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Introduction: The production environment of extensively raised village chickens 
necessitates their adaptability to low-resource systems. The gut microbiome plays 
a critical role in supporting this adaptability by influencing health and productivity. 
This study aimed to investigate the diversity and functional capacities of the faecal 
microbiome in village chickens from Limpopo and KwaZulu-Natal provinces of 
South Africa.

Methods: Using a combination of 16S rRNA gene sequencing and shotgun 
metagenomic sequencing technologies, we analysed 98 16S rRNA and 72 
metagenomic datasets. Taxonomic profiles and functional gene annotations 
were derived, focusing on microbial diversity, antibiotic resistance genes (ARGs), 
and potential zoonotic pathogens.

Results: Taxonomic analysis showed that the predominant phyla in both 
provinces were Firmicutes, Bacteroidota, Proteobacteria, and Actinobacteria. At 
the genus level, Escherichia and Shigella were prevalent, with Escherichia coli 
and Shigella dysenteriae identified as major contributors to the gut microbiome. 
ARGs were identified, with MarA, PmrF, and AcrE detected in KwaZulu-Natal, 
and cpxA, mdtG, and TolA in Limpopo. These genes primarily mediate antibiotic 
efflux and alteration.

Discussion: The detection of zoonotic bacteria such as Escherichia coli and 
Streptococcus spp. highlights potential health risks to humans through the food 
chain, emphasizing the importance of improved household hygiene practices. 
This study underscores the role of the gut microbiome in village chicken health 
and adaptability, linking microbial diversity to production efficiency in low-
resource settings. Targeted interventions and further research are crucial for 
mitigating zoonotic risks and enhancing sustainability in village chicken farming.
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1 Introduction

The chicken intestinal microbiome is composed of diverse 
communities, including prokaryotes, eukaryotes, and viruses, which 
have a significant impact on metabolism, production, and health 
(Keambou et al., 2014; Bahrndorff et al., 2016; McKenna et al., 2020). 
Understanding the structure and function of these communities is 
critical, particularly for village chickens that thrive in low-resource 
environments where the microbiome can influence resilience against 
pathogens and nutritional stress (Seidlerova et  al., 2020). The gut 
microbiome has been shown to support the host’s adaptability, enabling 
animals to survive and maintain productivity under harsh 
environmental conditions similar to those found in traditional farming 
systems in a wide variety of agroecological zones (Suman et al., 2022).

Advances in next-generation sequencing (NGS) technologies, 
including 16S rRNA amplicon sequencing and shotgun metagenomics, 
have revolutionized our understanding of microbial diversity by enabling 
culture-independent assessments of microbiota (Hiergeist et al., 2015). 
These tools are good for the characterization of previously uncultivable 
microorganisms and assessment of microbial population dynamics in 
the cecum (Leggett et al., 2013; Cressman et al., 2010). Such an approach 
is extremely important for studies on village chickens since there is high 
evidence that the gut microbiome may play a significant role in health 
and productivity under conditions that contrast greatly with those in 
commercial production systems (Aruwa et al., 2021). Research indicates 
that the gut microbiota plays a vital role in the health and productivity 
of chickens. For instance, the composition of the gut microbiome can 
be  influenced by various factors, including diet, environmental 
conditions, and farming practices. In commercial settings, practices such 
as antibiotic use and biosecurity measures can drastically alter the 
microbial landscape, often leading to reduced biodiversity and increased 
prevalence of pathogenic organisms (Muyyarikkandy et al., 2023; Shang 
et al., 2018). In contrast, village chickens, which are typically raised in 
low-input scavenging systems, may harbour a more diverse microbiome 
that could enhance their resilience to diseases and improve nutrient 
absorption (Morris, 2024). The presence of a rich and varied gut 
microbiota is crucial for optimal digestive efficiency and immune system 
development, which are particularly important in resource-limited 
environments (Saint-Martin et al., 2022; Tsega et al., 2019). While some 
studies have focused on the rise in microbiome research, studies on 
village chickens’ gut microbiota are still scant in South Africa, particularly 
those seeking to understand how regional environmental factors and 
traditional farming practices shape microbial communities (Mootane 
et al., 2024). Most microbiome studies have generally been conducted 
with commercial breeds in controlled environments, such as beef cattle 
(Clemmons et al., 2019), dairy cows (Andrews et al., 2019), pigs (Yang 
et al., 2014), poultry (Tan et al., 2019; Fidler et al., 2020), and sheep 
(Ellison et  al., 2019; Patil et  al., 2018). These studies are limited in 
unravelling the dynamics of the microbiome in natural, resource-limited 
settings typical for village chicken farming.

In light of the foregoing, this work study profiles the diversity and 
functional potential of the faecal microbiome in village chickens from 
two provinces: Limpopo and KwaZulu-Natal. These provinces were 
selected to represent the dissimilar agroecological regions under 
different environmental conditions and traditional poultry-keeping 
practices. Limpopo represents a dry and semi-arid climate, in contrast 
to the more humid and temperate environment of KwaZulu-Natal. 
The way these differences affect the intestinal microbiome could 
explain the role of microbiota in supporting chicken resilience to their 

native environments. Our hypothesis is that the gut microbiome plays 
a critical role in the adaptive capacity of village chickens, contributing 
to their ability to cope with the challenges imposed by low-input 
farming systems. This study attempts to provide an in-depth 
understanding of the taxonomic composition, microbial diversity, and 
functional potential of the faecal microbiome using both 16S rRNA 
gene and shotgun metagenomic sequencing. These insights will also 
reveal the presence of antibiotic resistance genes (ARGs) and its 
implications for public health and poultry management in rural 
South African communities.

2 Materials and methods

2.1 Faecal sample collection

A total of 98 faecal samples were collected from village chickens 
in Limpopo and KwaZulu-Natal provinces. As shown in geographical 
map Figure 1; Three faecal samples were collected per household from 
the following district municipalities: eThekwini, uMgungundlovu, The 
Big 5 Hlabisa in KwaZulu-Natal and Sekhukhune, Capricon for 
Limpopo. KwaZulu-Natal local municipalities included eThekwini, 
uMkhambathini and Mkhanyakude; Elias Motsoaledi, Mole mole, and 
Fetakgomo local municipalities in Limpopo province. The chickens 
and homesteads were randomly selected based on different 
agroecological zones and environmental dynamics. The production 
system is characterised by extensive low input production. 
Non-invasive sampling techniques were used in order to do 
microbiome studies on free-range animals without catching and 
slaughtering them (Banks and Piggott, 2022).

Freshly voided faecal samples were collected using a sterile spatula 
and stored in 5 mL Eppendorf tubes (Eppendorf AC Barkhausenweg, 
Hamburg, Germany). Immediately after collection, these tubes were 
frozen on dry ice and stored at −80°C upon arrival at the Agricultural 
Research Council Biotechnology Platform until DNA extraction. All 
samples were collected by trained personnel from the Agricultural 
Research Council under ethical standards and guidelines (AEC 22/10).

2.2 DNA extraction, library preparation, and 
sequencing

Total faecal DNA was extracted using the ZymoBIOMICS DNA 
Miniprep Kit (Macherey-Nagel, Duren, Germany). To verify that 
sufficient DNA of good quality was obtained for 16S sequencing, 
quantification was performed on all extracted DNA samples using a 
Qubit dsDNA kit (Thermo Fisher Scientific, Massachusetts, USA). 
Library preparation of the V3 and V4 hypervariable regions of the 16S 
rRNA gene was carried out based on a 10 ng aliquot of DNA from 
each faecal sample.

The regions were subsequently amplified by polymerase chain 
reaction (PCR) using the following primer pair: forward 5′–TCG 
TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG–3′ and 
reverse 5′–GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG 
ACAG–3′ in a high-fidelity PCR buffer with enzyme mix under 
optimal conditions. First-round PCR products were then used as 
templates in a second round of amplicon enrichment with the 
following cycling parameters: 94°C for 3 min, followed by 24 cycles 
of 94°C for 5 s, 57°C for 90 s, and 72°C for 10 s, and a final 
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extension at 72°C for 5 min. Indexed adapters were added to the 
ends of the 16S rRNA gene amplicons to create indexed libraries for 
subsequent next-generation sequencing (NGS) on the MiSeq 
platform (Gohl et al., 2016). DNA libraries were validated using an 
Agilent 2,100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, 
USA) and quantified with a Qubit 2.0 Fluorometer. Then, libraries 
were multiplexed and loaded onto an Illumina MiSeq instrument 
(Illumina, San Diego, CA, USA) following the manufacturer’s 
instructions. Sequencing was done using a 2 × 300 paired-end 
setup, and image analysis with base calling was conducted with the 
MiSeq Control Software.

