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Interactions between endophytes (endophytic bacteria and fungi) and plants are 
crucial in maintaining crop fitness in agricultural systems, particularly in relation 
to abundant and rare subcommunities involved in community construction. 
However, the influence of long-term fertilization on heterogeneous rhizosphere 
nitrogen and phosphorus environments and how these conditions affect the key 
subcommunities of root endophytes and their community assembly mechanisms 
remain unclear. We studied the 26th year of a field experiment conducted in a 
greenhouse with varying levels of nitrogen and phosphorus (CKP0, CKP1, CNP0, 
CNP1, ONP0, and ONP1) to assess the composition of tomato root endophytes 
and their impact on yield. We employed 16S rRNA and fungal ITS region amplicon 
sequencing to investigate the assembly mechanisms of abundant and rare endophytic 
subcommunities, network correlations, core subcommunity structures, and key 
species that enhance crop yield. The results indicated that organic manure and 
phosphorus fertilizers significantly increased the rhizosphere soil nitrogen content, 
phosphorus content, and phosphorus availability (labile P, moderately labile P, 
and non-labile P). These fertilizers also significantly affected the composition 
(based on Bray-Curtis distance) and community assembly processes (βNTI) of 
endophytic microbial subcommunities. The assembly of both bacterial and fungal 
subcommunities was primarily governed by dispersal limitation, with community 
structures being significantly regulated by the content of rhizosphere soil available 
nitrogen (AN) and moderately labile P (MLP). Rare bacterial and fungal subcommunities 
complemented the ecological niches of abundant subcommunities in the co-
occurrence network, supporting community functions and enhancing network 
stability. Nitrogen-adapting abundant and rare bacterial subcommunities provided 
a stronger predictive correlation for tomato yield than phosphorus-adapting fungal 
subcommunities. Additionally, three core genera of rare endophytic bacteria such 
as Arthrobacter, Microbacterium, and Sphingobium were identified as potentially 
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involved in improving crop yield improvement. These findings revealed the distinct 
assembly mechanisms of endophytic microbial subcommunities affected by 
fertilization, enhancing our understanding of better management practices and 
controlling endophytes to improve crop yield in intensive agricultural ecosystems.

KEYWORDS

endophyte, community assembly, abundant microbial taxa, rare microbial taxa, solar 
greenhouse

1 Introduction

Endophytes are a group of living microorganisms that can 
successfully colonize various plant tissues without causing disease 
symptoms (Adeleke and Babalola, 2021; Santoyo et al., 2016). Plants 
develop complex coexistence and mutualistic relationships with various 
endophytes (Battu and Ulaganathan, 2020; Harman and Uphoff, 2019) 
due to the essential functions provided by these endophytes, such as 
nutrient acquisition (Bolan, 1991; Burragoni and Jeon, 2021; Xie et al., 
2024), stress tolerance (Ali et al., 2014; Battu and Ulaganathan, 2020; 
Harman and Uphoff, 2019; Zhang et al., 2024), and disease suppression 
(Adeleke et al., 2021; Card et al., 2016; Omomowo and Babalola, 2019; 
Sena et  al., 2024). The mutualistic benefits between plants and 
endophytes also depend on the genetic and environmental conditions 
of the host (Meng et al., 2022). In particular, plant root endophytes are 
inherited through host genes and successfully colonize after filtrating 
through rhizosphere microorganisms (Meng et al., 2022; Xie et al., 
2024). Hence, plant root endophytes exhibit survival strategies similar 
to those of rhizosphere soil microorganisms, offering significant 
benefits for healthy plant growth and improved yield (Guo et al., 2024; 
Harman and Uphoff, 2019). Root endophyte symbiosis, which improves 
plant adaptability under stress conditions, is increasingly important. 
Notably, some root endophytes have developed strategies to adapt to 

the unique soil dynamic environments (Beltran-Garcia et al., 2021; 
Byregowda et al., 2022; Collavino et al., 2020; Edwards et al., 2015). For 
instance, root endophytic fungi play fundamental ecological roles in 
substituting phosphorus strategies in non-mycorrhizal crops or 
nitrogen availability (Mehta et al., 2019; Sindhu et al., 2024; Sun et al., 
2022; Xie et al., 2024). These root endophytes served as a more accurate 
and effective microbial indicators for evaluating plant resistance to 
environmental disturbances (Rani et  al., 2022; Sun et  al., 2021). 
Although the understanding of microbial community composition in 
different soil environments has rapidly increased, it remains unclear 
whether the resistance of root endophytic bacteria and fungi to soil 
environments influences their beneficial effects on crop yield.

In the natural ecosystem, local microbial communities generally 
comprise a few dominant species (abundant taxa) and numerous 
low-abundance species (rare taxa) (Ma et al., 2024; Zheng et al., 2021). 
The assembly dynamics of abundant and rare taxa in different 
ecosystems are complex and inconsistent (Gschwend et  al., 2021), 
especially in the context of soil nutrient imbalance in agricultural 
ecosystems, where they exhibit different distribution patterns and 
functional characteristics (Jiao et al., 2019a; Ma et al., 2022a; Wu et al., 
2023). These differences are attributed to varying microbial survival 
strategies and substrate preferences (Long and Yao, 2020; Wan et al., 
2021). Understanding community assembly process is vital for 
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elucidating the coexistence status among soil microorganisms and 
preserving species diversity (Chen et al., 2020; Liu et al., 2024). The 
community assembly process has been categorized into deterministic 
process, including homogeneous and variable selection, and stochastic 
process, including homogenizing dispersal, dispersal limitation, and 
undominated (Chase and Myers, 2011; Stegen et al., 2015). Due to 
diverse ecological functions and collaborative capabilities of species, the 
assembly of abundant taxa communities often shows greater 
stochasticity (Xiong et al., 2020), which underpins the overall stability 
of the microbial community (Wan et al., 2021). Rare taxa, with high 
genetic diversity, can adapt to specific environments and play key roles 
in stabilizing microbial communities and ecosystem functions (Cui 
et al., 2023; Jia et al., 2022; Ma et al., 2024; Xue et al., 2020; Yu et al., 2024; 
Zhang et al., 2023). Some key taxa variations of the rare subcommunity 
have shown ecological potential for mediating microbial interactions, 
dominating community stability, and contributing to the complexity of 
symbiotic networks (Jousset et al., 2017; Liang et al., 2020; Xiong et al., 
2020). Changes in the proportion and diversity of abundant and rare 
endophytic subcommunities inevitably affect the stability and ecological 
function of endophytic communities (Xi et al., 2024; Xiong et al., 2020; 
Zhang et al., 2024). Thus, understanding the distribution characteristics, 
assembly processes, and symbiosis patterns of abundant and rare 
subcommunities is crucial for examining how long-term fertilization 
affects endophytic microbial diversity and ecological stability.

