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Introduction: The evolution of SARS-CoV-2 has precipitated the emergence

of new mutant strains, some exhibiting enhanced transmissibility and immune

evasion capabilities, thus escalating the infection risk and diminishing vaccine

efficacy. Given the continuous impact of SARS-CoV-2 mutations on global

public health, the economy, and society, a profound comprehension of potential

variations is crucial to effectively mitigate the impact of viral evolution. Yet, this

task still faces considerable challenges.

Methods: This study introduces DARSEP, a method based on Deep learning

Associates with Reinforcement learning for SARS-CoV-2 Evolution Prediction,

combined with self-game sequence optimization and RetNet-based model.

Results: DARSEP accurately predicts evolutionary sequences and investigates

the virus’s evolutionary trajectory. It filters spike protein sequences with

optimal fitness values from an extensive mutation space, selectively identifies

those with a higher likelihood of evading immune detection, and devises a

superior evolutionary analysis model for SARS-CoV-2 spike protein sequences.

Comprehensive downstream task evaluations corroborate the model’s efficacy

in predicting potential mutation sites, elucidating SARS-CoV-2’s evolutionary

direction, and analyzing the development trends of Omicron variant strains

through semantic changes.

Conclusion: Overall, DARSEP enriches our understanding of the dynamic

evolution of SARS-CoV-2 and provides robust support for addressing present

and future epidemic challenges.

KEYWORDS

deep learning, SARS-CoV-2, evolution analysis, self-game sequence optimization,
DARSEP model

Introduction

SARS-CoV-2 has spread more rapidly and extensively than initially anticipated since
its detection in late 2019 (Ferretti et al., 2020; Worobey et al., 2022; Koelle et al., 2022).
By January 2020, the World Health Organization (WHO) had declared this epidemic as a
global public health emergency (Sohrabi et al., 2020). Until February 2023, the virus has
caused approximately 600 million confirmed cases and over 6.5 million deaths in more
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than 200 countries, continuing to pose a significant threat to global
health (Hus et al., 2023). Despite comprehensive prevention and
control measures, SARS-CoV-2 continues to disseminate globally.
Its remarkable mutability significantly hinders efforts to control
the outbreak. Since the pandemic’s beginning, several highly
transmissible SARS-CoV-2 variants, such as Alpha, Beta, Gamma,
and Delta, have emerged (Pan et al., 2021; Singh et al., 2022). The
Omicron variant, first identified in South Africa in November 2021,
quickly became the dominant strain worldwide, characterized by
its high transmissibility and ability to evade immunity (El-Shabasy
et al., 2022). In some areas, Omicron’s infection rates have shown
near-exponential growth, prompting the WHO to classify its global
risk level as ’very high’ (Cai et al., 2022; Khandia et al., 2022).
Authorities and scientific communities are urgently evaluating the
impact of existing containment and vaccination strategies and
adapting approaches to address Omicron’s spread, as well as other
variants (Petersen et al., 2022).

Regarding the evolution of the SARS-CoV-2, scientists
consistently monitor and analyze emerging variants to assess their
effects on vaccine efficacy and transmission dynamics (Ramesh
et al., 2021). Given the Omicron and other variants’ high
transmissibility and potential for immune evasion, researchers
are actively exploring their genetic characteristics and impact on
immunity. Current research on SARS-CoV-2 evolution falls into
two main categories: studies based on biological experimental data
and those using computational biology techniques. The former
focuses on analyzing experimental data to explore the virus’s
biological features, propagation mechanisms, and effects on host
cells. The latter employs neural networks, machine learning, and
other computational methods to predict mutation trends, diffusion
pathways, and drug resistance, rapidly identifying new virus
subtypes. This approach boasts high reproducibility and accurately
reflects biological phenomena. For instance, researchers have used
experimental data to study viral genomes and predict evolutionary
paths (Wei et al., 2020; Ma et al., 2023; Zhao et al., 2023; Cao
et al., 2023). They have explored the dissemination of mutant
strains by examining changes in structure and receptor-binding
properties (Harvey et al., 2021; Wrobel et al., 2022; Markov et al.,
2023). Moreover, they have evaluated various models’ predictive
power regarding viral evolution and identified different mutant
strains, offering insights into potential evolutionary directions
(Roemer et al., 2023). However, these studies require substantial
experimental resources and long consuming time for analysis,
presenting challenges for extensive analysis of viral antigenic
proteins.

Consequently, machine learning-based methods are
increasingly applied to predict and analyze evolutionary and
mutational patterns in SARS-CoV-2. These models simulate
viral-host interactions, predict crucial mutation sites’ effects on
transmissibility, assess variants’ impact on binding affinity and
immune evasion, forecast high-risk mutant strains, and track virus
evolution across regions (Obermeyer et al., 2022; Taft et al., 2022;
Makowski et al., 2022). Innovative approaches model the viral
assembly process and potential mutation combinations, aiding
in predicting future strains (Hajihosseinlou et al., 2023; Xu et al.,
2023; Bakkas et al., 2023). Additionally, researchers have developed
various deep learning models to predict SARS-CoV-2 mutations’
effects on immune evasion and infectivity. For example, Hie et al.
and Singh Bist et al. used natural language processing to predict

immune-evading mutations and identify key mutant sequences
(Hie et al., 2021; Singh Bist et al., 2023). Chen et al. and Zvyagin
et al. created models to forecast the binding affinity and antibody
escape, monitoring SARS-CoV-2 variations (Chen et al., 2023;
Zvyagin et al., 2022). Zhou et al. and Vaswani et al. combined
the phylogenetic analysis and the Transformer framework to
predict sequence mutations (Zhou et al., 2023), while Wang et al.
introduced the UniBind framework to predict variations’ impact
on protein interactions (Wang G. et al., 2023). Han W. et al. (2023)
combined deep learning with genetic algorithms to predict antigen
evolution. These methods enhance viral evolution monitoring and
inform vaccine and therapeutic strategy development.