For metagenomics sequencing, DNBSEQ-G400 libraries were 
prepared using 500 ng of genomic DNA (gDNA) fragmented by 
Covaris E220 sonicator (Covaris, Brighton, UK). The sheared DNA 
was subjected to end repair and A-tailing as described in the MGI 
Easy Universal DNA Library Prep Set User Manual v1 (MGI Tech 
Co., Shenzhen, China). Adapter ligation was carried out as 
recommended by the MGIEasy DNA Adapters kit and purified 
using the accompanying DNA Clean Beads. PCR amplification was 
carried out on purified adapter-ligated DNA (95°C for 3 min, 
followed by 7 cycles of 98°C for 20 s, 60°C for 15 s, and 72°C for 
30 s, with a final extension at 72°C for 10 min). Then, after quality 
control with the Qubit dsDNA HS Assay Kit (Thermo Fisher 
Scientific, Waltham, MD, USA), purified PCR products were 

denatured at 95°C for 3 min and then ligated to generate the single-
strand circular DNA libraries. Barcode libraries were pooled with an 
equal amount of each one in order to generate DNA Nanoballs 
(DNB) and were then sequenced using the DNBSEQ-G400 
technology of the MGI Tech Co. (Shenzhen, China) following the 
manufacturer’s instructions. Paired-end fastq files were generated 
for downstream analysis.

2.3 Data analysis

2.3.1 16S rRNA gene data analysis
A total of 98 16S rRNA gene samples were used for analysis. The 

DADA2 pipeline (v1.16.0) implemented in R (v4.1.2; Callahan et al., 
2016) was used to generate an amplicon sequence variant (ASV) table. 
The filterAndTrim function of the DADA2 pipeline was used to 
remove primers. The default settings were used for sequence filtering, 
trimming, error rate learning, dereplication, chimera removal, and 
amplicon sequence variant (ASV) inference. The SILVAngs (v138.1) 
database was utilised for taxonomic assignment (Gurevich et al., 2013) 
using the dada2-formatted training files for taxonomy and assignment 
up to the genus level (Callahan et al., 2016). Phyloseq (v1.24.2) was 
used to merge sample metadata, taxonomic assignment, and ASVs 
into a phyloseq object (McMurdie and Holmes, 2013). The programs 

FIGURE 1

Spatial distribution of research locations in South Africa. The study encompasses two provinces (KwaZulu-Natal and Limpopo).
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phyloseq (v1.24.2) and ggplot2 (v3.3.5) were used for data handling 
and visualization. Alpha diversity indices Chao1, Shannon and the 
Observed ASVs were calculated. Beta diversity was estimated using 
the Bray–Curtis dissimilarity index and visualized using non-metric 
multidimensional scaling (NMDS). Differences in beta diversity were 
tested using permutational multivariate ANOVA (PERMANOVA).

2.3.2 Metagenomic data analysis
A total of 72 metagenomic data sets were produced and analysed 

according to the procedure described by Chivian et  al. (2021). 
Paired-end sequencing reads from fastq files underwent quality 
assessment with FastQC (Andrews et  al., 2019) and quality 
improvement with Trimmomatic (Bolger et al., 2014). The quality 
filtered reads were taxonomically classified using Kaiju (Menzel et al., 
2016) and the NCBI’s RefSeq (Tatusova et  al., 2014). The quality 
filtered reads were assembled into contiguous fragments (contigs) 
using IDBA (Peng et  al., 2011), MegaHit (Li et  al., 2015), and 
MetaSpades (Nurk et al., 2017). The outputs were compared using 
QUAST (Gurevich et al., 2013) to determine the best assembly. The 
assembled contigs were clustered into bins using MaxBin2 (Wu et al., 
2016) and MetaBAT (Kang et al., 2019). Thereafter CheckM was used 
to assess the bin Quality and medium-high quality Metagenome 
Assembles Genomes (MAG’s) were selected for downstream analysis 
(Parks et  al., 2015). The MAGs were taxonomically classified and 
annotated using the Rapid Annotation Subsystem Technology (RAST) 
and Genome Taxonomic Database Toolkit (GTDB-TK; Chaumeil 
et  al., 2022; Akhter et  al., 2012). DRAM (Distilled and Refined 
Annotation of Metabolism; Shaffer et al., 2020) was used to profile 
MAGs for metabolic functionality known to impact ecosystem 
function across biomes. A set of Hidden Markov Models (HMMs) 
from the dbCAN2 CAZy collection was used to scan the MAGs 
(Chivian et al., 2023). The multiple sequence alignment generated by 
GTDB-TK was converted and edited with MEGA software version 7 
(Tamura et  al., 2013), and a circularized phylogenetic tree was 
generated and annotated on the Interactive Tree of Life (iTOL) version 
5 (Letunic and Bork, 2021).

3 Results and discussion

3.1 16S rRNA gene microbial data

3.1.1 Alpha diversity of the bacterial communities 
in the Limpopo and KwaZulu-Natal municipalities

A total of 17,456,214 sequence reads were obtained from all 
samples collected from KwaZulu-Natal and Limpopo provinces. The 
sequences were further run through the dada2 steps such as filtering, 
denoising, merging and removal of sequencing errors 
(Supplementary Figure 1). The percentage loss of input reads because 
of sequencing errors (chimeras) was (11.7%), and the non-chimeric 
reads accounted for (88.31%). As shown in Figure 2A, the rarefaction 
curves based on the Shannon index were almost flat, meaning the 
sequencing data was robust enough to reflect the bacterial 
communities in both KwaZulu-Natal and Limpopo provinces. The 
alpha diversity indices of the bacterial communities were significantly 
different between the provincial municipalities (Figure  2B; 
Supplementary Table 1). The mean Chao estimators were 351.54 and 
348.31  in the KZN and Limpopo municipalities, respectively, 

indicating a higher abundance of bacterial communities in KZN than 
in Limpopo. Furthermore, the Shannon index, which reflects the 
evenness and diversity in the bacterial communities, ranged between 
2.60 and 4.99 and 2.48 and 5.11  in KwaZulu-Natal and Limpopo, 
respectively. The KwaZulu-Natal sample X16S_KZN_NHL_H6 (4.99) 
and Limpopo sample X16S_Limp_EM_FC6 (5.11) had the highest 
Shannon indices. Together, these findings suggest that the diversity of 
bacterial communities in Limpopo was higher than that in the 
KwaZulu-Natal municipalities. In summary, the diversity of bacterial 
communities in Limpopo was higher than that in the KwaZulu-Natal 
and a further investigation of this phenomenon is necessary.

The analysis of bacterial communities in the KwaZulu-Natal 
(KZN) and Limpopo provinces reveals significant insights into 
microbial diversity, as indicated by the sequencing data processed 
through the dada2 pipeline. The total of 17,456,214 sequence reads 
generated from samples across these provinces underscores the 
robustness of the sequencing efforts, with a notable 88.31% of reads 
being non-chimeric, suggesting effective error correction and data 
integrity (Yin et al., 2019; Wan et al., 2018). The observed percentage 
loss of input reads (11.7%) due to sequencing errors is consistent with 
findings in other studies, where similar methodologies have been 
employed to assess microbial diversity (Wang et al., 2023; Du et al., 
2019). The rarefaction curves based on the Shannon index indicate a 
stable representation of the bacterial communities, which is crucial for 
understanding the ecological dynamics within these regions. The 
Shannon index, a well-established metric for assessing biodiversity, 
reflects both the richness and evenness of species within a community 
(Yin et al., 2019). In this study, the mean Chao estimators of 351.54 
for KZN and 348.31 for Limpopo suggest a slightly higher abundance 
of bacterial communities in KZN, although the Shannon indices 
indicate a higher diversity in Limpopo, with values ranging from 2.48 
to 5.11 compared to KZN’s range of 2.60 to 4.99 (Zondo Sinenhlanhla 
et al., 2022). This discrepancy highlights the complex interactions 
within microbial ecosystems and suggests that environmental factors 
unique to Limpopo may be fostering greater diversity. Furthermore, 
the findings align with recent literature that emphasizes the role of 
environmental conditions in shaping microbial communities. For 
instance, studies have shown that soil amendments, such as biochar, 
can significantly enhance microbial diversity and community 
structure, as evidenced by increased Shannon indices in treated soils 
(Singh et  al., 2022). This suggests that similar environmental 
interventions in the provinces could potentially influence the observed 
bacterial diversity. The differences in alpha diversity indices between 
the two provinces warrant further investigation. Factors such as soil 
composition, land use, and climatic conditions may play critical roles 
in shaping these microbial communities (Belus et  al., 2022). For 
example, research indicates that higher plant diversity can enhance 
soil microbial diversity, suggesting a potential link between vegetation 
and microbial community structure (Li et al., 2023). This relationship 
may be particularly relevant in the context of KwaZulu-Natal and 
Limpopo, where varying land use practices and ecological conditions 
exist. In summary, the analysis of bacterial communities in KwaZulu-
Natal and Limpopo reveals significant differences in microbial 
diversity, with Limpopo exhibiting higher diversity despite KZN 
having a greater abundance of bacterial communities. These findings 
underscore the importance of environmental factors in shaping 
microbial ecosystems and highlight the need for further research to 
explore the underlying mechanisms driving these differences.
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3.1.2 Beta diversity of the bacterial communities 
in the Limpopo and KwaZulu-Natal municipalities