The use of excessive inorganic nitrogen and phosphorus fertilizers 
in greenhouse cultivation, driven by yield and economic benefit, is a 
widespread practice (Wang et  al., 2022; Zhang et  al., 2017). This 
practice has led to excessive nutrient accumulation in the soil (Han 
et al., 2015; Tian et al., 2022) and exacerbated the negative effects on 
soil microbial community assembly (Bai et al., 2022; Banerjee et al., 
2019; Liu et al., 2023b). Traditionally, manure has helped mitigate the 
harmful effects of chemical fertilizers on microbial communities, 
thereby contributing to the yield (Zhang et al., 2021). This positive and 
effective agronomic practice may be key to determining facility crop 
yield and maintaining agricultural sustainability. Increasing evidence 
suggests that environmental changes, such as variations in soil 
nitrogen and phosphorus levels, play a significant role in driving niche 
variation of root endophytic microbial species and determining the 
assembly process of root endophytic microbial communities (Bai 
et al., 2022; Long and Yao, 2020; Sindhu et al., 2024). Appropriate 
nitrogen levels are conducive to the dominant characteristics of 
endophytic fungi and endophytic bacterial communities, as well as 
higher diversity and richness (Liu et al., 2023b; Miranda-Carrazco 
et  al., 2022; Sindhu et  al., 2024). The composition and structural 
changes of rice root endophytic bacterial communities are affected by 
chemical phosphorus fertilizer (Long and Yao, 2020). Differences in 
the community structure of root endophytic bacteria and fungi in 
response to fertilization may be closely related to the host’s nutrient 
utilization. Therefore, it is essential to identify external environmental 
factors, particularly nitrogen and phosphorus availability, that 
influence the assembly of abundant and rare root endophytic 
subcommunities and their contribution to the yield. Understanding 
these factors can shed light on the co-evolution of different niche 
endophytic subcommunities with plants and help develop targeted 
strategies to manipulate key subcommunities and species to improve 
crop yields. In this study, we conducted a long-term experiment with 
nitrogen, phosphorus, and organic manure application in a solar 
greenhouse. The aims of this study were to (i) identify the relative 

contributions of the environmental factors in shaping root endophytes 
and assess how deterministic and stochastic processes influence 
abundant and rare subcommunities; and (ii) explore the species traits, 
ecological functions, and co-occurrence patterns of abundant and rare 
endophytic microbial taxa. We hypothesized the following: (i) The 
availability of nitrogen and phosphorus in the rhizosphere soil are 
potential key environmental variables driving stochastic process 
(dispersal limitation) in endophytic bacterial and fungal assembly, 
causing structural changes in subcommunities. (ii) Phosphorus-
adapting endophytic fungi may occupy niches that complement 
nitrogen-adaption endophytic bacterial subcommunities, each 
contributing to main ecological functions. (iii) Rare bacterial 
subcommunities provide core species that maintain the stability of the 
endophytic microbial network and complement the functions of 
abundant bacterial subcommunities, ultimately enhancing crop 
yield potential.

2 Materials and methods

2.1 Field site and experimental design

The long-term targeted fertilization experiment was designed in 
1996 as a solar greenhouse field at the Shenyang Agricultural 
University of Liaoning Province, China (41°480 N, 123°250 E). The 
experimental soil was classified as Glesol (FAO and ISRIC, 1988). The 
initial basic chemical properties were as follows: pH = 6.75, soil 
organic matter (SOM) = 24.30 g·kg−1, total P (TP) = 1.37 g·kg−1, 
available P (AP) = 70.80 mg·kg−1, labile P (LP) = 333.90 mg·kg−1, 
moderately labile P (MLP) = 364.73 mg·kg−1, non-labile P 
(NLP) = 1163.38 mg·kg−1, and total N (TN) = 1.16 g·kg−1. The 
fertilization experiment site has a cropping system of continuous 
tomato cultivation in spring and autumn every year. The fertilization 
experiment consisted of six treatments arranged in a completely 
randomized block design (1.5 * 1.0 * 0.8 m3 for each pool): (1) CKP0 
(unfertilized), (2) CKP1 (chemical phosphorus fertilizer), (3) CNP0 
(chemical nitrogen fertilizer), (4) CNP1 (chemical nitrogen plus 
phosphorus), (5) ONP0 (organic manure), and (6) ONP1 (organic 
manure plus phosphorus). Each treatment was replicated in three 
independent cement pools. The fertilizers application rate per year are 
shown in Supplementary Table S1. Chemical nitrogen fertilizer was 
applied twice during the tomato whole growing season. Chemical 
phosphorus fertilizers and organic manure (horse manure obtained 
8.69% organic matter, 0.45% total N, and 0.30% total phosphorus) 
were evenly spread on the surface and incorporated into the plow layer 
by manual hoeing before planting. The fertilization experiment was 
conducted in the autumn season of the 26th year from August 2022 
to December 2022. Each tomato (“Meisheng”) plant had a single 
branch after pruning, and there were four clusters of fruits on the 
branch and five fruits per cluster.

2.2 Root and rhizosphere soil sampling

Four rhizosphere soils were randomly collected from each pool and 
then merged into one rhizosphere soil sample (Bulgarelli et al., 2012). 
Four tomato root samples were randomly collected from each pool, 
washed, and merged into one root sample, which was stored in sterilized 
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1 × PBS (pH = 7.0). All samples were promptly transported to the 
laboratory. The rhizosphere soil samples were stored at −80°C, while root 
samples for processed further to prepare for the isolation of root 
endophytic fungi and bacteria. A total of 2.0 g mixed roots of each sample 
were surface sterilized in 75% ethanol (1 min), 3.25% sodium 
hypochlorite (3 min), and 75% ethanol (30 s), followed by three rinses in 
distilled water (Guo et al., 2000). Root samples were then stored in liquid 
nitrogen immediately. The key difference was that all solutions used were 
sterile and the last sterile washed water of each root sample was placed in 
a PDA medium for 1 week at 28°C to confirm the effectiveness of surface 
sterilization. A total of 36 experimental samples, including 18 rhizosphere 
soil samples and 18 root samples (6 treatments × 3 duplicates), were 
stored at −80°C for subsequent DNA extraction.

2.3 Soil chemical parameters determination

Soil pH was measured using 1:2.5 (w/v) soil-to-water suspension. 
Soil organic carbon (SOC) was determined using the H2SO4-K2Cr2O7 
oxidation capacity method (Mebius, 1960). Available phosphorus 
(AP) was determined through 0.5 M NaHCO3 extraction, while total 
phosphorus (TP) was measured through H2SO4-HClO4 digestion. Soil 
phosphorus fractions were prepared and analyzed as reported by 
Hedley et al. (1982) and Tiessen and Moir (1993). These phosphorus 
fractions were classified into LP (resin-Pi, NaHCO3-Pi, and 
NaHCO3-Po), MLP (NaOH-Pi and NaOH-Po), and NLP (HCl-Pi, 
concentrated HCl-Pi, concentrated HCl-Po, and residual P) 
(Maranguit et al., 2017; Shi et al., 2023). Total nitrogen (TN) was 
quantified using an automatic Kjeldahl distillation–titration method 
(Cabrera and Beare, 1993). Available nitrogen (AN) was measured 
using the alkali-hydrolyzed diffusion method, while soil nitrate 
(NO3

−-N) and ammonium (NH4
+-N) were quantified using a flow-

injection autoanalyzer (Skalar San++ CFA, Erkelenz, Germany) 
(Bornemisza et al., 1988).