On the other hand, current machine learning and deep
learning-based approaches for predicting SARS-CoV-2 evolution
have several limitations. A notable issue is the prevalent reliance
on traditional genetic algorithms to screen evolutionary sequences
of SARS-CoV-2 (Whitley, 1994), which struggle to navigate
the extensive array of viral variations due to their suboptimal
performance in complex, high-dimensional spaces. This limitation
could hinder the accurate identification of complex viral mutation
patterns. Moreover, existing deep learning models encounter
challenges in effectively modeling long viral sequences, affecting
their predictive accuracy. Processing lengthy sequences demands
significant computational resources without the guaranteed
accuracy, potentially limiting the feasibility of training deep
learning models on large datasets. Additionally, viral sequences
contain detailed information on long-term dependencies and
intricate structures, which current deep learning models may not
capture accurately.

To address these challenges, we introduce a novel method
called DARSEP (Deep learning Associates with Reinforcement
learning for SARS-CoV-2 Evolution Prediction) for predicting and
analyzing SARS-CoV-2 evolution. DARSEP involves constructing
a model for SARS-CoV-2 spike proteins through a synergy of
self-game sequence optimization and the RetNet framework (Sun
et al., 2023). It utilizes the reinforcement learning in a self-playing
model to explore the extensive mutation landscape of viral proteins
and delineate the evolutionary path of SARS-CoV-2, focusing on
optimizing the spike protein’s receptor-binding domain (RBD) to
identify potential mutations. The spike protein sequences of SARS-
CoV-2 are then modeled using the pre-trained protein language
model ESM2 with the RetNet framework. The sequences refined
through reinforcement learning are then subject to the downstream
analysis, including semantic clustering, mutation site prediction,
and missense mutation analysis, etc., aiming to elucidate the virus’s
evolutionary dynamics. Experimental validations demonstrate
DARSEP’s superiority over existing methods.

Materials and methods

The core architecture of our DARSEP model is illustrated in
Figure 1. Initially, we collect SARS-CoV-2 sequence data from
relevant databases for analysis (Figure 1a). After obtaining the
viral sequences, we calculate their fitness values (Figure 1b) and
use these data to train the spike protein reinforcement learning
model, DARSEP-SPRLM, for sequence optimization (Figure 1c).
Concurrently, we train the protein masked learning model,
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FIGURE 1

DARSEP model architecture. (a) Data collection and processing segment divides spike protein information into sequence data and additional data
categories. (b) Fitness calculation for each sequence, which involves assessing folding free energy, receptor binding domain affinity, and antibody
binding capability. (c) DARSEP-SPRLM is based on self-game reinforcement learning for optimizing sequences, incorporating Monte Carlo Tree
Search and a policy-value network, to derive optimized sequences with their fitness values. (d) Downstream task analysis employs the trained
DARSEP-PMLM model to evaluate optimized sequences through visualization and verification. (e) Network architecture diagram of the RetNet.
Created in BioRender. L, Z. (2023) BioRender.com/q23y981.

DARSEP-PMLM, using the same sequences (Figure 1c). Ultimately,
we input both the original and optimized sequences into DARSEP-
PMLM for the downstream task analysis (Figure 1d).

Dataset

The primary data sources for our methodology are GISAID1

and NCBI Virus2 (Kalia et al., 2021; Brister et al., 2015).
We obtained the amino acid sequences of SARS-CoV-2 spike
proteins, dating from December 2019 to October 2023, along with
sampling time, geographical information, and other pertinent data,
predominantly from GISAID. The choice to focus on the SARS-
CoV-2 spike protein, especially its receptor-binding domain (RBD),
is due to the fact that this region, as the key to the viral invasion and
the core of immune response, is not only directly related to the viral
transmissibility, pathogenicity, and immune escape mechanism,
but also has a decisive impact on vaccine development, antibody
therapy, and diagnostic technology. The Pango lineage data for the
virus is mainly sourced from the NCBI Virus database. For GISAID
sequences that we are unable to obtain genealogical information

1 https://gisaid.org/

2 https://www.ncbi.nlm.nih.gov/labs/virus/vssi/

directly from NCBI, we conduct the phylogenetic analysis based on
the sequences themselves using public tools and software packages
(e.g., Nextstrain, etc.) to reconstruct the approximate genealogical
relationships of these sequences to ensure data integrity.

Upon collecting the spike protein sequences, in order to balance
the inclusiveness of natural variability with data quality, and to
ensure that the analysis focuses on a range of sequences that
maintain critical structural and functional integrity, we filter out
sequences in the length range of 1265–1273. We also exclude
sequences containing more than 10 ’X’ characters, representing
unknown amino acids, and remove any duplicates. Following
filtration, the sequences are subjected to multiple sequence
alignment with MEGA11,3 and the region corresponding to the
receptor-binding domain (RBD) is extracted. Finally, sequences
from 2019 to 2021 are allocated as the training set, while those from
2022 to 2023 are used as the test set.