The multi-dimensional scaling (MDS) using bray distance was 
employed to study the beta diversity of the bacterial communities in 
the KwaZulu-Natal and Limpopo provinces and municipalities. As 
illustrated in Figure 3A, the PC1 and PC2 accounted for 18.2% of the 

variance in the bacterial communities. The discrepancy in bacterial 
communities between the KwaZulu-Natal and Limpopo was also 
verified using a permutational ANOVA analysis (R2  = 0.11939, 
p < 0.001). This result is consistent with previous findings that the 
bacterial communities were different between KwaZulu-Natal and 
Limpopo provinces and municipalities. The KwaZulu-Natal and 

FIGURE 2

(A) The rarefaction curve of KwaZulu-Natal and Limpopo village chicken faecal samples. (B) Alpha diversity indexes, Observed ASVs, Chao1, Shannon 
and Simpson indices of KwaZulu-Natal and Limpopo villages.
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Limpopo samples were divided into two clusters (Figure  3B). 
Moreover, the Ward’s D2 distance hierarchical clustering tree branches 
of the samples collected from Mkhanyakude, KwaZulu-Natal had 

more cross-connections than the Limpopo samples. Although chicken 
faecal samples were sampled in different agroecological zones, the 
KwaZulu-Natal and Limpopo village chicken taxonomic clustered into 

FIGURE 3

Beta diversity indices of KwaZulu-Natal and Limpopo village chicken faecal samples. (A) MDS diagram showing PC1 and PC2, which together 
accounted for 18.2% of the variance in the bacterial communities. PERMANOVA results indicate significant differences between provinces (R2= 0.11939, 
P < 0.001). Samples are grouped by province, with KwaZulu-Natal (red) and Limpopo (blue) forming distinct clusters, reflecting differences in microbial 
community composition. (B) Ward D2 distance linkage clustering dendrogram depicting the hierarchical relationships between samples based on 16S 
rRNA sequencing data. Samples from KwaZulu-Natal (red) and Limpopo (blue) are grouped, highlighting regional microbial community differences.

(Continued)
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separate clades, indicating that the bacterial similarity was closely 
related to the habitat type. The beta diversity network further 
illustrated that KwaZulu-Natal samples were closely cross-connected, 
and KwaZulu-Natal samples had a much closer network which 
signifies similarities in faecal microbiome composition. Overall, both 
the hierarchical clustering, MDS, and the beta diversity network 
analysis revealed visible differences in the bacterial communities 
between KwaZulu-Natal and Limpopo samples.

The choice of analytical methods for assessing beta diversity in the 
faecal microbiome of village chickens from KwaZulu-Natal and 
Limpopo provinces was driven by the need to elucidate the differences 
in microbial community composition between these two regions. Beta 
diversity analysis is crucial for understanding the variation in 
microbial communities across different environments, and it provides 
insights into the ecological dynamics of these communities. The use 
of hierarchical clustering, multidimensional scaling (MDS), and beta 
diversity network analysis allows for a comprehensive examination of 
the microbial composition. Hierarchical clustering groups samples 
based on their similarities, enabling the identification of distinct 
clusters that reflect the underlying ecological relationships among the 
samples (Yu et  al., 2021). This method is particularly effective in 
visualizing the similarities and differences in microbial communities, 
which can be influenced by factors such as geographical location and 
environmental conditions. Multidimensional scaling (MDS) 
complements hierarchical clustering by providing a visual 
representation of the data in reduced dimensions, making it easier to 
interpret complex relationships among samples (Hiltunen et al., 2021). 

This technique helps to highlight the proximity of samples within the 
same region, as seen in the KwaZulu-Natal samples, which exhibited 
a closer network, indicating similarities in their faecal microbiome 
composition. Such visualizations are essential for understanding how 
environmental factors may shape microbial communities in 
different regions.

In the context of microbial ecology, the comparison of bacterial 
communities across different geographical regions, such as KwaZulu-
Natal and Limpopo in South Africa, provides invaluable insight into 
how environmental factors and habitat types shape community 
composition and diversity. The findings reported, show significant 
differences in beta diversity between the two provinces, underscore 
the complexities of microbial ecosystems and their responses to local 
conditions. The use of multi-dimensional scaling (MDS) along with 
Bray-Curtis distance is a robust approach for revealing community 
structure. The observed 18.2% variance explained by the first two 
principal components often necessitates a cautious interpretation, as 
it indicates that a considerable portion of the variance remains 
unexplained. Future research could focus on integrating additional 
environmental variables to capture more of the underlying ecological 
dynamics that drive community assembly. The significant results from 
the permutational ANOVA analysis (R2 = 0.11939, p < 0.001) further 
corroborate the distinctness of the bacterial communities in the two 
provinces. Such findings align with the broader body of literature that 
indicates geographical separation often leads to differentiation in 
microbial communities due to variations in climate, soil type, and 
anthropogenic influences (Peterson et al., 2022; Zhang et al., 2023). 

FIGURE 3 (Continued)

(C) Beta diversity network diagram based on Jaccard distance shows the clustering patterns of village chicken faecal samples. Samples from KwaZulu-
Natal municipalities (red) exhibit a closely connected network, indicating high similarity in microbial community composition within the province. In 
contrast, Limpopo samples (blue) appear more dispersed, reflecting greater variation among municipalities. This highlights distinct beta diversity 
profiles between the two provinces.
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The clustering of the samples based on the agroecological zones 
further suggests that environmental contexts and habitat types play a 
crucial role in determining microbial composition. This is consistent 
with previous studies indicating that spatial factors and habitat 
specificities strongly influence microbial diversity (Liu et al., 2020). 
The hierarchical clustering results, which highlighted more cross-
connections within KwaZulu-Natal samples compared to Limpopo, 
suggest that the bacterial communities in KwaZulu-Natal may have 
higher functional redundancy or shared ecological niches, potentially 
driven by higher resource availability or more stable environmental 
conditions (Nengovhela et al., 2021). Additionally, the separation of 
chicken faecal samples into distinct clades emphasizes the impact of 
habitat on microbial community structure. Previous research has 
demonstrated that host-related factors, such as dietary components 
and management practices, can significantly influence gut microbiota 
composition (Joat et al., 2023; Shang et al., 2021). Moreover, the beta 
diversity network analysis indicates a tighter network of connections 
among KwaZulu-Natal samples. This observation suggests that the 
bacterial communities in this region might have a more stable or 
resilient microbial ecosystem, which can provide insights into the 
implications for ecosystem health and host resilience. Understanding 
the relational dynamics within these communities can yield critical 
information, especially in light of the increasing stressors imposed by 
agricultural practices and climate change (Shade, 2023). The patterns 
observed in the bacterial community structures between KwaZulu-
Natal and Limpopo provinces illuminate the intricate interplay 
between ecological factors and microbial diversity. Future 
investigations could benefit from a multi-faceted approach, combining 
metagenomic techniques and long-term ecological monitoring to 

further elucidate how specific environmental variables impact 
microbial community dynamics over time.