2.4 DNA extraction and high-throughput 
sequencing

Total DNA was isolated from 0.5 g of pooled root samples (which 
were created by randomly collecting four surface-sterilized roots and 
mixing them into a single sample from each pool) using the 
CretMagTM Plant DNA Mini Kit: CretBiotech, Suzhou, China, 
following the manufacturer’s instructions. The DNA samples obtained 
from root samples were amplified using PCR with specific primer sets 
that included adaptors and barcodes. Fungal ITS1 region amplification 
was as follows: ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and 
ITS2 (5′- GCTGCGTTCTTCATCGATGC-3′). 16S rDNA gene V5-V7 
region amplification was as follows: 799F (5′- AACMGGATTAG 
ATACCCKG-3′) and 1193R (5′-ACGTCATCCCCACCTTCC-3′) (Liu 
et al., 2023b). Additionally, to ensure efficiency and accuracy, PCR 
amplification was performed using TaKaRa Premix Taq® Version 2.0 
(TaKaRa Biotechnology Co., Dalian, China), and the reactions took 
place in the thermocycler PCR system BioRad S1000 (Bio-Rad 
Laboratory, CA) under the following thermal cycling program for 
fungi: 95°C/3 min (initial denaturation) followed by 34 cycles of 
95°C/20 s, 56°C/20 s, 72°C/30 s, 72°C/5 min (final extension), and 
lastly held at 12°C. The following thermal cycling program for bacteria 

is as follows: 98°C/30 s (initial denaturation) followed by 32 cycles of 
98°C/10 s, 53°C/20 s, 72°C/30 s, 72°C/2 min (final extension), and 
lastly hold at 12°C. The PCR mixtures for fungi contain 25 μL of 
2 × ES Taq MasterMix(Dye), 2 μL of forward primer (10 μM), 2 μL of 
reverse primer (10 μM), 50 ng of template DNA, and ddH2O added to 
a final volume of up to 50 μL. The PCR mixtures for bacteria contain 
25 μL of Q5, 5 μL of forward primer (10 μM), 5 μL of reverse primer 
(10 μM), 50 ng of template DNA, and ddH2O added to a final volume 
of up to 50 μL. PCR reactions were performed in triplicate. DNA 
integrity of isolated DNA was visually inspected using 1.5% agarose 
gel electrophoresis, and DNA concentration and volume were 
determined using the NanoDrop2000 (Thermo Fisher Scientific, 
United States) (For detailed information, refer Supplementary Table S2). 
During the PCR process, negative controls with water and positive 
control tests were set. After comparing the concentration of PCR 
products, the required volume of each sample was calculated based on 
the principle of equal mass, and the PCR products were mixed 
accordingly. Target strips were cut and purified using the E.Z.N.A.® Gel 
Extraction Kit (Omega, United States) and quantified using GeneTools 
Analysis Software (Version4.03.05.0, SynGene), following the 
manufacturer’s instructions. The cDNA library was constructed using 
the NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® (New 
England Biolabs, United  States), according to the manufacturer’s 
instruction. Purified amplicons were pooled in equimolar and 
paired-end sequenced by the Shanghai Biotree Biotech Co., Ltd. 
(Shanghai, China) on the Illumina HiSeq PE250 sequencing platform. 
The resulting paired sequence reads were merged, trimmed, filtered, and 
clustered into zero-radius operational taxonomic units using USEARCH 
(version 0.2.7) with a sequence similarity threshold of 0.97 (Edgar, 
2016a; Rognes et  al., 2016). The UNITE (ITS) database and the 
Ribosomal Database Project (RDP) (16S) database were used for 
taxonomical alignment at a threshold of 0.8 using the SINTAX 
algorithm (Edgar, 2016b). These databases were used to align multiple 
sequences, remove annotation for chloroplasts or mitochondria, analyze 
the phylogenetic relationship between different operational taxonomic 
units (OTUs), and investigate the differences between the dominant 
microbial community species across different groups. All of raw reads 
data are available in the NCBI Sequence Read Archive (SRA) database 
(Accession Number: PRJNA1182544).

2.5 Data analyses

A one-way ANOVA (p < 0.05) test was performed to analyze 
differences in the rhizosphere soil environment factors, yield, and the 
dominant microbial abundances among different fertilizations using 
IBM SPSS Statistics (version 22.0, IBM Corporation, Armonk, N.Y., 
United  States) software. The analysis of microbial subcommunity 
characteristics were performed using R software (version 4.3.0), and 
some histograms were generated using Origin 2024. Abundant and 
rare OTUs were defined based on cutoffs above 0.1% and below 0.01% 
of total sequences, as described in previous studies (Jiao et al., 2017; 
Jiao and Lu, 2020; Zheng et al., 2021). The “abundant subcommunity” 
included OTUs with a mean relative abundance >0.1% in root 
endophytic bacterial and fungal communities across all samples, while 
the “rare subcommunity” included OTUs with a mean relative 
abundance <0.01%. The relative abundance of bacterial and fungal 
subcommunities at the phylum level was constructed using the 
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“microtable” package in R (Liu et al., 2020). The Kruskal–Wallis test 
for α-diversity indexes (Shannon and Richness), non-metric 
multidimensional scaling (NMDS), and analysis of similarities 
(ANOSIM) were performed using the “vegan” package in R (Liu et al., 
2015; Oksanen et al., 2012; Yu et al., 2024). The beta diversity was 
analyzed using the “betapart” package in R (Baselga and Orme, 2012). 
In this study, the Bray–Curtis-based Raup-Crick (RCbray) and the 
β-nearest taxon index (βNTI) were used to calculate the variations in 
phylogenetic and taxonomic diversity using the “comdistnt” function 
from the “picante” R package (Jiao and Lu, 2020). Quantitatively, the 
proportion of inferred bacterial and fungal subcommunity assembly 
ecological processes in root endophytes was analyzed using a 
phylogenetic bin-based null model analysis (with 999 randomizations), 
implemented via the “icamp.big” function in R (Ma et al., 2022a; Ning 
et  al., 2020; Wu et  al., 2023). Both homogeneous and variable 
selections were considered as forms of species sorting (deterministic 
process) (Jiao et al., 2019b). Based on the co-occurrence networks to 
explore the interrelationships of all OTUs in bacterial and fungal 
subcommunities, except for the rare and abundant subcommunities, 
the remaining OTUs were classified as “Others.” Robust correlations 
were identified using Spearman’s correlation coefficients (r) > 0.6 and 
false discovery rate-corrected p values <0.05 (p value corrected by 
FDR multiple test). These metrics were applied to construct random 
networks of root endophytes and four endophytic subcommunities 
using the “igraph” package in R (Hartman et al., 2018; Jiao et al., 
2019b). The topological characteristics of the networks were calculated 
based on the following metrics: average clustering coefficient, average 
connectivity, average path distance, and modularity. Furthermore, the 
keystone species for endophytic subcommunity networks were 
identified based on the threshold values of Zi (measuring how well a 
node was connected to other nodes within its module) and Pi 
(measuring how well a node was connected to nodes between different 
modules), set at 2.5 and 0.62, respectively (Guimerà and Nunes 
Amaral, 2005; Lang et al., 2021; Liang et al., 2016; Wu et al., 2023). To 
identify the key root endophytic subcommunity and taxa predictors 
for yield, the “randomForest” package in R was used, and each 
predictor was assessed using the “rfPermute” package. A Mantel test 
was conducted to determine the correlation between community 

composition and rhizosphere soil environment factors. A structural 
equation model (SEM) was analyzed using IBM SPSS Amos 26 to 
quantify the direct and indirect effects of the rhizosphere environment 
factors (such as pH, AN, and MLP) and the α and β diversities of the 
bacterial subcommunities on the yield. All variables were standardized 
using Z transformation (mean = 0, standard deviation = 1) with the 
‘scale’ function in the R package. The maximum likelihood method 
was employed to fit the model (Jin et al., 2020). The standardized total 
effects (STEs) of the rhizosphere soil nutrients and root endophytic 
bacterial subcommunities on the yield were calculated.

3 Results

3.1 Response of the rhizosphere soil 
physicochemical parameters to long-term 
fertilization

Long-term fertilization significantly increased the total nutrient 
content of the rhizosphere soil excluding NH4

+-N (Table  1). The 
contents of SOC, TN, AN, and NO3

−-N significantly increased in 
ONP0 and ONP1, by 175%–214%, 71%–84%, 362%–506%, and 
956%–1,672%, respectively, compared with CKP0. Different fractions 
of phosphorus increased with the application of phosphorus and 
organic manure, with the highest increases in the contents of TP, AP, 
LP, and NLP observed in ONP1, by 284%, 426%, 330%, and 155%, 
respectively. The MLP content in ONP1, CKP1, and CNP1 
significantly increased by 539%, 587%, and 756%, respectively, 
compared to CKP0. Soil pH significantly decreased across all 
treatments compared to CKP0, except in ONP0.