Fitness calculation

The immunity developed through infection, vaccination,
or passive immunization (via neutralizing antibodies) enhances

3 www.megasoftware.net

Frontiers in Microbiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1485748
https://www.biorender.com/
https://BioRender.com/q23y981
https://gisaid.org/
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
http://www.megasoftware.net
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1485748 November 6, 2024 Time: 15:44 # 4

Liu et al. 10.3389/fmicb.2024.1485748

the population’s resistance to SARS-CoV-2, thus increasing the
selective pressure on the virus (Williams and Burgers, 2021). This
pressure drives the virus to evolve, creating new variants that can
evade the immune response and survive. To evaluate a virus’s ability
to circumvent the immune system, we define "fitness" as its capacity
to persist in the host, encompassing three critical attributes: protein
stability, ACE2 binding affinity, and antibody binding affinity,
described as follows:

(i) Protein stability
Protein stability is quantified by folding free energy, denoted

as 4G. Folding free energy (Honig and Yang, 1995), a pivotal
concept in thermodynamics, characterizes a system’s stability and
phase transition properties under varying external conditions. It
encapsulates information about the system’s energy, entropy, and
volume (Friston, 2010). Analyzing folding free energy enables
understanding of phase transition principles, including changes in
energy and entropy during this process. A mutation at any site in
the protein sequence alters the folding free energy, represented as
44G. Assuming the wild type sequence’s folding free energy at each
site is zero, the entire wild type sequence also has a folding free
energy of zero. If a mutation alters the folding free energy at the
i-th position in a sequence with length L, denoted as 44Gi, the
total change in folding free energy for the sequence, denoted as ϕE,

can be calculated as Equation 1:

ϕE =

L∑
i = 0

44Gi (1)

We use the PoPMuSiC (Dehouck et al., 2009) to determine the
change in folding free energy due to mutations in the spike protein.
This algorithm leverages the protein’s 3D structure and statistical
mean-force potentials, converting them into free energies via the
inverse Boltzmann law. When applying PoPMuSiC, we first retrieve
the complete spike protein’s template structure, 6VYB (Ahmed
et al., 2020), from Protein Data Bank (PDB). We then calculate the
change in folding free energy for each site mutation across all amino
acids. When ϕE > 0, the protein sequence moves towards stability,
and when ϕE < 0, the protein sequence moves towards instability.

(ii) Affinity for ACE2 binding
We utilize the BeAtMuSiC (Dehouck et al., 2013) to evaluate

the effect of individual genetic mutations on ACE2 binding affinity.
This algorithm predicts the impact of potential genetic mutations
on the binding strength to the ACE2 receptor. For this analysis,
the 6M0J RBD/ACE2 complex structural template serves as the
input (Veeramachaneni et al., 2021). Mirroring the methodology
for calculating changes in folding free energy, we assume the ACE2
binding affinity of the wild-type sequence to be zero. We define
11GACE2

i as the change in binding affinity due to a mutation
at the position i in an amino acid sequence with length L. The
overall binding affinity of the entire amino acid sequence to ACE2
is denoted as Equation 2:

ϕACE2 =

L∑
i = 0

11GACE2
i (2)

When ϕACE2 > 0, the protein sequence has an increased ability to
bind to ACE2, and when ϕACE2 < 0, it indicates the reduced ACE2
binding affinity.

(iii) Antibody binding capability

We also employ the BeAtMuSiC algorithm to assess the
change in binding capacity for 73 antibodies resulting from each
potential single-site mutation in the spike protein. Antibody
data are obtained from CoV-AbDab (Raybould et al., 2021), and
by taking into account factors such as the broad neutralizing
ability of antibodies, progress in clinical studies, frequency of
citations in the literature, and scientific impact, we finally
screen to obtain data with 73 antibodies, details of which
can be found in the Supplementary file 3. We assume the
baseline antibody binding capacity of the original sequence is
zero. For an amino acid sequence of length L, the binding
capacity of the i-th location changed to the j-th antibody is
denoted as 11GnAb,j

i . The average change in antibody binding

capacity at each site, 11GnAb
i , represents the average of 73

alterations at each site, which is calculated as Equations 3, 4:

11GnAb
i =

1
73

73∑
j = 1

11GnAb,j
i (3)

ϕnAb =

L∑
i = 0

11GnAb
i (4)

where ϕnAb denotes the alteration in the overall capacity of the
sequence to adhere to the antibody. When ϕnAb > 0, the protein
sequence becomes more capable of binding to the antibody, and
when ϕnAb < 0, the protein sequence becomes less capable of
binding to the antibody.

In summary, ϕE and ϕACE2 are positively correlated with
the fitness of the spike protein sequence, and ϕnAb is negatively
correlated with the fitness of the protein sequence, so the method
of calculating the fitness ϕ of the spike protein sequence is the
sum of ϕE and ϕACE2 with the difference of ϕnAb. We treat
three attributes with the same degree of importance, so the
fitness of the viral protein sequence is calculated as Equation 5:

ϕ = ϕE + ϕACE2 − ϕnAb (5)

In the formulas for calculating fitness, we use a simplified
approach that assigns equal weights to the three main factors
that influence virus fitness. This simplification is intended to
provide a balanced starting point for analysis in the absence
of a priori information on specific viral environments. In the
absence of clear evidence as to which factor dominates in all cases,
assigning equal weights is a reasonable and practical approach.
Furthermore, by normalizing the three factors, we ensure that
they are on the same order of magnitude, thereby simplifying the
model and ensuring that when assessing the various properties
of the virus, it allows these properties to be compared on a fair
scale. However, this approach ignores the complex interactions
that may exist between factors in real-world situations. For
example, in environments with low immune pressure, viruses
may rely more on increasing their receptor binding efficiency to
enhance infectivity, whereas in environments with high immune
pressure, optimization of immune escape mechanisms may be more
necessary to maintain their survival and spread. Future research
should consider how to quantify the actual relative importance
of these factors and adjust the weights in the model on a case-
by-case basis to more accurately reflect changes in viral fitness
in the real world.
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DARSEP-SPRLM for sequence
optimization