3.1.3 Taxonomic composition of the bacterial 
communities in the Limpopo and KwaZulu-Natal 
municipalities

A total of 8,982 taxa by 6 taxonomic ranks were detected in the 
KwaZulu-Natal and Limpopo village chicken faecal samples and were 
used for subsequent analysis. Microbial relative abundances at phylum 
and genus levels in the KwaZulu-Natal and Limpopo groups are 
shown in Figure 4, Supplementary Table 2, respectively. The phyla 
Proteobacteria, Firmicutes and Bacteroidetes, had higher relative 
abundance and were the dominant bacteria in both groups in the 
KwaZulu-Natal and Limpopo, accounting for over 99% of the 
microbial community, although the proportion of each genus differed 
between the KwaZulu-Natal and Limpopo samples. The genera 
Escherichia, Shigella, Lactobacillus, Pseudomonas, Flavobacterium, and 
Pedobacter had a higher relative abundance and were dominant in 
KwaZulu-Natal and Limpopo, respectively. Overall, both the relative 
abundances and the beta diversity network analysis revealed visible 
differences in the bacterial communities between KwaZulu-Natal and 
Limpopo samples which further emphasizes the hierarchical 
clustering, MDS and beta diversity network analysis findings that 
bacterial communities in between KwaZulu-Natal and Limpopo 
village chicken faecal samples vary significantly.

The identification of a diverse array of microbial taxa in the village 
chicken faecal samples from KwaZulu-Natal and Limpopo, amounting 
to 8,982 taxa across six taxonomic ranks, speaks to the complexity and 
richness of the gut microbiome in these agricultural settings. The 

FIGURE 4

Taxonomic relative abundance of top 10 bacteria phyla from village chicken faecal microbiome from KwaZulu-Natal and Limpopo provinces.
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dominance of the phyla Proteobacteria, Firmicutes, and Bacteroidetes, 
comprising over 99% of the microbial communities in both regions, is 
consistent with findings in previous studies highlighting these taxa as 
pivotal components of avian gut microbiomes (Sun et al., 2024). The 
relative abundances of the genera Escherichia, Shigella, Lactobacillus, 
Pseudomonas, Flavobacterium, and Pedobacter reveal important insights 
into potential ecological and health implications for poultry. The 
prevalence of Escherichia, particularly E. coli, is critical as it can be both 
beneficial and pathogenic, depending on the specific strains present. 
This duality raises concerns regarding biosecurity and the management 
of gut health in poultry production systems (Li et  al., 2023). 
Furthermore, Lactobacillus is recognized for its probiotic properties, 
contributing to gut health and influencing gut microbiota composition 
(Dameshghian et al., 2024). The relative abundance of these genera may 
reflect various management practices, dietary influences, or 
environmental factors characteristic of poultry farming in the respective 
regions (Muyyarikkandy et al., 2023). The differences observed in the 
relative abundances at the genus level suggest that local environmental 
conditions, such as temperature, humidity, and availability of feed 
resources, likely impact the microbial communities (Cai et al., 2024).

The results from the beta diversity network analysis align with the 
hierarchical clustering and MDS findings, reinforcing the notion that 
the bacterial communities in KwaZulu-Natal and Limpopo are 
distinct. This separation is critical, as it suggests that the microbiomes 
may respond differently to health challenges, thus affecting production 
efficiency and disease resistance in village chickens (Wang et al., 2023; 
Tröscher-Mußotter et al., 2022). Understanding these differences can 
be integral to tailoring vaccination and management strategies aimed 
at enhancing poultry health and productivity.

Importantly, while this study sheds light on the microbial 
communities in poultry, it raises several questions for future research. 
Investigating the functional potential of these microbial communities 
via metagenomic sequencing could provide deeper insights into 
metabolic capabilities and interactions among microbes (Zhou et al., 
2022). Additionally, longitudinal studies could help elucidate how 
these communities change in response to environmental shifts or 
management practices. The findings from this analysis underscores 
the importance of microbiome research in understanding the 
ecological dynamics of village chicken gut health. The evident 
disparities in bacterial community composition between KwaZulu-
Natal and Limpopo highlight the influence of local conditions on 
microbial ecosystems, pointing to the need for contextualized 
approaches to poultry health management in South Africa.

3.2 Shotgun metagenomic data

3.2.1 Sequencing and co-assembly statistics
Shotgun metagenomic sequencing of the 48 DNA samples from 

village chicken faecal samples in KwaZulu-Natal and Limpopo 
produced 594.9 million 150 bp paired-end reads, with an average of 
49.6 million reads per sample and a range of 39.9 to 79.9 million 
reads between samples. After quality control, 529.9 million 
paired-end reads spanning in length from 50 to 140 bp and averaging 
44.2 million per sample were retained, with a range of 34.8 to 72.9 
million. The libraries in KwaZulu-Natal and Limpopo had 256.6 
million and 273.3 million paired-end reads, respectively, after 
combining the reads by province.

The co-assembly of the Limpopo paired-end reads generated a 
total of 367,892 contigs (374,273 bp in the largest contig), with N50 of 
3,480 bp and L50 of 106,965 bp, while for KwaZulu-Natal, it produced 
366,749 contigs (515,562 bp in the largest contig), with N50 of 
4,207 bp and L50 of 89,012 bp. A total of 19 KwaZulu-Natal and 39 
Limpopo bins resulted from dereplication, aggregation and scoring 
strategy, DAS Tool (Sierber, et  al., 2018) in which 11 and 30, 
respectively, passed our quality filter (≥50% of completeness 
and ≤ 10% of contamination).

The results from the shotgun metagenomic sequencing of village 
chicken faecal samples in KwaZulu-Natal and Limpopo reveal 
extensive insights into the microbial diversity and composition within 
these agricultural ecosystems. The production of 594.9 million 150 bp 
paired-end reads from 48 DNA samples underscores the high-
throughput capability of metagenomic sequencing and its effectiveness 
in capturing a comprehensive snapshot of the microbial communities 
present in these settings. After quality control, retaining 529.9 million 
paired-end reads, with an average of 44.2 million reads per sample, 
indicates that the sequencing process was precise, yielding a robust 
dataset suitable for downstream analyses. The observed range in read 
counts (from 34.8 to 72.9 million per sample) reflects variations in 
microbial load or diversity among individual faecal samples, which 
may be  influenced by factors such as diet, environment, and 
management practices (Shang et al., 2021; Chen et al., 2023).

The co-assembly of paired-end reads yielded a significant number 
of contigs for both provinces, with Limpopo producing 367,892 
contigs and KwaZulu-Natal generating 366,749 contigs. The largest 
contigs from both datasets (374,273 bp for Limpopo and 515,562 bp 
for KwaZulu-Natal) provide valuable sequences that can be annotated 
for functional potential and taxonomic classification. The N50 and 
L50 values are critical metrics for evaluating the quality of assembly; 
for instance, the N50 of 4,207 bp in KwaZulu-Natal indicates a higher 
average contig length compared to Limpopo’s 3,480 bp, suggesting that 
KwaZulu-Natal samples may harbor more complex or diverse 
microbial genomes (Xiong et al., 2023). The generation of forest and 
pasture bins from the DAS Tool indicates a systematic approach to 
binning contiguous sequences into taxonomic units. The fact that 11 
KwaZulu-Natal bins and 30 Limpopo bins passed the quality filter 
(≥50% completeness and ≤10% contamination) is promising; these 
bins represent distinct ecological niches and can be  pivotal in 
understanding the functional dynamics of the microbial communities 
in different habitat types (de Vries et al., 2023; Tröscher-Mußotter 
et al., 2022).

Furthermore, the results reflect how ecological factors, such as 
land use and habitat type, influence microbial community structure 
and function (Jovel et al., 2016). With the observed discrepancies in 
contig lengths and bin compositions between the two provinces, 
implications for chicken health, nutrition, and overall farm 
management are significant. These findings align with recent research 
indicating that variations in bacterial communities can directly affect 
poultry health and productivity, highlighting the importance of 
habitat and environmental management in sustainable agricultural 
practices (Zhang et al., 2023). The metagenomic data produced from 
village chicken faecal samples in KwaZulu-Natal and Limpopo 
illustrate the microbial richness and diversity in these regions. The 
differences in contig characteristics and the successful assembly of 
quality bins point towards a complex interplay of ecological factors 
that could inform future research on poultry gut health and microbial 
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ecology strategies to enhance the productivity and sustainability of 
chicken farming in South Africa.