3.2 Response of the endophytic microbial 
subcommunity characteristics to 
long-term fertilization

In tomato roots, the total number of 3,122 bacterial OTUs and 
487 fungal OTUs were observed (Supplementary Table S3). A high 

TABLE 1 Effects of long-term fertilization on rhizosphere soil physicochemical parameters.

Treatment CKP0 CKP1 CNP0 CNP1 ONP0 ONP1

pH (1:2.5 v/w) 7.19 (0.04)a 6.87 (0.04)c 6.84 (0.03)c 6.56 (0.08)d 7.21 (0.02)a 7.00 (0.01)b

SOC (g kg−1) 7.85 (0.58)c 8.51 (0.27)c 7.18 (0.40)c 7.58 (0.00)c 21.55 (1.06)b 24.61 (0.53)a

TP (g kg−1) 1.12 (0.03)d 3.32 (0.14)b 0.99 (0.01)d 3.30 (0.08)b 1.85 (0.03)c 4.29 (0.15)a

AP (mg kg−1) 31.46 (1.51)b 135.94 (2.59)a 23.23 (2.13)b 142.70 (3.58)a 150.11 (13.13)a 165.59 (18.73)a

LP (mg kg−1) 247.81 (10.59)e 929.73 (52.35)b 144.42 (14.57)e 801.18 (28.33)c 526.76 (30.63)d 1064.73 (64.31)a

MLP (mg kg−1) 163.60 (13.65)c 1125.49 (51.67)b 179.21 (6.61)c 1401.08 (140.42)a 272.29 (8.23)c 1046.20 (64.63)b

NLP (mg kg−1) 1132.53 (45.66)c 1906.99 (109.87)b 1000.73 (50.06)c 1671.50 (76.37)b 1518.79 (87.28)b 2884.05 (251.78)a

TN (g kg−1) 1.45 (0.15)b 1.29 (0.07)b 1.41 (0.04)b 1.48 (0.04)b 2.49 (0.10)a 2.68 (0.09)a

AN (mg kg−1) 9.33 (2.54)c 21.00 (1.75)bc 19.83 (2.33)bc 27.42 (4.21)bc 43.17 (15.47)ab 56.58 (7.10)a

NO3
−-N (mg kg−1) 0.80 (0.21)d 1.18 (0.19)d 1.61 (0.52)d 19.51 (0.06)a 8.42 (1.96)c 14.12 (0.56)b

NH4
+-N (mg kg−1) 1.43 (0.29)a 1.16 (0.12)a 1.20 (0.13)a 1.87 (0.42)a 1.78 (0.39)a 1.27 (0.09)a

The pH, SOC, TP, AP, LP, MLP, NLP, TN, AN, NO3
−-N, and NO4

+-N refer to rhizosphere soil pH, soil organic carbon, total phosphorus, available phosphorus, labile phosphorus, moderately 
labile phosphorus, non-labile phosphorus, total nitrogen, available nitrogen, nitrate nitrogen, and ammonium nitrogen, respectively. Lowercase letters denote significant differences based on 
the Duncan’s one-way analysis of variance among different treatments (n = 3, p < 0.05).
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percentage of OTUs were recognized as rare taxa, constituting rare 
subcommunities of bacteria and fungi. These rare taxa represented 
an average of 84.30% and 55.44% of bacterial and fungal OTUs, 
respectively, but contributed only 6.04% and 0.91% to the average 
relative abundance in all samples. Conversely, abundant bacterial 
and fungal taxa constituted a small proportion of OTUs with mean 
values of 2.85% and 8.00% but accounted for 81.01% and 94.07% of 
the average relative abundance in all samples, respectively. The rare 
bacterial subcommunity exhibited higher α-diversity, in terms of 
both richness and Shannon indexes, compared to the abundant 
subcommunity under the same treatments. The rare fungal 
subcommunity showed only a higher Shannon index compared to 
abundant subcommunity under the same treatments (Figure 1). The 
Shannon index of abundant bacterial and fungal subcommunities 
significantly decreased in CNP0 and ONP0 compared to CKP0 
(p < 0.05; Figures 1A,C). The richness of abundant and rare fungi 
in CNP1 and ONP0 also significantly decreased compared to CKP0 
(p < 0.05; Figures 1G,H). There was no significant difference in the 
Shannon index of rare bacterial and fungal subcommunities or the 
richness of abundant and rare bacterial subcommunities across 
other treatments, compared to CKP0 (p < 0.05; Figures 1B,D–F).

Root endophyte OTUs were classified into 10 bacterial and 
five fungal phyla, excluding unclassified sequences. The abundant 
bacterial subcommunity was predominantly Proteobacteria 
(2.81%–54.50%), whereas the rare bacterial subcommunity was 
also dominated by Proteobacteria (22.15%–36.75%) 

(Figures 2A,B). The relative abundance of Proteobacteria in the 
abundant bacterial subcommunity was significantly decreased by 
nitrogen application (CNP0 and ONP0) compared to CKP0 
(p < 0.05; Supplementary Table S4). The relative abundance of 
Actinobacteriota, Chloroflexi, and Gemmatimonadota in rare 
bacterial subcommunity was significantly increased in ONP1, 
CNP1, and CNP1, respectively, compared to CKP0 (p < 0.05; 
Supplementary Table S4). The relative abundance of 
Acidobacteriota was significantly increased in CKP1, CNP0, and 
CNP1 compared to CKP0 (p < 0.05; Supplementary Table S4). 
The abundant fungal subcommunity was dominated by 
Ascomycota (0.8%–13.36%) (Figure 2C), while the rare fungal 
subcommunity was dominated by Ascomycota (25.23%–51.43%) 
and Basidiomycota (8.8%–29.63%) (Figure 2D). There was no 
significant difference in the relative abundance of endophytic 
fungal phyla among different treatments (p < 0.05; 
Supplementary Table S4). The NMDS analysis of Bray–Curtis 
distances revealed a distinct separation of all OTUs composition 
between treatments (beta-diversity). This revealed a clear 
separation between treatments of the bacterial and fungal 
subcommunities (Figures 2E–H). The ANOSIM analysis further 
indicated that the composition of bacterial subcommunity 
significantly varied with N levels, whereas the composition of the 
fungal subcommunity significantly varied with P levels rather 
than among different treatments (p ≤ 0.05; 
Supplementary Table S5).

FIGURE 1

Shannon and richness indexes of root endophytic abundant bacteria (A,E), rare bacteria (B,F), abundant fungi (C,G), and rare fungi (D,H) under different 
treatments. CKP0, Unfertilized; CKP1, Chemical phosphorus applied; CNP0, Chemical nitrogen applied; CNP1, Chemical nitrogen plus phosphorus; 
ONP0, Organic manure supply nitrogen; ONP1, Organic manure supply nitrogen plus phosphorus. *p < 0.05, as tested by multiple comparisons using 
the Kruskal–Wallis test, and only significant differences are displayed. The treatment denotations are the same as those in Figure 1.
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3.3 Community assembly of root 
endophytic abundant and rare microbial 
subcommunities