Our sequence optimization approach, utilizing the AlphaZero
reinforcement learning network (Silver et al., 2018), distinguishes
itself from the genetic algorithm-based MLAEP method (Han
W. et al., 2023). Reinforcement learning, in particular self-
game mechanisms, mimics biological evolution to enable self-
optimization of intelligences in strategy-critical domains (e.g.,
chess competition and protein engineering), where deep neural
networks are fused by AlphaZero-inspired algorithms with Monte
Carlo tree search to efficiently explore the huge design space and
optimize sequence selection to reach the best functional properties.
Reinforcement learning demonstrates unique advantages in
sequence optimization because it can provide a solution that
outperforms traditional machine/deep learning methods through
dynamic adaptive strategies, automatic balance exploration and
exploitation, learning generalization strategies from a small
number of samples, optimizing directly for the final objective
and efficiently dealing with the complexity of sequence decision
making. In this framework, amino acids are analogized to chess
pieces, mutations to moves, and sequence design to playing chess.
We employ Monte Carlo Tree Search (MCTS) and a policy-value
neural network to guide the model in identifying spike proteins
with enhanced adaptiveness and potential for immune escape
(Wang Y. et al., 2023). The detailed algorithm can be viewed in
Supplementary file 1.

DARSEP-PMLM for downstream analysis

The DARSEP-PMLM model integrates the pre-trained ESM2
(Lin et al., 2023) with the RetNet (Sun et al., 2023). ESM2 leverages
an autoregressive neural network to assimilate evolutionary
principles, elucidating the interrelations among protein sequences,
structures, and functions. This model is trained on an extensive
protein sequence database, enabling it to generate hidden vectors
that encapsulate each protein sequence’s structural and functional
attributes. RetNet, an adaptation of the Transformer model, utilizes
a multi-scale retention mechanism, which addresses the ’impossible
triangle’ challenge - simultaneous achievement of parallel training,
cost-effective inference, and robust scaling performance - faced
by conventional neural network architectures. Our evaluations
indicate that the ESM2 and RetNet combination surpasses the
Transformer and other neural network models in prediction
accuracy. Hence, we employ this dual approach for viral sequence
modeling and analysis. The detailed algorithm can be viewed in
Supplementary file 2.

Evaluation metrics

In our experiment evaluation, the indicators for assessing the
sequence optimization model DARSEP -SPRLM primarily include
analyzing the capability of the optimized sequences, post -training
on the dataset from 2019 to 2021, to accurately identify mutation
sites in the test set spanning 2022 to 2023. Furthermore, the
evaluation encompasses the Pearson correlation coefficient and

the Canonical Correlation Analysis (CCA) coefficient between the
predicted and actual fitness values derived from the optimized
sequences, which are calculated using Equations 6, 7:

r =
∑

(xi − x)(yi − y)√∑
(xi − x)2(yi − y)2

(6)

ρ =
Cov(X,Y)

√
Var(X)

√
Var(Y)

(7)

where xi and yi are the variables in two datasets X and Y , x and y
are corresponding average values in X and Y , Var and Cov denote
the variance and covariance computation.

For the DARSEP-PMLM, evaluation metrics are obtained
through the mask training on the 2019 to 2021 training set and
subsequently measuring Accuracy [Accuracy formula = (TP+TN)/
(TP+TN+FP+FN)], Precision [Precision formula = TP/(TP+FP)],
Recall [Recall formula = TP/(TP+FN)], and F1-Score [F1
formula = (2 × Precision × Recall)/(Precision+ Recall)] on the
2022 to 2023 test set. These metrics are derived from the counts
of True Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN).

Results

The experimental results for DARSEP, a SARS-CoV-2
evolutionary prediction model, are divided into two primary
sections. The first section includes a self-play reinforcement
learning model utilizing the AlphaZero algorithm (Silver et al.,
2018). The agent’s function is enhanced by processing sequences
of RBDs and their corresponding fitness labels through simulation
accumulation and strategic iteration, continuously generating new
RBD sequences indicative of the virus’s potential evolutionary
paths. The second section introduces a novel model for predicting
and analyzing SARS-CoV-2 evolution, integrating the pre-trained
ESM2 with RetNet framework to examine the optimized spike
protein sequences.

Dataset

Our research concentrates on the RBD region of the SARS-
CoV-2 spike protein. The dataset, sourced from GISAID and NCBI,
includes spike protein sequences from the outbreak’s inception
until 2021 as the training set, with sequences from 2022 to 2023
serving as the test set. To maintain consistency, we normalize the
lengths of the viral sequences to 1273 by aligning them. Following
the extraction of the RBD region and the elimination of duplicates,
we compile a dataset of 23,633 unique sequences.