3.2.2 Taxonomic assignment and relative 
abundance of metagenome-assembled genomes

The taxonomic classification of the Limpopo province village 
chicken faecal microbiome resulted in 61 bins belonging to 15 bacterial 
phyla: Actinobacteria, Proteobacteria, Firmicutes, Firmicutes A, 
Bacteriodota, Desulfobacterota, Desulfobacterota, Elusimicrobia, 
Spirochaetota, Verrucomicrobiota, Deinococcota, Myxococcota, 
Gemmatimonadota, Planctomycetota, and Synergistota 
(Supplementary Table  3). Twenty-six bins could be  classified at the 
species level. KwaZulu-Natal province village chicken faecal microbiome 
bins, 30 belonged to 7 bacterial phyla: Actinobacteria, Proteobacteria, 
Firmicutes, Bacteriodota, Campylobacterota, Firmicutes A and 
Firmicutes D (Supplementary Table 4). Only eight bins could be classified 
at the species level, thus demonstrating the potential of this approach to 
reveal the yet-unknown microbial diversity of the KwaZulu-Natal village 
chicken faecal microbiome. The prevalent phyla based on iTOL revealed 
a high prevalence of Proteobacteria, Actinobacteria, Firmicutes, 
Verrucomicrobiota, Bacteriodota, Synergistota, Spirochaetota, and 
Gemmatimonadota respectively, for the Limpopo province village 
chicken faecal microbiota (Figure  5A). The Kwazulu—Natal village 
chicken faecal microbiota prevalent phyla based on iTOL, included 
Proteobacteria, Bacteriodota, Planctomycetota, Verrucomicrobiota, and 

Actinobacteria, respectively. The microbiota of village chickens from 
KwaZulu-Natal also exhibited a prevalence of candidate phyla that have 
not yet been fully cultured or sequenced (Figure 5B, Dunfield et al., 
2012), including Candidatus division Zixibacter, Candidatus 
Cloacimonadota, Candidatus Aureabacteria, Candidatus 
Fermentibacteria, Candidatus Aegribacteria, Candidatus Saganbacteria, 
Candidatus Sericytochromatia, Candidatus Gastanaerophilales, and 
Candidatus division WS1. Overall, the taxonomic assignment of the 
village chicken faecal microbiome from Limpopo and KwaZulu-Natal 
reveals some similarities in prevalent phyla, however, KwaZulu—Natal 
province depicts a greater variation and diversity in the microbiota 
including numerous candidate phyla, which has not been fully 
characterised as yet.

The taxonomic analysis of the village chicken faecal microbiome 
from Limpopo and KwaZulu-Natal provinces reveals interesting 
contrasts and insights into the microbial diversity influenced by 
geographical and environmental factors. The detection of 15 distinct 
bacterial phyla in Limpopo compared to 7  in KwaZulu-Natal 
underscores the regional differences in microbial diversity, with 
Limpopo exhibiting a broader range of bacterial taxa. However, 
despite the smaller number of phyla identified in KwaZulu-Natal, the 
presence of numerous candidate phyla highlights a potentially unique 
and understudied microbiota in this region.

In Limpopo, prevalent phyla such as Proteobacteria, Firmicutes, 
Actinobacteria, Verrucomicrobiota, Bacteroidota, Synergistota, 

FIGURE 5

(A) Circular phylogenetic tree representing the taxonomic diversity of bacterial phyla identified in chicken fecal microbiota samples from the 
Limpopo region. The tree was constructed using Mega software and visualized with iTOL (Interactive Tree of Life). The different phyla are color-
coded according to the legend: Verrucomicrobiota (red), Spirochaetota (salmon), Bacteroidota (light pink), Firmicutes (orange), Synergistota 
(brown), Actinobacteriota (light blue), Proteobacteria (dark blue), Gemmatimonadota (yellow), and Planctomycetota (purple). The branching pattern 
demonstrates the evolutionary relationships between the different bacterial groups, with the length of branches indicating the degree of genetic 
divergence. This analysis reveals the complex microbial community structure present in the chicken gut microbiome from this geographical region.

(Continued)
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Spirochaetota, and Gemmatimonadota suggest a microbiome reflective 
of the agricultural and environmental conditions of the province. The 
dominance of Proteobacteria and Firmicutes is consistent with findings 
from other studies examining poultry microbiomes, where these phyla 
play essential roles in nutrient digestion and pathogen defense (Waite 
and Taylor, 2014). Proteobacteria are often associated with diverse 
metabolic functions, which may provide chickens in Limpopo with the 
ability to adapt to environmental changes and resource variability 
(Lozupone et al., 2012).

The microbiome of KwaZulu-Natal chickens, while represented 
by fewer phyla, exhibits a high proportion of candidate phyla, 

including Candidatus divisions such as Zixibacter, Cloacimonadota, 
and Aureabacteria. These candidate phyla, which remain poorly 
characterized, could represent unique ecological niches within 
KwaZulu-Natal’s local environment. The presence of these 
uncultivated and potentially novel microbial taxa suggests that the 
KwaZulu-Natal microbiome could be shaped by unique ecological 
pressures, potentially due to climatic differences or distinct 
management practices compared to Limpopo (Dunfield et al., 2012). 
This finding is particularly relevant as candidate phyla often include 
microorganisms that exhibit specialized metabolic capabilities, such 
as anaerobic processes, which can play crucial roles in complex 

FIGURE 5 (Continued)

(B) Circular phylogenetic tree representing the taxonomic composition of bacterial communities in chicken fecal microbiota from KwaZulu Natal, 
analyzed using shotgun metagenomic sequencing data. The tree was constructed and visualized using Mega and iTOL (Interactive Tree of Life) 
software. The colors on the nodes indicate different bacterial phyla as shown in the legend, including dominant groups such as Proteobacteria (blue), 
Firmicutes (yellow), Actinobacteriota (light blue), and Bacteroidota (peach), along with numerous candidate phyla and less abundant groups. The 
branching patterns illustrate the evolutionary relationships between the identified bacterial taxa, with branch lengths representing genetic distances. 
This analysis reveals a complex and diverse microbial community structure, with multiple bacterial phyla and candidate divisions present in the chicken 
gut microbiome from this geographical region. The presence of multiple candidate phyla and newly described bacterial groups highlights the potential 
for novel microbial diversity in these samples.
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microbial ecosystems (Hug et  al., 2016). The discovery of these 
candidate phyla also aligns with the broader body of literature on 
microbial biogeography, where environmental and spatial variables 
can drive the divergence of microbial community composition 
(Martiny et al., 2006).

The fact that only 26 bins in Limpopo and 8 in KwaZulu-Natal 
could be  classified at the species level demonstrates both the 
limitations and potential of taxonomic binning in revealing microbial 
diversity in unexplored ecosystems. These findings underscore the 
under-representation of many bacterial taxa in existing databases, 
especially for environmental samples like village chicken fecal 
microbiota. Expanding microbial reference databases could improve 
species-level identification and uncover additional microbial functions 
relevant to host health and adaptation.

Overall, the prevalence of shared phyla such as Proteobacteria, 
Actinobacteria, and Bacteroidota between the provinces suggests a 
core microbial community potentially essential for the host’s 
metabolic and immune functions (Garinet et al., 2018; Yao et al., 
2018). However, the unique microbiome diversity observed in 
KwaZulu-Natal, particularly the abundance of candidate phyla, 
points to a more varied microbial ecosystem that warrants further 
investigation. Expanding research to focus on the functional roles of 
these candidate phyla could reveal novel insights into how local 
conditions influence microbial community assembly, resilience, and 
host health.