β-nearest taxon index values were used to quantify the 
relative contributions of ecological processes in different 
fertilization treatments (Figures 3A–D). A significant discrepancy 
in βNTI values of rare fungal and abundant bacterial 
subcommunities was caused by different N and P levels, 
respectively (p ≤ 0.05). There was no significant discrepancy in 
βNTI of different microbial subcommunities under different 
treatments and were all between −2 and + 2. Furthermore, the 
null model analysis revealed that the ecological assembly of root 
endophytic abundant and rare subcommunities varied with 
different treatments. Phosphorus levels mainly governed the 
abundant bacterial subcommunity through dispersal limitation 
(23.42%–96.79%), which, and an undominated process 
(0%–76.58%), which gradually increased (p < 0.05; Figures 3A,E). 
Dispersal limitation (12.26%–50.22%) and undominated 
(39.82%–77.72%) processes mainly governed the rare bacterial 
subcommunity (Figure 3F). The abundant fungal subcommunity 
was entirely governed by stochastic processes, mainly shaped by 
the undominated process in CKP0, CNP0, and ONP0 and 
increase dispersal limitation process in P level (CKP1, CNP1, and 
ONP1) (Figure 3G). The rare fungal subcommunity was mainly 
governed by nitrogen levels through decreased dispersal 
limitation (13.73%–72.07%) and increased undominated process 
(24.82%–84.56%) (Figure  3H). In summary, the assembly of 
abundant bacterial, abundant fungal, and rare fungal 
subcommunities was governed by dispersal limitation and 
undominated processes, while stochastic processes dominated the 
rare bacterial subcommunity and gradually replaced deterministic 
processes completely under different treatments (Figure 3).

3.4 Keystone species and network 
topological properties of endophytic 
microbial subcommunities

Co-occurrence networks under different treatments revealed that 
the endophytic rare subcommunities, with a higher number of nodes, 
played a more important role than abundant subcommunities 
(Figures 4A–F). Rare bacterial nodes accounted for 53.88% to 58.80%, 
whereas abundant bacterial nodes accounted for only 3.92% to 5.57%. 
Rare fungal nodes accounted for 4.02% to 7.50%, whereas abundant 
fungal nodes accounted for 2.10% to 3.03%. A co-occurrence network 
was also constructed for root endophytic abundant and rare 
subcommunities that conformed to the power-law distribution 
(Supplementary Figure S2). We observed that the numbers of nodes, 
edges, and average degree in the root endophytic microbial network 
decreased with nitrogen application (CNP0, CNP1, ONP0, and 
ONP1), while the modularity increased and the graph density 
decreased with phosphorus application (CKP1, CNP1, and ONP1) 
(Supplementary Figure S1). The observed potential interactions at 
root endophytes were predominantly positive, accounting for 78.12%–
87.38% of the total linkages (Figure 4). The proportion of negative 
correlations in the root endophytic network of ONP1 was the highest 
(21.88%) compared to CKP0 (Figure 4F).

Nitrogen application reduced the modularity and average path 
length of the abundant bacterial subcommunity network, while 
increasing the clustering coefficient and average path length and 
reducing the average degree in the rare bacterial subcommunity 
network. Phosphorus application increased the modularity and 
average path length in the network of the abundant fungal 
subcommunity, while decreasing the clustering coefficient. In the rare 
fungal subcommunity, phosphorus application increased the 
clustering coefficient and average degree, but decreased the modularity 
and average path length (Supplementary Table S6). The topological 

FIGURE 2

Subcommunity composition at the phylum level and non-metric multidimensional scaling (NMDS) plots of root endophytic abundant bacteria (A,E), 
rare bacteria (B,F), abundant fungi (C,G), and rare fungi (D,H) under different treatments. Unclassified bacterial and fungal OTUs were labeled as 
“Others.” The treatment denotations are the same as those in Figure 1.
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FIGURE 3

Root endophytic bacterial and fungal subcommunities assembly processes (based on βNTI and RCBray). βNTI of root endophytic abundant bacteria 
(A), rare bacteria (B), abundant fungi (C), and rare fungi (D) subcommunities. Proportions of deterministic and stochastic assembly processes in 
governing root endophytic abundant bacteria (E), rare bacteria (F), abundant fungi (G), and rare fungi (H) subcommunities under different treatments.

roles of the individual subcommunity network nodes were shown in 
a Zi-Pi plot (Figure 5). Peripherals were completely occupied by total 
nodes in abundant bacterial and abundant fungal subcommunities 
(Figures 5A,C). We found a total of 63 keystone species in the root 
endophytic rare bacterial subcommunity network; one was identified 
as a module hub, while the remaining species served as connectors 
(Figure 5B). These keystone species play a significant role (2.45%) in 
the network, and they mainly belong to Proteobacteria, 
Actinobacteriota, Bacteroidota, Firmicutes, Myxococcota, Chloroflex, 
Acidobacteriota, and Gemmatimonadota (Supplementary Table S7). 
These phyla were highly enriched under ONP1, followed by CKP1. 
Two keystone species belonging to Ascomycota played a 0.85% role in 
the rare fungal subcommunity network (Figure  5D; 
Supplementary Table S7).

3.5 Specific subcommunity composition 
and taxa as predictors of yield under  
long-term fertilization

Compared with the CKP0, fertilization treatments significantly 
increased the yield except CKP1 (p < 0.05; Figure 6A). The random 
forest regression model was used to identify the structure of the 
root endophytic subcommunity, including abundant bacteria, rare 
bacteria, abundant fungi, and rare fungi that could predict the 
yield across different fertilization treatments (Figure  6B). The 

structure of abundant bacteria and rare bacteria significantly 
contribute to yield (p < 0.05; Figure 6B). Moreover, the structure 
of the abundant bacterial subcommunity explained 22.03% of yield 
variation, whereas the rare bacterial subcommunity accounted for 
3.09% (Figure  6B). Additionally, the structures of bacterial 
subcommunities were positively related to AN content (p < 0.05; 
Figure 6B). On the contrary, abundant fungi and rare fungi were 
positively associated with soil phosphorus especially MLP 
(p < 0.01; Figure 6B), and both of them have no significant positive 
contribution to yield (Figure  6A). These four subcommunities, 
except the abundant subcommunity, were negatively correlated to 
soil pH (p < 0.05; Figure 6B). The random forest regression model 
further predicted the top  10 genera of the rare subcommunity 
(54.93%) had a greater impact than on yield variation compared to 
those in the abundant subcommunity (19.32%), indicating that 
they are more important drivers to yield variation (Figure 6). No 
key role genus of abundant subcommunity was identified from 
network, though top 10 abundant genus could predict the yield 
variation (Figure 6C; Supplementary Table S7). Three keystone 
species Arthrobacter, Microbacterium, and Sphingobium have been 
found in the rare microbial subcommunity. These species 
contribute to increased yield in response to soil nutrient changes 
and also serve as connectors in the network (Figure  6D; 
Supplementary Table S7).

Structural equation model was employed to quantify the 
correlations among key soil characters (AN, pH, and MLP) in 
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response to amounts of N and P fertilizers, the most important root 
endophytic bacterial subcommunities, and yield (Figure 7). The soil 
AN, pH, and MLP explained much more variation of the β-diversity 
(r2 = 0.47) than α-diversity (r2 = 0.30) in abundant bacterial 
subcommunity, but much more variation of α-diversity (r2 = 0.54) 
than β-diversity (r2 = 0.38) in rare bacterial subcommunity. Soil AN 
had a positive direct and indirect effect by influencing the β-diversity 

of abundant and rare bacterial subcommunity on yield. It should 
be  noted that the α-diversity of abundant and rare bacterial 
subcommunities showed no direct effect on yield. The contrasting 
results were observed for yield, being directly negatively affected by 
pH and MLP, while through the α-diversity of rare bacteria directly 
related to MLP (Figure 7A). The soil pH and MLP had a positive effect 
and AN had a negative effect on the α-diversity of abundant and rare 

FIGURE 4

Co-occurrence networks of bacterial and fungal coexistence communities under different fertilizations (A–F). The networks were established by 
calculating correlations among abundant, rare, and other OTUs.