Sequence optimization experiment

Calculation of fitness
The constituents of fitness include stability (measured by

folding free energy), ACE2 binding capacity, and antibody binding
capacity. We utilize the PoPMuSiC, which incorporates the
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protein’s 3D structure and a statistical average force potential,
to assess stability. Using only the SARS-CoV-2 spike ectodomain
structure (6VYB, open state) as the input for the algorithm
(Figure 2a), enabling the computation of energy changes (11G)
for mutations at each site to different amino acids. For ACE2
binding capacity evaluation, the BeAtMuSiC algorithm is applied,
similarly, solely using the 3D structure of the RBD/ACE2 complex
(6M0J) as input (Figure 2b). This facilitates the estimation of
potential energy changes due to mutations at specific sites. To assess
mutations’ effects on antibody binding, we analyze their impact on
73 antibodies using BeAtMuSiC, calculating the average mutation-
induced change for each antibody at each RBD site. Summing these
averages provides an overall mutation impact at each RBD site.
Aggregating these effects yields the sequence’s total fitness, with the
wild type sequence assigned a fitness value of 0. Figure 2c depicts
the fitness variations due to mutations at particular sites, displayed
as a heat map.

Generation of optimized RBD sequences
We use RBD sequences from 2019 to 2021 as the training

set, with associated fitness values as labels. Our DARSEP-SPRLM
model conducts sequence optimization, resulting in a collection
of optimized RBD sequences and their fitness values. Analysis of
mutation sites reveals a significant number of mutations in these
optimized sequences either appear in the 2022 to 2023 test set
or are absent in the training set. Table 1 shows 7 of mutation
sites predicted by the DARSEP-SPRLM model during sequence
optimization, and it is noteworthy that these predicted mutations
are subsequently observed in reality, confirming the effectiveness
and potential of the model in anticipating emerging mutations.
To validate the structural integrity of these sequences, We use
AlphaFold2 (Jumper et al., 2021) for the exclusive purpose of
predicting the three-dimensional structure of selected sequences
and comparing them to wild-type sequences and similar sequences
in multiple sequence comparisons. Comparisons, as depicted
in Figures 2d–f, evaluate the correlation between the predicted
and calculated fitness of optimized sequences by our model.
This correlation is further substantiated in Figure 2g, showing a
Pearson’s coefficient of 0.87 and a CCA coefficient of 0.83. The
structural prediction results show that the optimized sequences
are slightly structurally different from the wild type and similar
variants (regions enclosed in red brackets in Figures 2d–f), but the
main body maintains a high degree of structural similarity (regions
enclosed in black brackets in Figures 2d–f), which implies that
the optimization process preserves the core structural features of
the sequences. The correlation coefficients underscore our model’s
strong predictive ability, accurately estimating the fitness levels
of optimized sequences. In summary, our optimization model
proficiently generates new RBD sequences that closely resemble
the original ones in structure and function, yet include numerous
new mutation sites, providing valuable insights for subsequent
experimental research.

It is widely recognized that viral protein sequence variants,
especially those conservative mutations, usually do not lead to
significant structural changes in the protein. The current model
effectively captures this relationship between viral mutations
and structural stability, maintaining structural integrity while
optimizing the viral sequence. Moreover, beneficial genetic
variations become prevalent and spread throughout the population

through natural selection (Nielsen et al., 2014). This model
enhances our understanding of how organisms adapt to
environmental changes by simulating a self-driven survival
competition process. In virology, viruses can develop new
adaptive mutations in response to the host immune system and
drug interventions (Han A. X. et al., 2023). Our model can
mimic the adaptive evolutionary process of viruses, predicting
their evolutionary paths (Section 3.2). Additionally, there is a
quantifiable link between a biomolecule’s function and structure
(Lyon et al., 2021), and the fitness scoring system in this
model offers an objective method to evaluate sequence-function
relationships. Overall, biological evolution is guided by random
mutations and natural selection, and our model can replicate this
mutation selection process, generating new viral sequences with
optimal fitness levels.

DARSEP training and downstream task
analysis

Training of the DARSEP-PMLM model. DARSEP-PMLM
integrates a pre-trained ESM2 protein language model with a
Transformer-based RetNet, training on sequence masks from RBD
sequences sourced from GISAID. This process enables the model
to grasp both positional relationships and semantic syntactic
patterns within sequences. A comparative analysis of DARSEP with
various sequence modeling frameworks, such as Flowformer (Wu
et al., 2022), Sars-escape network (Singh et al., 2022), AminoBert
(Chowdhury et al., 2022), CSCS (Hie et al., 2021), gMLP (Liu
et al., 2021) and GPT2 (Brown et al., 2020), based on Accuracy,
Precision, Recall, and F1 Score, reveals that our model excels in
all these metrics (Figure 3a), prompting its application in further
downstream analyses.

Ablation experiment

We conduct ablation studies to elucidate the contribution of
each model within DARSEP, with separate training sessions for
ESM2 and RetNet. ESM2’s independent training underscores its
pivotal role in decoding protein language, affirming its substantial
impact on the model’s predictive accuracy. Similarly, isolated
training of RetNet emphasizes its importance in protein language
modeling. Evaluation of RetNet’s standalone performance confirms
its synergistic effect with ESM2, enhancing overall model efficacy.
The best results are observed when ESM2 and RetNet are combined
in the full DARSEP-PMLM model. The ablation study outcomes are
illustrated in Figure 3b.