3.2.3 Functional characterization of MAGs and 
biogeochemical relevance

The gut microbiome plays a crucial role in the health and 
adaptability of extensively raised chickens, particularly in 
low-resource production systems like those found in Limpopo and 
KwaZulu-Natal, South  Africa (Figures  6A,B). This study reveals 
significant insights into the metabolic pathways present in the 
intestinal microbiota, highlighting how these microorganisms adapt 

to their environments. We  identified genes related to critical 
metabolic pathways, including glycolysis (Embden-Meyerhof 
pathway), the pentose phosphate pathway, citrate (TCA or Krebs 
cycle), glyoxylate, reductive pentose phosphate (Calvin cycle), 
reductive citrate (Arnon-Buchanan cycle), and dicarboxylate-
hydroxybutyrate cycles across all metagenome-assembled genomes 
(MAGs), with notable variability between the two regions. This 
variability suggests ecological adaptations specific to each region. Our 
findings align with recent research indicating that many prokaryotes 
utilize alternative pathways like the Entner-Doudoroff (ED) pathway 
instead of the canonical EMP pathway. Anaerobes typically favour 
the higher ATP yield of the EMP pathway, while aerobes, such as 
those identified in our study, more often employ the ED pathway due 
to its lower protein cost (Flamholz et al., 2013). The presence of the 
full pathways for glycolysis, the pentose phosphate pathway, and ED 
pathways indicates that gut microorganisms can flexibly adapt their 
metabolism based on oxygen levels and nutritional content. 
Interestingly, we found no complete carbon fixation pathways within 
the MAGs, indicating reliance on dietary inputs rather than 
autotrophic carbon fixation, which could provide insights into the 
nutritional strategies of village chickens in low-resource settings 
(Sieber et al., 2018). Furthermore, the identification of several 
electron transport chain complexes (I-V) associated with aerobic 
respiration suggests that the gut environment is conducive to aerobic 
microbial communities, potentially impacting energy metabolism 
and overall gut health.

Recent studies have shown that various metabolic pathways exist 
in microorganisms, reflecting diverse adaptations to environmental 
conditions. For example, research by Sato and Atomi (2011) on 
Archaea identified modified glycolytic pathways and novel CO2-fixing 
pathways, which may parallel similar adaptations in the gut 
microbiomes of village chickens. Additionally, comparative analyses 
of lactic acid bacteria have revealed lineage-specific trends in gene loss 
and gain within glycolytic and pentose phosphate pathways (Salvetti 

FIGURE 6

(A) DRAM (Distilled and Refined Annotation of Metabolism) functional annotations of bacterial genomes from Limpopo chicken fecal 
microbiota. The heatmap displays the distribution and completeness of various metabolic pathways and functional modules across 
different bacterial assemblies (Bin_001 through Bin_063). The left panel shows ETC (Electron Transport Chain) complexes I-V with color 
intensity indicating completeness (0.0-1.0, yellow to blue). The right panels illustrate the presence (green) or absence (white) of key 
metabolic functions including CAZy (Carbohydrate-Active Enzymes), nitrogen metabolism, sulfur metabolism, other reductases, 
photosynthesis, methanogenesis and methanotrophy, and SCFA (Short-Chain Fatty Acid) and alcohol conversions. This comprehensive 
metabolic profiling reveals the functional potential of the microbial communities in the chicken gut ecosystem from the Limpopo region.

(Continued)
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et al., 2013). Such findings may shed light on the metabolic versatility 
of the gut microbiota identified in this study. Research on 
Actinobacteria has also demonstrated variability in upper glycolytic 
pathways with conservation in lower pathways, suggesting potential 
pathways for metabolic adaptation (Verma et al., 2013). The presence 
of Actinobacteria in our MAGs indicates their potential significance 
in carbohydrate metabolism and health outcomes for village chickens. 
Overall, this study underscores the critical role of the gut microbiome 
in the health and adaptability of village chickens, linking microbial 
diversity to production efficiency in low-resource settings. Future 
research should investigate archaeal populations’ contributions to gut 
metabolism and assess the impact of specific metabolic pathways on 
health outcomes to better understand microbial ecology in 
agricultural systems.

3.2.4 Antibiotic resistome profiles from 
KwaZulu-Natal and Limpopo provinces

3.2.4.1 Antibiotic resistome from Limpopo Province
The sensitivity of detection for Limpopo, which is the ability of the 

genotypic test to detect antimicrobial resistance (true positive rate), was 
>90% for 3 antimicrobials: streptomycin, tetracycline, erythromycin, 
and azithromycin. The following ARO genes were detected, ant(6)-Ia, 
tet(36), and msr(C). Based on the CARD database (Appendix 6), the 
sensitivity of detection, which is the ability of the genotypic test to 
detect antimicrobial resistance (true positive rate), was assessed for 24 
bins from Limpopo using RGI criteria (perfect and strict). The detected 
resistance included aminoglycosides, aminocoumarins, phosphonic 
acids, macrolides, fluoroquinolones, carbapenems, cephalosporins, 

FIGURE 6 (Continued)

(B) Functional annotation of metagenome-assembled genomes (MAGs) from KwaZulu Natal chicken fecal samples using DRAM (Distilled and Refined 
Annotation of Metabolism). The MAGs were selected based on their completeness (≥90%) and contamination (≤5%). The presence (green) or absence 
(white) of key metabolic functions is shown across different bacterial assemblies (Bin_002 through Bin_161). The heatmap displays the distribution of 
various functional categories including CAZy (Carbohydrate-Active Enzymes), nitrogen metabolism, sulfur metabolism, other reductases, 
photosynthesis, methanogenesis and methanotrophy, and SCFA (Short-Chain Fatty Acid) and alcohol conversions. Each row represents an individual 
MAG, while columns represent specific metabolic functions and pathways. This analysis provides insights into the metabolic capabilities and functional 
potential of the bacterial communities present in the chicken gut microbiome from the KwaZulu Natal region, highlighting the diversity of metabolic 
pathways present across different bacterial taxa.
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glycylcyclines, cephamycins, penams, tetracyclines, peptides, rifamycins, 
phenicols, penems, nucleosides, and nitroimidazoles, as well as 
disinfecting agents and antiseptics. These results indicate a diverse 
range of antimicrobial resistance profiles among the samples from 
Limpopo. The following ARO genes were detected, cpxA, mdtG, TolC, 
emrR, msbA, marA, baeS, baeR, AcrE, evgA, emrY, Escherichia coli 
acrA, H-NS, mdtP, EC-13, mdtH, mdtA, emrA. emrB, Escherichia coli 
emrE, kdpE, rsmA, AcrS, leuO, and mdtN. The STARAMR and CARD 
database detection results for Limpopo province, both revealed the 
following resistomes with perfect matches, Enterococcus faecalis, 
Staphylococcus aureus, Listeria innocua, Clostridium botulinum, 
Herbinix luporun, Staphylococcus aureus, and Enterococcus faecium. 
However, the CARD database revealed the Escherichia coli resistome, 
based on the fluoroquinolone antibiotic detection using RGI, which 
also revealed high prevalence of E. coli in Limpopo.

The antimicrobial resistance (AMR) profile of the Limpopo village 
chicken faecal microbiome demonstrates a high sensitivity of 
detection for resistance to several commonly used antimicrobials, 
notably streptomycin, tetracycline, erythromycin, and azithromycin. 
The detection rate, which exceeded 90%, reflects the efficacy of 
genotypic testing in identifying resistance to these antimicrobials. The 
specific resistance genes detected—such as ant(6)-Ia, tet(36), and 
msr(C)—highlight the presence of aminoglycoside, tetracycline, and 
macrolide resistance, respectively. These findings are significant, as 
they indicate the potential for resistance transmission to pathogens of 
both veterinary and public health concern.

The diverse resistance gene profile detected through the CARD 
database and RGI criteria (with “perfect” and “strict” matches) in 
24 bins from Limpopo further underscores the complexity of 
resistance patterns in this region. The presence of resistance 
mechanisms against a wide array of antibiotic classes, including 
aminoglycosides, macrolides, carbapenems, and cephalosporins, 
among others, highlights the adaptability of the microbiome to 
various selective pressures, possibly resulting from environmental 
exposure to antimicrobial agents used in agriculture (Kraemer 
et  al., 2019). Notably, genes associated with resistance to 
disinfectants and antiseptics (e.g., msbA, TolC, mdtG) suggest that 
microbial populations in Limpopo may have been exposed to 
biocides commonly used in livestock management or environmental 
sanitation, potentially contributing to the observed resistance 
diversity (Buffet-Bataillon et al., 2012). Interestingly, the presence 
of genes such as marA and acrA, which are associated with multi-
drug efflux pumps, suggests a mechanism by which bacteria in the 
Limpopo microbiome could resist multiple antimicrobial agents, 
effectively enhancing their survival in environments with diverse 
antibiotic exposures (Blair et al., 2015). The CARD and STARAMR 
detection results reveal a range of resistomes among species 
typically associated with both animal and human microbiomes, 
including Enterococcus faecalis, Staphylococcus aureus, and 

Escherichia coli. The detection of E. coli resistance to 
fluoroquinolones is particularly notable, as it indicates a high 
prevalence of this organism in Limpopo samples and underscores 
potential risks to public health given fluoroquinolones’ critical role 
in treating severe bacterial infections in humans (Patel et al., 2020).