FIGURE 5

Distributions of network roles by analyzing module features, within-module connectivities (Zi) and among-module connectivities (Pi), in the 
endophytic abundant bacterial (A), rare bacterial (B), abundant fungal (C), and rare fungal (D) co-occurrence networks of root, respectively.
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subcommunities, but its effects were contrary on the β-diversity of 
abundant and rare bacterial subcommunities. The soil AN was found 
to have the largest standardized positive effect on yield, followed by 

the β-diversity of abundant and rare bacterial subcommunities, while 
the contribution of the abundant bacterial β-diversity was greater 
compared to that of the rare bacterial β-diversity (Figure 7B).

FIGURE 6

Changes in tomato yield (A). The random forest regression model shows the root endophytic subcommunity structures as drivers of yield. A 
correlation between the structure of microbial subcommunities and soil nutrients was identified using Spearman’s test (B). The random Forest 
regression model identifies the top 10 most important taxa of abundant (C) and rare (D) subcommunities at the genus level, along with their respective 
phylum, as key drivers of tomato yield. The bars illustrate the increase in mean squared error (%IncMSE) scores for the contribution of root endophytes 
at the genus level among six fertilization treatments, affecting the tomato yield. Significance levels are denoted with *p < 0.05, **p < 0.01, and 
***p < 0.001.
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4 Discussion

4.1 Long-term fertilization affected the 
construction processes in distribution 
characters of root endophytes 
subcommunities

The abundant endophytic bacterial and fungal subcommunities 
were prevalent in most fertilization treatments with an average relative 
abundance of 81.01% and 94.07%, respectively. Abundant species may 
occupy wider niches, competitively utilize more enriched resources, 
have high growth rates, and effectively adapt to the environment. All 
of these supported their persistence and their widespread distribution 
(Jiao and Lu, 2020; Liu et  al., 2023a). In addition, the relative 
abundance of root endophytic rare bacterial and fungal 
subcommunities that contributed less to the total community 
abundance was unevenly distributed among different fertilization 
treatments. The different distribution patterns of root endophytic 
abundant and rare taxa may be  attributed to their distinct life 
strategies. The rare subcommunities usually exhibited dormancy or 
low growth rates and competitiveness. Hence, root endophytic 
microbial subcommunities showed limitations but not extinction in 
nutrient-enriched environments caused by long-term fertilization (Jia 
et al., 2018; Jousset et al., 2017). Notably, the rare subcommunities had 
the highest abundance and diversity compared with abundant 

subcommunities, which supported the fact that the rare 
subcommunity was an important contributor to the microbial 
diversity (du et al., 2020; Li et al., 2021; Lynch and Neufeld, 2015). This 
trend may be attributed to the fact that a community has a limited 
capacity and excessive diversity was formed by species competition. 
Rare taxa can become abundant members of a community in response 
to favorable environmental conditions (Jia et  al., 2022). Few rare 
species dominated the root samples in our study, but rare bacterial 
taxa were more susceptible to environmental heterogeneity and with 
ability to grow fast were affected by nutrient concentration increasing 
as conditionally rare taxa (Jia et al., 2022; Jiao et al., 2019a). This is 
possibly due to the selective pressure of resources in the rhizosphere 
soil environment driving the aggregation of root endophytic rare 
microbial communities (Liu et  al., 2024). It is known that soil 
environment factors such as carbon, nitrogen, and phosphorus 
concentrations could across compartments affect root species 
abundance and interactions (Zhang et  al., 2019). These findings 
suggest that the aggregation process of microbiome with different 
nutritional strategies can affect the diversity and abundance of 
endophytic microbial subcommunities (Li et  al., 2021; Liu et  al., 
2023a). Similar evidence has been found in previous studies to explain 
this change (Dos Santos et al., 2022), where the alpha diversity of 
endophytic microorganisms increases with the application of 
fertilizers. However, the α-diversity of fungal subcommunities, 
especially the α-diversity of the rare fungal subcommunity, was mainly 

FIGURE 7

Structural equation model (SEM) illustrating how the root endophytic bacterial subcommunities influenced yield by responding to soil AN, pH, and MLP 
(A). The total standardized effects of these factors on yield, α-diversity (Shannon diversity), and β-diversity are shown (B). Red arrows, black arrows, and 
dashed arrows indicate the positive significant, negative significant, and nonsignificant relationships between different variables. The width of the 
arrows indicates the strength of the standardized path coefficient. Adjacent values near the arrows indicate path coefficients. r2 values indicate the 
proportion of variance explained by each variable. Significance levels are denoted with *p < 0.05, **p < 0.01, and ***p < 0.001.
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increased by the application of chemical nitrogen and phosphorus 
fertilizers in our study (p < 0.05). Similarly, we found that different N 
levels and P levels shaped complex rhizosphere soil nutrient 
heterogeneity that significantly affected the structure of root 
endophytic bacterial and fungal subcommunities (Ma et al., 2021; Ma 
et al., 2022b; Zhang et al., 2019). This may have mediated a richer 
diversity of the rare subcommunity and enhanced their involvement 
in nutrient cycling processes between environments (Liu et al., 2023a; 
Shu et al., 2021).

The microbial community assembly processes, which determine 
the presence and abundance of species, are generally divided into 
deterministic and stochastic processes (Feng et al., 2018; Jiao et al., 
2019b). The null model suggested that the construction of root 
endophytic bacterial and fungal subcommunities are mainly 
dominated by stochastic processes especially dispersal limitation 
(Zhong et  al., 2022). More importantly, the assembly process of 
abundant and rare subcommunities of endophytic bacteria and fungi 
exhibited different trade-off patterns, reflecting varying relative 
contributions in response to changes in nitrogen and phosphorus 
levels (Xing et al., 2023). The proportion of stochastic processes in 
microbial community assembly can also increase through the 
functional redundancy generated by biological interactions and spatial 
and environmental processes (Li and Gao, 2023). Under different 
fertilization treatments of nitrogen and phosphorus levels, rhizosphere 
environmental filtration emphasizes the stochastic process of dispersal 
limitation, which may be involved in determining the development of 
different sub community systems, which was a very novel finding. 
Previous studies have revealed that determinism seems to be related 
to low nutrient levels, and stochasticity increases with nutrient levels 
(Chase, 2010; Zhou et al., 2014). Therefore, the current nutritional 
strategy for microbial community assembly processes may be more 
important than the priority effects shaped by host selection (Li and 
Gao, 2023). In particular, as the subcommunity rarity increases, 
dispersal limitation was more conducive to driving the assembly and 
construction of root endophytic bacterial and fungal subcommunities 
in enough nitrogen and phosphorus environments, respectively. This 
validation showed that rare microbial subcommunities were not a 
random taxonomic cluster; instead, most of these rare subcommunities 
show restricted distribution or migratory diffusion (Cui et al., 2023; 
Liu et al., 2015; Long and Yao, 2020). Compared to rare taxa, more 
individuals in abundant taxa were likely to be involved in dispersal 
limitation (Liu et  al., 2015), such as abundant bacterial 
subcommunities in our study. From this perspective, abundant taxa 
are likely to adopt growth yield or resource acquisition strategies that 
enable them to outcompete other microorganisms for broader niche 
space and nutrients (Cui et al., 2023; Delgado-Baquerizo et al., 2018; 
Dong et al., 2021; Jiao and Lu, 2020; Ma et al., 2022a). Consequently, 
we concluded that long-term fertilization indeed affected the specific 
niche differentiation of phosphorus-sensitive fungal and nitrogen-
sensitive root endophytic bacterial, both abundant and rare 
subcommunities (Hamonts et  al., 2018; Leach et  al., 2017; Niu 
et al., 2017).