Downstream task analysis - clustering
analysis

We perform the clustering analysis using the trained DARSEP-
PMLM model. Initially, we compute the semantic embedding
for the training and optimized sequence sets. We then employ
the UMAP (McInnes et al., 2018), a nonlinear dimensionality
reduction technique, for manifold learning and the visualization
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FIGURE 2

Sequence optimization experiment. (a) The structure of the SARS-CoV-2 spike ectodomain (6VYB). (b) The 3D structure of the RBD/ACE2 complex.
(c) A heat map illustrating fitness variations resulting from mutations at specific RBD region sites to different amino acids. (d) The 3D structure of a
sequence within the optimized RBD sequence set. (e) The 3D structure of the wild type sequence. (f) The 3D structure of the sequence most similar
to the optimized sequence in the multiple sequence alignment. (g) A regression analysis showing the correlation between the predicted fitness of
the optimized sequence from our model and the actual calculated fitness post optimization.

of these embeddings. Following this, we utilize Leiden’s method
(Traag et al., 2019) for the graph-based clustering on three
sets of sequences: training, optimized, and a combined set. For
visualization, we assign distinct colors to represent the clustering
outcomes, as illustrated in Figure 4. We did the following analysis:

(i) Leiden clustering effectively separates various classes of viral
protein sequences into distinct groups within the training

set, mirroring the divergence patterns of natural evolution.
Each cluster signifies a notable evolutionary path. Despite
originating from the same virus, the sequences in different
clusters have undergone substantial evolutionary changes,
leading to divergent evolutionary paths. When clusters are
colored based on the year attribute, early-phase sequences
of the virus appear more closely grouped. Over time, the
sequences start to exhibit varied evolutionary trajectories, and

Frontiers in Microbiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1485748
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1485748 November 6, 2024 Time: 15:44 # 8

Liu et al. 10.3389/fmicb.2024.1485748

TABLE 1 List and verification of some mutations

Site Origin Mutation GISAID ID Pango linage Collection date Location

330 P V EPI_ISL_17372618 XBB 2023-01-16 India

337 P I EPI_ISL_11755367 BA.2.3.11 2022-03-09 Thailand

352 A E EPI_ISL_17585762 BA.1 2022-09-14 Egypt

415 T G EPI_ISL_16394747 BA.2.10.1 2022-12-16 India

421 Y Q EPI_ISL_12714856 BA.1.1 2022-01-01 USA

431 G Q EPI_ISL_12589413 BA.2 2022-04-30 Spain

466 R V EPI_ISL_16553496 BQ.1.1 2023-01-03 USA

FIGURE 3

Performance analysis of the DARSEP model. (a) Comparison of the performance of different models for viral sequence mask training, including
DARSEP, Sars-escape network, Flowformer, AminoBert, gMLP, CSCS, GTP2. (b) The ablation study for DARSEP is depicted, where ESM2 denotes the
DARSEP model without RetNet, and RetNet indicates the DARSEP model sans ESM2.

the sequence characteristics evolve, highlighting a shift in the
genetic linkages between older and newer strains. This finding
offers critical insights for predicting new strain emergence and
viral evolutionary trends.

(ii) Leiden clustering of the three sets shows that optimized
sequences cluster with the training sequences, indicating that
the new sequences retain considerable genetic resemblance to
the original despite optimization, without showing significant
genetic drift. Coloring the clusters by year reveals that the
new sequences diverge markedly from the originals, forming
distinct evolutionary branches.

(iii) We also color different variants with Pango lineages, and
viral sequences belonging to the same lineage are all tightly
clustered within the same region, which further confirm
the genetic consistency among Pango lineages. Each cluster
represents a unique evolutionary branch, and these branches
show significant genetic differences over time, forming their
own unique patterns. The clustering relationships between
clusters, such as the clustering distances exhibited between
Omicron-BA.2 and Omicron-BA.5-BQ, also reflect similar
positional relationships in the phylogenetic tree shown in
Figure 4h. This high degree of consistency suggests that our
clustering method can effectively reflect the homology features

during virus evolution and that the clustering results largely
encompass populations that are taxonomically homologous to
the phylogenetic tree of virus evolution.

(iv) We also considered the effect of geography on clustering.
With the results obtained from Leiden clustering, we analyzed
from a geographic perspective that geographic isolation and
host range restriction are intertwined, contributing to the
uniqueness of genetic variation in different host environments.
As time evolves, these genetic differences accumulate and
solidify, gradually forming specific evolutionary branches.
Specifically, at long time scales, viral sequences exhibit
diverse evolutionary pathways, and geographic isolation, as
one of the key driving forces (Li et al., 2021), further
accelerates sequence divergence in this process, resulting
in the emergence of independent lineages with distinct
genetic signatures. Therefore, it can be concluded that
time course and geographic heterogeneity exhibit a strong
correlation in Leiden clustering analyses and are key
dimensions in understanding the dynamics of the genetic
structure of virus populations. The geographic distribution
of viral populations and their historical changes should be
considered in future assessments of their genetic diversity.
This is crucial for our understanding of viral evolutionary

Frontiers in Microbiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1485748
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1485748 November 6, 2024 Time: 15:44 # 9

Liu et al. 10.3389/fmicb.2024.1485748

FIGURE 4

Clustering analysis of our protein language model. (a) Semantic embedding clustering plot for the training sequence dataset. (b) Semantic
embedding clustering plot for the training sequence dataset, colored by year. (c) Semantic embedding clustering plot combining the training and
optimized datasets. (d) Semantic embedding clustering plot for the training and optimized datasets, with training data in purple and optimized data
in yellow. (e) Semantic embedding clustering plot for the training and optimized dataset, colored by year. (f) Semantic embedding clustering plot for
the optimized sequence set. (g) Clustering plot colored for different variants with Pango lineages. (h) Phylogenetic tree of SARS-CoV-2 (from
https://nextstrain.org/).
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patterns and for the development of effective public health
strategies. Overall, this clustering analysis validates our protein
sequence optimization model’s effectiveness, demonstrating its
capability to accurately interpret and analyze the semantic
properties of viral sequences.

