 2024; Zimny, 2023).

The assessment of genetically modified biocontrol agents under 
existing regulations such as EC 1107/2009 (concerning the placing of 
plant protection products on the market) and Directive 2001/18/EC 
(on the deliberate release of GMOs into the environment) provides a 
foundation for evaluating their safety. However, these frameworks 
may need to be  adapted or expanded to fully address the unique 
characteristics of living, replicating microbial agents (Glandorf, 2019; 
Scheepmaker et al., 2016; Tonui et al., 2022). This is particularly true 
for novel approaches like gene drive systems, which could potentially 
lead to the spread of engineered traits through wild populations more 
rapidly than traditional genetic modifications. These regulatory 
hurdles, while necessary for ensuring safety, can significantly delay the 
commercialization of genetically engineered Pseudomonas spp. 
biocontrol agents and increase development costs.

Public perception of GMOs significantly influences research 
trajectories in genetically modified biocontrol agent development. The 
reluctance to invest in technologies facing public skepticism has 
created a feedback loop, potentially impeding progress in sustainable 
pest management strategies (Lucht, 2015; Tonui et al., 2024). This 
phenomenon extends beyond funding constraints, affecting the entire 
research ecosystem.

The hesitancy to pursue genetically modified biocontrol research 
has broader implications for agricultural biotechnology. The overlap 
in expertise between genetically modified biocontrol development and 
other agricultural biotechnology applications suggests that reduced 
focus on gene modification research could lead to a general decline in 
capacity across the field (Qaim, 2020). This potential loss of human 
capital is particularly concerning in the context of early-career 
researchers, who may be  dissuaded from specializing in gene 
modification-related fields due to perceived limited prospects 
(Merkley, 2020; Vanloqueren and Baret, 2017).

However, recent meta-analyses indicate a gradual shift in public 
attitudes toward GMOs in certain regions. It was reported an increasing 
trend of support for genetically modified foods in the United States over 
two decades, particularly among younger demographics and individuals 
with higher scientific literacy (Cui and Shoemaker, 2018). Similarly in 
Europe, an upward trend was observed in positive attitudes toward 
genetically modified crops between 2002 and 2019 (Woźniak et al., 
2021). Multiple factors contribute to this attitudinal shift, including 
increased familiarity with GMOs, improved science communication, 
and growing recognition of biotechnology’s potential in addressing food 
security and environmental challenges (Fernbach et al., 2019).

Despite evolving public sentiment and scientific advancements, 
regulatory frameworks governing GMOs have remained largely static, 
creating a misalignment between current knowledge and regulatory 
approaches. Many jurisdictions maintain approval processes for 
GMOs established during periods of greater public skepticism 
(Eriksson et al., 2019). Additionally, current regulations often fail to 
account for advancements in genetic engineering techniques, such as 
CRISPR-Cas9, which allow for more precise genetic modifications. 
The regulatory focus on the process of genetic modification rather 
than the properties of the resulting organism may lead to over-
regulation of genetically modified biocontrol agents that pose no 
greater risk than traditionally bred alternatives (Lassoued et al., 2019).

Current regulation and registration procedures, largely derived 
from chemical pesticide frameworks, do not adequately address the 
unique considerations of microbial biocontrol agents, contributing to 
their slow implementation in the field (Sundh and Goettel, 2013). As 
research on genetically modified biocontrol agents progresses, it will 
be  crucial to conduct comprehensive, long-term studies on their 
ecological impacts. This should include assessments of their effects on 
soil microbial communities, potential impacts on beneficial insects 
and other non-target organisms, and their persistence in various 
environmental conditions. Such research will be essential not only for 
refining risk assessment procedures but also for building public trust 
in the technology (Glandorf, 2019; Scheepmaker et al., 2016; Tonui 
et al., 2022).

9 Conclusions and future perspectives

In the realm of sustainable agriculture, the use of microorganisms 
to combat plant diseases and enhance crop yield represents a 
promising alternative to chemical interventions. Pseudomonas spp., 
among others, have garnered attention for their potential as biocontrol 
agents due to their intricate interactions with plants and the 
environment; they are typically equipped with an arsenal of secondary 
metabolites and enzymes adept at engaging with host organisms and 
outcompeting adversaries. These bioactive molecules offer substantial 
benefits to crop plants by fostering plant growth and curbing disease 
incidence. Despite their resilience to environmental pressures, the 
efficacy of Pseudomonas-based biocontrol strategies hinges on a 
multifaceted interplay of factors, as elucidated in this review. While 
strides have been made to optimize delivery methods, mitigate 
stressors, and enhance soil, and root colonization, gaps persist in 
understanding the broader spectrum of influences, including 
agricultural practices, which shape plant microbiome dynamics and 
biocontrol efficacy.

To realize the full potential of biocontrol agents, comprehensive 
research efforts are imperative, with a focus on elucidating 
pre-existing signaling pathways between plants and microbes to 
bolster the colonization potential of desirable microbial strains. 
Moreover, investigations into the impact of candidate biocontrol 
strains on native microbial communities and ecosystem functions are 
paramount for deploying biocontrol agents with minimal non-target 
effects on a wider scale. The development of more consistent 
biocontrol strategies necessitates a holistic, combinatorial approach 
encompassing diverse aspects including delivery mechanisms, 
formulation enhancements, agricultural methodologies, and the 
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intricate differences of plant-microbe symbioses. By embracing this 
integrated framework, it should be  possible to realize effective, 
sustainable biocontrol solutions tailored to the complexities of 
modern agricultural landscapes.
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