The overlap between CARD and STARAMR database detections 
with “perfect” matches for resistant strains (e.g., Staphylococcus 
aureus, Enterococcus faecium) highlights the reliability of these 
databases for identifying clinically relevant AMR genes and further 
reinforces the value of molecular AMR profiling in characterizing 
environmental reservoirs of resistance. The detection of Clostridium 
botulinum and Listeria innocua resistomes, while less common, adds 
another layer of potential concern given these organisms’ known 
pathogenicity and their association with foodborne illnesses. The 
AMR gene diversity observed in Limpopo village chicken microbiota 
reflects a potentially significant reservoir of resistance, with 
implications for both poultry health and zoonotic transmission to 
humans (Cho and Blaser, 2021). This diverse resistome not only 
highlights the need for monitoring AMR in agricultural settings but 
also reinforces the value of genotypic surveillance using databases 
like CARD and STARAMR to assess resistance risks and inform 
responsible antimicrobial stewardship practices in the region 
(Table 1).

3.2.5 Antibiotic resistome profile from 
KwaZulu-Natal province

The sensitivity of detection for KwaZulu-Natal, which is the ability 
of the genotypic test to detect antimicrobial resistance (true positive 
rate), was >90% for 4 antimicrobials: gentamicin, tetracycline, 
erythromycin, azithromycin and lincomycin. The following ARO genes 
were detected: aac(6′)-Iid, mph(A), tet(Z), and lsa(A). Based on the 
CARD database (Appendix 7), the sensitivity of detection—indicating 
the ability of the genotypic test to detect antimicrobial resistance (true 
positive rate)—was over 90% for four bins from KwaZulu-Natal using 
RGI criteria (perfect and strict), covering resistance to fluoroquinolones, 
monobactams, carbapenems, cephalosporins, glycylcyclines, cephamycins, 
penams, tetracyclines, peptides, aminoglycosides, rifamycins, phenicols, 
penems, and disinfecting agents and antiseptics. The following ARO 
genes were detected, marA, emrR, PmrF, AcrE, AcrS, YojI, and 
acrD. The STARAMR and CARD database detection results for 
KwaZulu-Natal province, both revealed the following resistomes with 
perfect matches, Enterococcus hirae, Salmonella enterica, Shigella 
flexneri, Vibrio cholerae, Escherichia coli, Corynebacterium glutamicum, 
and Enterococcus faecalis.

The antimicrobial resistance (AMR) profile of the KwaZulu-Natal 
village chicken faecal microbiome demonstrates a high sensitivity of 
detection for resistance to five key antimicrobials: gentamicin, 
tetracycline, erythromycin, azithromycin, and lincomycin. With 
detection rates exceeding 90%, this indicates a robust capacity of the 

TABLE 1 Antibiotic resistome profile from Limpopo province village chicken faecal microbiome.

ARO 
Term

Predicted 
phenotype

Resistomes with perfect matches Resistance 
mechanism

%Identity

ant(6)-Ia Streptomycin Enterococcus faecalis, Staphylococcus aureus, Listeria innocua Antibiotic inactivation 100

tet(36) Tetracycline Clostridium botulinum, Herbinix luporun, Staphylococcus aureus Antibiotic target protection 98.80

msr(C) Erythromycin, azithromycin Enterococcus faecium Antibiotic target protection 98.85
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genotypic testing method to identify resistance genes, such as 
aac(6′)-Iid, mph(A), tet(Z), and lsa(A), which are associated with 
resistance to aminoglycosides, macrolides, tetracyclines, and 
lincosamides, respectively. These findings are significant in 
understanding the distribution of specific AMR determinants within 
the KwaZulu-Natal microbiome and the implications for antimicrobial 
use in agriculture. Further insights from the CARD database and RGI 
criteria analysis underscore the diversity of resistance profiles within 
the KwaZulu-Natal microbiome. The testing revealed over 90% 
detection accuracy across four distinct microbiome bins, covering 
resistance to a broad range of antimicrobial classes, including 
fluoroquinolones, carbapenems, cephalosporins, and resistance to 
disinfectants and antiseptics. This wide range of resistance suggests 
exposure to various selective pressures, potentially from agricultural 
antimicrobials and biocides commonly used in animal farming 
(Martinez, 2009).

The identification of resistance genes linked to efflux pumps, such 
as marA, acrD, and emrR, suggests a potential mechanism that enables 
multi-drug resistance (MDR) by expelling diverse antimicrobial 
agents from bacterial cells, thereby supporting survival in 
environments exposed to antibiotics (Fernandes et  al., 2015). 
Additionally, the presence of genes such as PmrF and YojI, which 
confer resistance to antimicrobial peptides and antibiotics, highlights 
adaptive responses that could pose challenges in treating infections 
caused by these bacteria (Nikaido, 2009). Results from both the 
STARAMR and CARD databases showed “perfect” matches in the 
resistomes of several clinically relevant bacteria in KwaZulu-Natal, 
including Enterococcus hirae, Salmonella enterica, Shigella flexneri, 
Vibrio cholerae, Escherichia coli, Corynebacterium glutamicum, and 
Enterococcus faecalis. These findings are critical, given the potential 
health risks associated with the transfer of AMR genes to pathogenic 
bacteria in human populations (Table 2).

4 Conclusion

This study reveals significant variations in the faecal microbiome 
of village chickens between KwaZulu-Natal and Limpopo provinces, 
with critical implications for public health. Analysis of bacterial 
composition indicates a high prevalence of pathogenic genera, 
including Escherichia and Shigella, raising concerns about potential 
zoonotic diseases outbreaks. The 16S rRNA gene sequencing data 
demonstrates that agroecological zones and scavenging production 
systems notably influence faecal microbiome composition. On the 
other hand, shotgun metagenomic sequencing uncovered distinct 
taxonomic compositions and metabolic functions, highlighting 
unique metabolic pathway profiles for metagenome-assembled 

genomes (MAGs) across the provinces. The rich microbiome 
diversity reflects the birds’ adaptation to their natural environment, 
essentially creating more resilient but possibly less productive birds. 
The antibiotic resistome profiles illustrate a diverse range of 
resistance genes, including key groups such as Enterococcus, 
Salmonella, Shigella, and Staphylococcus, with KwaZulu-Natal 
chickens exhibiting resistomes associated with Enterococcus hirae, 
Salmonella enterica, Shigella flexneri, Vibrio cholerae, and Escherichia 
coli. In contrast, Limpopo chickens show a higher prevalence of 
resistomes, including Enterococcus faecalis, Staphylococcus aureus, 
Listeria innocua, and Clostridium botulinum. The greater abundance 
and diversity of resistomes in Limpopo suggest an increased 
antimicrobial usage, emphasising the urgent need for training 
farmers on use and misuse of antimicrobials as well as monitoring 
antimicrobial resistance in these populations. The analysis of 
bacterial composition in the faeces of village chickens has shown a 
high prevalence of pathogenic genera such as Escherichia and 
Salmonella, which are known to be associated with zoonotic diseases 
Zishiri et al. (2016). The presence of these pathogens raises concerns 
about the potential for outbreaks of diseases that can be transmitted 
from chickens to humans, particularly in communities where close 
contact with poultry is common. Furthermore, the study’s use of 16S 
rRNA gene sequencing has demonstrated that the gut microbiome’s 
composition varies significantly between the two provinces, 
suggesting that local environmental conditions and farming 
practices play a crucial role in shaping these microbial communities 
(Rausch et al., 2019; Malatji et al., 2016).

In addition to pathogenic bacteria, the study highlights the 
presence of a diverse array of antibiotic resistance genes within the 
gut microbiota of village chickens. The resistome profiles indicate 
that chickens from KwaZulu-Natal exhibit resistance genes 
associated with Enterococcus hirae, Salmonella enterica, and 
Escherichia coli, while those from Limpopo show a higher 
prevalence of Enterococcus faecalis and Staphylococcus aureus 
(Akinola et al., 2019). The greater abundance and diversity of these 
resistance genes in Limpopo suggest a higher level of antimicrobial 
usage, which underscores the urgent need for educational initiatives 
aimed at farmers regarding the responsible use of antimicrobials 
and the monitoring of antimicrobial resistance (Walsh, 2018; 
Khanyile et  al., 2015). This study underscores the necessity for 
further investigation into the functional aspects of the faecal 
microbiome and its interactions with environmental factors across 
different seasons, which could enhance our understanding of the 
ecological and health implications as well as temporal dynamics of 
these microbial communities. Future studies should also address 
limitations such as sample size and geographical representation to 
provide a more balanced view of the findings.