The primary sources of variation in viral genome sequences
are: (1) site mutations, which lead to amino acid substitutions,
altering the structure and function of viral proteins (Saha
et al., 2020), and (2) genome recombination, resulting in the
creation of chimeric viruses (Perez-Losada et al., 2015). These
random mutations, coupled with the selective forces of natural
selection, drive the targeted variation and adaptive evolution of
viral genomes across different host environments. Additionally,
geographical isolation and limited host range contribute to
distinct genetic variations within various host contexts over
time, culminating in unique evolutionary lineages (Pybus and
Rambaut, 2009). When comparing newly identified virus strains
with older ancestral ones, a degree of genetic similarity often
persists, reflecting their evolutionary connections. The model
introduced in this study offers an in-depth insight into aspects like
randomness, natural selection pressures, and homology, enabling
precise simulation of the mutation and evolutionary processes of
viral genomes. Moreover, employing clustering and visualization
analyses illustrate the temporal evolution of viral populations,
which could assist in predicting future viral genome mutations and
provide essential information for virus surveillance.

Downstream task analysis - constructing
evolutionary fields

We apply Evo-velocity analysis to create a dynamic
evolutionary vector field for SARS-CoV-2 RBD sequences as
part of our downstream task analysis (Hie et al., 2022). The
Evo-velocity diagram (Figure 5) visually represents the RBD
sequences from 2019 to 2023, including the optimized sequence
set. An interesting observation emerges when we construct
the temporal evolution field for this period: there is a strong
correlation between the direction of viral evolution and time.
Specifically, the viral evolutionary trajectories show a clear pattern
over time. Additionally, we find a significant correlation between
the sampling date and "pseudo time" (a metric to describe the
evolution rate and direction of the virus), further substantiating
the influence of time on viral evolution. Notably, the potential
evolutionary direction of the overall sequence vector field appears
to be aligning with our optimized sequences. This finding implies
that the optimized sequences may represent the predominant route
for the virus’s future evolution. Therefore, it is crucial to closely
monitor these sequences and utilize them as primary indicators
for understanding and forecasting viral evolutionary dynamics,
offering enhanced insights for virus prevention and control.

Viral genome sequences experience continuous diversification
due to random site mutations and the directional influence of
natural selection pressures, illustrating the dynamic equilibrium
between random mutation and natural selection, akin to random
drift and the Ornstein-Uhlenbeck process (Nadeau et al., 2023). The
"pseudotemporal" parameter, quantifying the rate and pattern of

genetic changes in the viral population, exhibits a strong correlation
with both geological factors and time, underscoring the temporal
dependency and indicative nature of viral evolution (Gupta et al.,
2022). In this model, the optimized sequences are oriented towards
the likely direction of future evolution, ensuring retention of
genetic information from original sequences while accurately
representing the predominant trends in viral evolution. This
alignment suggests a connection to the Markov stochastic process
hypothesis, illustrating the commonality and shared lineage in viral
evolution. To forecast new strain developments, it is crucial to
establish time series data that can track the evolutionary dynamics
of viral mutations over time. By amalgamating sequencing data
from different time points, we can depict the temporal progression
of viral evolution, offering valuable insights into viral population
dynamics. Our findings indicate that the model effectively mirrors
the temporal patterns of viral sequence changes and possesses the
capability to predict future viral mutation trajectories.

Downstream task analysis - prediction of
missense variant effects

We evaluate the effects of all possible missense variants within
the RBD region using our trained protein language model, assessing
the impact of these variants at every position. The effect score
for each variant is calculated based on the log-likelihood ratio
(LLR) between the variant and wild type (WT) residues. Figure 6
illustrates this, displaying a heatmap of variant effects at specific
sites. A detailed account of all missense variant effects is available in
the Supplementary file 4. It is important to note that a higher score
indicates a more detrimental effect of the mutation, as observed
with G339D in the Omicron variant series.

The LLR method applies the dN/dS ratio from molecular
evolution to distinguish between neutral and functionally impactful
human variations (Nadeau et al., 2023). Variants with elevated LLR
scores may significantly disrupt the RBD structure. Alterations
in key binding site residues can affect their chemistry, reducing
binding affinity and impacting protein stability. Modifications
in hydrogen bonding, hydrophobic interactions, charge, and
other factors could lead to reduced RBD stability, increasing the
propensity for aggregation and decreasing solubility (Rosace et al.,
2023). Notably, the high- frequency mutations N501Y and E484A
identified in our analysis show high LLR scores, validating the LLR
score as a reliable metric for predicting the functional impact of
variations.