The rare fungal subcommunity exhibited a more intense and 
significant response to phosphorus than the abundant fungal 
subcommunity, possibly due to the long-life cycle, low community 
turnover rate, and differences in metabolic activity and diffusion 
ability of fungi (Jiao and Lu, 2020; Omomowo and Babalola, 2019). 
Higher nutrient levels increased the importance of stochastic 

processes (Chase, 2010; Chen et al., 2020), providing insights into the 
assembly patterns of root endophytic fungal subcommunities 
promoted by phosphorus. Nitrogen application maintained the 
control of the dispersal limitation on the enrichment of both abundant 
and rare bacterial subcommunities, significantly impacting their 
structure. Previous studies found that short-term high nitrogen levels 
have a greater effect on the interactions among endophytic fungal 
communities in maize than on endophytic bacteria (Bai et al., 2022). 
We  found community assembly processes and ANOSIM analysis 
suggested that endophytic bacteria respond more strongly to nitrogen 
fertilizer than endophytic fungi. This difference may be partly because 
nutrient supplementation reduces the competitive advantage of fungi 
over bacteria (Michalska-Smith et al., 2022) and increases bacterial 
abundance (Wu et  al., 2019), especially in rare bacterial 
subcommunity. On the other hand, bacteria rely more on fixed 
sources of nitrogen and carbon than fungi (Schmidt et al., 2014), and 
organic fertilizers also compensate for the relative lack of carbon 
when achieving nitrogen supply in this process. These indicated that 
these subcommunities were formed by more complex assembly 
processes, especially rare subcommunities, which may also 
be important metabolic strategies for microbial cells to cope with 
environmental pressures and be  less susceptible to deterministic 
processes (Fujii et al., 2012; Lennon and Jones, 2011; Nemergut Diana 
et al., 2013). It is worth noting that stochastic process plays more 
importance in community assembly, leading to higher β-diversity of 
microorganisms and higher yield (Chase, 2010). The altered 
community aggregation characteristics of different subcommunities 
of root endophytic bacteria and fungi have improved the overall 
adaptability of microbial communities to their environment, 
potentially enhancing our understanding of ecosystem sustainability 
through various means. Rare subcommunities may serve as sensitive 
biological indicators for regulating their assembly mechanisms and 
reflecting environmental change risks, closely related to the 
composition of the entire endophytic microbial community. They 
may also be a key factor in enhancing the resistance of microbial 
networks through functional redundancy (Li et al., 2021; Lynch and 
Neufeld, 2015).

4.2 Co-occurrence network of root 
endophytes subcommunities and keystone 
species response to long-term fertilization

Network analysis has been identified as a powerful tool for 
exploring the role of microbial symbiotic interactions in coping with 
environmental stress (Michalska-Smith et al., 2022; Shu et al., 2021). 
Fertilizations have affected the network structural characteristics, 
providing insights into how symbiotic patterns of microbe form 
different endophytic microbial communities (Liu et al., 2023a) and 
helping to identify potential keystone taxa in network (Wu et al., 
2022; Zhong et al., 2022). Our finding indicated that the frequency, 
intensity, and distribution patterns of OTU interactions within 
subcommunities of root endophytic bacteria and fungi vary in 
response to different fertilization treatments, particularly changed 
with nitrogen and phosphorus levels. These findings are consistent 
with previous studies, showing that the cross soil and plant 
compartments of nutrient concentrations significantly altered 
overall community dynamics by affecting niche differentiation and 
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colonization of root endophytic bacteria and fungi (Michalska-
Smith et  al., 2022; Sun et  al., 2022; Xu et  al., 2022). This niche 
dispersal selectively recruits microbial subcommunities and formed 
stable coexistence through root interactions (Ernst et  al., 2011). 
After phosphorus application (CKP1, CNP1, and ONP1), root 
endophytic microbial communities exhibited higher modularity and 
lower graph density topological parameters, with an increased 
proportion of negative cohesion, indicative of a more stable and 
complex symbiotic pattern. Positive correlations among microbial 
species have indicated cooperative relationships or niche overlap, 
while negative correlations have indicated competitive relationships 
or niche separation (Ernst et al., 2011; Ghoul and Mitri, 2016). Due 
to higher soil nutrient levels, the highest network complexity and 
microbial growth diversity have been observed in ONP1, suggesting 
high nutrient competition among taxa under ONP1 (Deng et al., 
2016). This has been verified by the enhanced negative cohesion in 
the root endophytic symbiotic network under ONP1 (increased by 
9.26% and 8.10% compared to CKP0 and ONP0, respectively). Such 
a complex symbiotic network increased community structure 
stability, enabling resistance to long-term chemical fertilizer-
induced disturbances.

The topological characteristics of the subnetwork indicated that 
rare subcommunities exhibited more complex and stable symbiotic 
associations compared to abundant subcommunities (Li et al., 2021). 
We found that rare bacterial and fungal subcommunities have shown 
stronger clustering with nitrogen and phosphorus applications, 
respectively, reflecting the importance of ecological assembly 
processes and cooperative nutrient metabolism pathways among taxa 
in the endophytic microbiome (Cui et al., 2023; Fabiańska et al., 2019; 
Ma et  al., 2022b; Sun et  al., 2022). The tight associations in the 
symbiotic network may be the contribution of rare bacterial and rare 
fungal subcommunities, which were driven by dispersal limitation 
processes and achieved functional complementarity from different 
taxonomic compositions. Moreover, under nitrogen level treatments 
(CN, ON), although the number of nodes and interactions in the 
subnetwork have decreased, a higher proportion of negative cohesion 
helped to form more robust competitive relationships and more stable 
subnetwork, which can be explained by enrichment-dominated and 
depletion-supplemented patterns (Liu et  al., 2024). The complex 
network structures indicated a more efficient potential for resource 
and information transmission within the community, allowing it to 
withstand environmental stress.

Studies have shown that chemical nitrogen fertilizer has 
significantly affected the structure of root endophytic bacterial 
communities (Miranda-Carrazco et  al., 2022) and reduced the 
diversity and stability of soil microbial networks (Zhang et al., 2021). 
Our findings are similar to previous studies, but happened in rare 
bacterial subnetwork rather than abundant bacterial subnetwork, 
possibly because the subnetwork structure changes of abundant 
bacteria have not weakened the core subcommunities or species 
dominance. Compared to chemical nitrogen fertilizer, long-term 
organic manure application has likely supported taxonomic groups 
with similar functions, thereby increasing functional redundancy (Fan 
et al., 2019). This has a stronger positive effect on maintaining the 
complexity and stability of the root endophytic bacterial symbiotic 
network (Zhang et al., 2021), which further enhances the resistance 
toward the negative effect caused by chemical fertilizers. In general, 
the root endophytic abundant microbial subcommunities had high 

stability under different fertilization treatments, which indicated that 
it could play a dominant role in the symbiotic network. At the same 
time, the rare subcommunities and their key species may interact with 
abundant subcommunities under environmental disturbances, 
forming more stable symbiotic network and performing specific 
ecological functions (Jiao et al., 2017; Jiao et al., 2019a; Li et al., 2021).

Previous research has also provided evidence that the presence or loss 
of rare subcommunity and their key species under environmental 
disturbances can affect the stability of interactions within the entire 
community, leading to significant structural and functional changes (Cui 
et al., 2023; Ma et al., 2024). We found that the topological characters of 
nitrogen-adaption rare bacterial subcommunity tend to align with the 
structural changes of the entire endophytic microbiome. This further 
verify that rare endophytic bacterial subcommunity play a significantly 
more important role than endophytic fungal subcommunities (Liu et al., 
2024). The rare bacterial subcommunity contained the most of key species 
occupying the nodes of module hubs and connectors in the network, and 
their abundance increases with the application of nitrogen and 
phosphorus fertilizers. These keystone species can disproportionately and 
significantly impact ecosystems, with their activity and abundance 
determining community integrity (Wu et al., 2023). At the phylum level, 
keystone species in rare bacterial subcommunities belong primarily to 
Proteobacteria, Actinobacteriota, Bacteroidota, Firmicutes, Myxococcota, 
Chloroflex, Acidobacteriota, Gemmatimonadota, and unclassified bacteria.

High nitrogen and phosphorus nutrient concentrations have been 
unfavorable for the growth of oligotrophic bacteria such as Acidobacteriota 
and Chloroflexi (Fierer et al., 2012). Long-term nitrogen and phosphorus 
fertilizer application has increased the relative abundance of copiotrophic 
bacteria, including Alphaproteobacteria, Gammaproteobacteria, Firmicutes 
(Ho et al., 2017), Bacteroidota, and Actinobacteriota (Dai et al., 2018; 
Fierer et al., 2012; Sun et al., 2023). Similarly, nitrogen and phosphorus 
fertilizers have significantly promoted the growth of Ascomycota, a hub in 
the root endophytic fungal subcommunity network, which is considered 
an r-strategy copiotrophic fungus (Guo et al., 2020). Ascomycota is often 
reported to harbor a high number of genes relevant to stress tolerance and 
nutrition uptake (e.g., nitrogen immobilization and phosphate 
transporter) (Egidi et al., 2019). Our results indicated that long-term 
nitrogen and phosphorus fertilizer applications enriched copiotrophic 
root endophytic nitrogen-adaption bacteria and phosphorus-adaption 
fungi, which may possess symbiotic ecological functions (Wu et al., 2023). 
This enrichment may benefit crop health and high yield in agricultural 
ecosystems. The most direct reason is that nitrogen and phosphorus 
fertilizers increased nutrient availability, which may differentially impact 
communication within bacterial subcommunities in the network, 
subsequently inducing the transformation of various key groups within 
the entire microbial community. Therefore, we concluded that long-term 
balanced fertilization with nitrogen and phosphorus, especially with 
organic manure and chemical phosphorus fertilizer (ONP1), may enrich 
more beneficial and important tomato root endophytes, thereby 
improving microbial network stability and crop yield.

4.3 The importance of endophytic bacterial 
subcommunity structure driven by AN and 
MLP to yield

Rhizosphere soil nutrient characteristics, particularly nitrogen, 
phosphorus, and their availability, are potential key factors influencing 
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composition and aggregation of root endophytic microbial community 
(Liu et al., 2023b; Long and Yao, 2020; Meng et al., 2022; Sindhu et al., 
2024). Studies indicated that soil changes are the initial step affecting root 
endophyte colonization. Although the impact of soil is relatively smaller 
than that of the host, nitrogen and phosphorus availability still influence 
endophytic microbial community aggregation and structure (Almario 
et  al., 2017; Edwards et  al., 2015). Previous research has shown that 
different nitrogen levels lead to differences in root endophytic bacteria 
(Beltran-Garcia et  al., 2021). We  discovered that different nitrogen 
supplements caused inconsistent changes in endophytic bacterial 
community diversity, but structures of endophytic bacteria had similar 
responses to same rhizosphere soil physicochemical parameters. Long-
term different nitrogen fertilizer significantly increased AN content, 
which showed a significant positive correlation with the structure of both 
abundant and rare endophytic bacterial subcommunities. Additionally, 
the reduction in pH was strongly negatively correlated with the structure 
of rare endophytic bacterial subcommunities, suggesting that pH involved 
in determining specific endophytic bacterial communities (Lin et al., 
2020; Zhang et al., 2024). Previous studies have indicated that endophytic 
fungal communities are closely related to phosphorus content (Wu et al., 
2022). Chemical phosphorus fertilizer provided substantial amounts of 
labile and moderately labile phosphorus (Maranguit et al., 2017; Shi et al., 
2023), and continuous changes in phosphorus availability promote the 
turnover of endophytic fungal subcommunity structures (Long and Yao, 
2020). In non-mycorrhizal crops like tomatoes, it has been found that root 
endophytic fungi may serve as an alternative strategy for phosphorus 
utilization, supporting a significant response of endophytic fungal 
subcommunity to changes in rhizosphere soil MLP content.

Random forest model regression analysis revealed that the most 
important endophytic subcommunities for predicting crop yield were 
abundant endophytic bacterial subcommunities, followed by rare 
bacterial subcommunity, accounting for 22.03% and 3.09% of the 
variance in predictive factors, respectively. This finding differs from 
studies on maize-wheat/barley rotation systems (Xiong et al., 2020). 
In tomato roots affected by long-term fertilization, rare 
subcommunities structures and species that promote higher network 
stability may synergistically assist the positive effects of abundant 
subcommunities with environmental resistance on crop yield. 
Consequently, the associations between rhizosphere soil nitrogen and 
phosphorus availability and root endophytic bacterial and fungal 
subcommunities suggest a pattern of endophytic microbial structural 
succession, which optimizes microbial communities to influence the 
relative contributions of different subcommunities to crop yield. 
Notably, among the top 10 rare subcommunity predictors of yield, 
three key species were identified that Arthrobacter, Microbacterium, 
and Sphingobium. Interestingly, both Arthrobacter and Microbacterium 
belong to the Actinobacteriota, while Sphingobium belongs to 
Proteobacteria. These key rare taxa, as plant growth-promoting 
endophytes (PGPE), have potential to enhance plant resilience to 
environmental stress and improve crop health and yield, possessing 
specific functions such as nitrogen fixation and phosphorus 
solubilization (Machado et al., 2020; Walitang et al., 2017).

5 Conclusion

This study provided a systematic understanding of how root 
endophytic microbial subcommunities, adapted to different 

ecological niches under long-term fertilization, contribute to 
maintaining tomato yield. Long-term nitrogen and phosphorus 
fertilizers increased the proportion of negative cohesion in the root 
endophytic microbial co-occurrence network, forming ecological 
niche complementarity between rare bacterial subcommunities and 
fungal subcommunities. This effect was particularly pronounced in 
the ONP1 treatment, which led to a more complex, tighter, and 
stable network structure. The assembly of rare and abundant 
subcommunities of endophytic bacteria and fungi were dominated 
by stochastic processes. Nitrogen applications maintained the 
dispersal limitation ecological process, influencing the assembly 
process of endophytic rare and abundant bacterial subcommunities, 
while phosphorus applications controlled the assembly of rare and 
abundant subcommunities of endophytic fungi by increasing the 
proportion of the dispersal limitation process. The AN and MLP 
content in rhizosphere soil significantly affected the community 
structure changes of nitrogen-adaption root endophytic bacteria 
and phosphorus-adaption endophytic fungi. The nitrogen-adaption 
endophytic bacterial subcommunity, particularly the abundant 
bacterial subcommunity, had a higher explanatory power for 
tomato yield than the phosphorus-adaption fungal subcommunity. 
Arthrobacter, Microbacterium, and Sphingobium from the rare 
subcommunity can potentially serve as beneficial symbiotic 
endophytes to enhance crop yield. Overall, the application of 
organic manure combined with chemical phosphorus fertilizer 
favored the survival strategy of abundant subcommunities and the 
diversity of rare subcommunities. Ecological complementarity 
among different subcommunities contributes to forming a more 
complex and tighter symbiotic network, thereby driving functional 
redundancy in rare subcommunities potential for high crop yield. 
The findings have significant implications for sustainable 
fertilization practices to control root endophytic microbial 
communities for achieving high crop yield.
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