Downstream task analysis—epidemic
strain analysis

We analyze two Omicron variant lineages: BA.1, noted for
its heightened transmissibility, and EG.5, which is currently
prevalent. We also delineate the structural mutation sites for
these variants, illustrated in Figures 7a,c. Utilizing our model,
we determine the percentile rankings for semantic changes
at each mutation site (Figures 7b,d). Additionally, we create
violin plots to depict the distribution of semantic changes
for these two variants, highlighting their positions within
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FIGURE 5

Construction of evolutionary vector fields. (a) Flow chart illustrating the evolution of RBD sequences from 2019 to 2023. (b) Flow chart illustrating
the evolution of RBD sequences for the complete set (including 2019–2023 and optimized sequences). (c) Prediction plot for pseudotime at the
beginning of sampling (2019–2023). (d) Predicting plot for pseudotime at the end of sampling (2019–2023). (e) Prediction plot for pseudotime at the
beginning of sampling for the entire sequence set (2019–2023 and optimized sequences). (f) Prediction plot for pseudotime at the end of sampling
for the entire sequence set (2019–2023 and optimized sequences).

the entire viral mutation landscape (Figures 7e,f). Semantic
changes reflect the impact of amino acid substitutions on
protein function, hinting at how mutations modify viral traits.
Syntactic changes pertain to the physicochemical property
alterations of the substituted amino acids, representing the
mutation’s magnitude. Integrating both provides a comprehensive
assessment of a mutation’s influence. Our analysis reveals
that sites with substantial semantic shifts and high percentile
rankings, like T478K found in Delta and Omicron strains,
are associated with major epidemics. The T478K mutation is
implicated in enhancing the spike protein’s interaction with its

receptor, potentially aiding the immune evasion. The N501Y
mutation, identified early, shows a marked increase in affinity
for the human ACE2 receptor over the wild type, significantly
boosting the virus’s infectivity and transmissibility (Liu et al.,
2022). Quantitative comparison of semantic changes between
the BA.1 and EG.5 strains, visualized through violin plots,
indicates a reduction in semantic changes and associated risks
from BA.1 to EG.5. Despite EG.5 becoming the dominant
strain, a comprehensive WHO assessment in early August 2023
concluded that EG.5 does not pose a novel or escalated threat
(Parums, 2023). This analysis of semantic and syntactic changes
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FIGURE 6

Heat map of missense mutation scores for selected RBD sequences.

corroborates established virological insights and validates our
method’s efficacy.

Discussion

In this study, we introduce DARSEP, a novel method for
the variation and evolution analysis of SARS-CoV-2. Initially,
we utilize a self-play strategy to navigate the extensive mutation
landscape, aiming to identify optimal evolutionary trajectories for

viral proteins. Following this, we train a sophisticated protein
language model combining ESM2 and RetNet, which surpasses
other leading models. Using this model, we analyze the optimized
sequences to gain deep insights into viral evolution patterns.
Our methodology successfully predicts the evolution trajectory of
the virus and identifies key mutation sites that could enhance
viral adaptability and immune evasion. Importantly, our model
can foresee potential mutations based on data from 2019 to
2021, facilitating early detection and the formulation of public
health strategies. By utilizing all available sequence data to date,
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FIGURE 7

Semantic analysis of Omicron mutation strains. (a) Mutation sites in the RBD region of Omicron strain BA.1. (b) Semantic changes and percentage
rankings at mutation sites in the RBD region of Omicron strain BA.1. (c) Mutation sites in the RBD region of Omicron strain EG.5. (d) Semantic
changes and percentage ranking in the RBD region of Omicron strain EG.5. (e) Violin plot depicting semantic changes for the Omicron strain BA.1
(semantic change value: 10.36). (f) Violin plot depicting semantic changes for the Omicron strain EG.5 (semantic change value: 9.56).
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the model may identify viral sequences that are expected to
appear in the future, exhibit high fitness, and possess significant
potential for survival and transmission. These highly fitnessed
sequences indicate potential evolutionary trajectories for viruses,
particularly in response to immune selection pressures and other
environmental constraints. Subsequent to the evaluation of these
high-fitness sequences, a series of downstream tasks were executed
alongside protein language model. Clustering identifies sequences
that closely align with known sequences, indicating a degree of
genetic similarity while also exhibiting new characteristics that
may differentiate them as distinct evolutionary branches in the
future. Moreover, by examining the semantic syntax of the novel
sequences, one can pinpoint mutation locations that perform
exceptionally in percentile rankings. These loci are likely to
attract future scrutiny, as their existence suggests that the virus
may have developed increased adaptive capabilities. Sequences
with numerous highly scored mutation sites are more likely
to dominate future epidemics. This series of studies enhances
our comprehension of viral evolutionary processes and provide
essential support for vaccine modification tactics and antiviral
medication development. This approach will enable us to forecast
viral evolutionary patterns and furnish public health policymakers
with timely information to formulate more effective preventative
and control strategies against potential future dangers.

The proposed method effectively delineates the evolutionary
landscape of SARS-CoV-2, enhancing our understanding of its
evolutionary dynamics and providing substantial scientific backing
to tackle current and forthcoming epidemics. Nevertheless, our
study has limitations that warrant further refinement. At present,
our study has focused on specific regions of spike protein sequences
and their single site mutational effects, and has not yet involved
epistasis / mutation interactions or explored the effects of other
mutation types such as deletions and insertions. And we use a fixed
set of 73 antibodies as the basis for assessing SARS-CoV-2 fitness,
a treatment that ignores dynamic changes in population immunity
due to repeated infections, the application of emerging vaccines,
and the discovery of new antibodies, which may lead to limitations
in the accuracy of the model’s simulation in a rapidly evolving
immune environment. We acknowledge that viral evolution is a
complex process involving various mutation types. Future research
needs to explore a wider range of mutation types and interactions,
and construct models that incorporate dynamic immune responses
to enhance the prediction accuracy and optimize the outbreak
prevention and control strategy. Moreover, there is an opportunity
to extend our model to encompass additional viral attributes,
including host immune responses and virus-host cell interaction
dynamics. It is also crucial to integrate insights from diverse fields
such as data mining, biology, medicine, and public health to
deepen our grasp of viral evolutionary processes and forecast the
consequences of potential mutations.
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