TABLE 2 Antibiotic resistome profile from KwaZulu—Natal province village chicken faecal microbiome.

ARO 
Term

Predicted 
phenotype

Resistomes with perfect matches Resistance mechanism %Identity

aac(6′)-Iid Gentamicin Enterococcus hirae Antibiotic inactivation 100

mph(A) Erythromycin, azithromycin Salmonella enterica, Shigella flexneri, vibrio cholera, Escherichia Coli Antibiotic inactivation 99.67

tet(Z) Tetracycline Corynebacterium glutamicum Antibiotic efflux 100

lsa(A) Lincomycin Enterococcus faecalis Antibiotic target protection 98.33

https://doi.org/10.3389/fmicb.2024.1487595
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nene et al. 10.3389/fmicb.2024.1487595

Frontiers in Microbiology 16 frontiersin.org

Data availability statement

The sequencing data supporting this study have been deposited in 
the NCBI Sequence Read Archive (SRA) under the BioProject ID 
PRJNA1180228. The data are publicly accessible and include all raw 
sequence files used in the analysis.

Ethics statement

The animal studies were approved by ARC—AP Animal Health 
Ethics Committee reference number: APIEC 22/10 and University of 
Zululand Ethics Committee reference number: UZ-REC 0691–008. 
The studies were conducted in accordance with the local legislation 
and institutional requirements. Written informed consent was 
obtained from the owners for the participation of their animals in 
this study.

Author contributions

MN: Formal analysis, Visualization, Writing – original draft, 
Writing – review & editing. NK: Conceptualization, Methodology, 
Project administration, Supervision, Writing – review & editing. RP: 
Data curation, Formal analysis, Methodology, Software, Validation, 
Visualization, Writing – review & editing. KH: Conceptualization, 
Data curation, Formal analysis, Funding acquisition, Investigation, 
Methodology, Project administration, Resources, Software, 
Supervision, Validation, Writing – original draft, Writing – review & 
editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This study was 
supported by the Agricultural Research Council—Postgraduate 
Development Program, Department of Land Reform, Agriculture and 
Rural Development and Agri-SETA.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2024.1487595/
full#supplementary-material

References
Akhter, S., Aziz, R. K., and Edwards, R. A. (2012). PhiSpy: a novel algorithm for 

finding prophages in bacterial genomes that combines similarity-and composition-
based strategies. Nucleic Acids Res. 40:e126. doi: 10.1093/nar/gks406

Akinola, S. A., Mwanza, M., and Ateba, C. N. (2019). Occurrence, genetic diversities 
and antibiotic resistance profiles of Salmonella Serovars isolated from chickens. Infect. 
Drug Resist. 12, 3327–3342. doi: 10.2147/IDR.S217421

Andrews, T., Neher, D. A., Weicht, T. R., and Barlow, J. W. (2019). The mammary 
microbiome of lactating organic dairy cows varies by time, tissue site, and infection 
status. PLoS One 14:e0225001. doi: 10.1371/journal.pone.0225001

Aruwa, C. E., Pillay, C., Nyaga, M. M., and Sabiu, S. (2021). Poultry gut health–
microbiome functions, environmental impacts, microbiome engineering and 
advancements in characterization technologies. J. Anim. Sci. Biotechnol. 12, 1–15. doi: 
10.1186/s40104-021-00640-9

Bahrndorff, S., Alemu, T., Alemneh, T., and Lund Nielsen, J. (2016). The microbiome 
of animals: implications for conservation biology. Int. J. Genom. 2016:5304028. doi: 
10.1155/2016/5304028

Banks, S. C., and Piggott, M. P. (2022). Non-invasive genetic sampling is one of our 
most powerful and ethical tools for threatened species population monitoring: a reply 
to Lavery et al. Biodivers. Conserv. 31, 723–728. doi: 10.1007/s10531-022-02377-x

Belus, J. M., Bradley, V. D., van Heerden, A., Msimango, L. I., Barnabas, R. V., and van 
Rooyen, H. (2022). “I think it’s communication and trust and sharing everything”: 
qualitative evidence for a model of healthy intimate relationships in black women living 
with HIV and men in KwaZulu-Natal, South Africa. Fam. Process 61, 1507–1524. doi: 
10.1111/famp.12744

Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., and Piddock, L. J. (2015). 
Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51. doi: 
10.1038/nrmicro3380

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/ 
btu170

Buffet-Bataillon, S., Tattevin, P., Bonnaure-Mallet, M., and Jolivet-Gougeon, A. (2012). 
Emergence of resistance to antibacterial agents: the role of quaternary ammonium 
compounds—a critical review. Int. J. Antimicrob. Agents 39, 381–389. doi: 10.1016/j.
ijantimicag.2012.01.011

Cai, S., Ma, Y., Bao, Z., Yang, Z., Niu, X., Meng, Q., et al. (2024). The impacts of the 
C/N ratio on hydrogen sulfide emission and microbial community characteristics during 
chicken manure composting with wheat straw. Agriculture 14:948. doi: 10.3390/
agriculture14060948

Callahan, B. J., Mcmurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and 
Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon 
data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869

Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., and Parks, D. H. (2022). GTDB-Tk v2: 
memory719 friendly classification with the genome taxonomy database. Bioinformatics 
38:5315-7205316.721.

Chivian, D., Jungbluth, S.P., Dehal, P.S., Canon, R.S., Allen, B.H., Clark, M.M., et al. 
(2021). Genome extraction from shotgun metagenome sequence data. US Department 
of Energy Systems Biology Knowledgebase.

Chen, J., Siliceo, S. L., Ni, Y., Nielsen, H. B., Xu, A., and Panagiotou, G. (2023). 
Identification722 of robust and generalizable biomarkers for microbiome-based 
stratification in lifestyle723 interventions. Microbiome. 11:178.

Chivian, D., Jungbluth, S. P., Dehal, P. S., Wood-Charlson, E. M., Canon, R. S., 
Allen, B. H., et al. (2023). Metagenome-assembled genome extraction and analysis from 
microbiomes using KBase. Nat. Protoc. 18, 208–238. doi: 10.1038/s41596-022-00747-x

Cho, I., and Blaser, M. J. (2021). The human microbiome: at the interface of health and 
disease. Nat. Rev. Genet. 13, 260–270. doi: 10.1038/nrg3182

Clemmons, B. A., Martino, C., Schneider, L. G., Lefler, J., Embree, M. M., and 
Myer, P. R. (2019). Temporal stability of the ruminal bacterial communities in beef 
steers. Sci. Rep. 9:9522. doi: 10.1038/s41598-019-45995-2

Cressman, M. D., Yu, Z., Nelson, M. C., Moeller, S. J., Lilburn, M. S., and Zerby, H. N. 
(2010). Interrelation between the microbiotas in the litter and in the intestines of 

https://doi.org/10.3389/fmicb.2024.1487595
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1487595/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1487595/full#supplementary-material
https://doi.org/10.1093/nar/gks406
https://doi.org/10.2147/IDR.S217421
https://doi.org/10.1371/journal.pone.0225001
https://doi.org/10.1186/s40104-021-00640-9
https://doi.org/10.1155/2016/5304028
https://doi.org/10.1007/s10531-022-02377-x
https://doi.org/10.1111/famp.12744
https://doi.org/10.1038/nrmicro3380
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1016/j.ijantimicag.2012.01.011
https://doi.org/10.1016/j.ijantimicag.2012.01.011
https://doi.org/10.3390/agriculture14060948
https://doi.org/10.3390/agriculture14060948
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/s41596-022-00747-x
https://doi.org/10.1038/nrg3182
https://doi.org/10.1038/s41598-019-45995-2


Nene et al. 10.3389/fmicb.2024.1487595

Frontiers in Microbiology 17 frontiersin.org

commercial broiler chickens. Appl. Environ. Microbiol. 76, 6572–6582. doi: 10.1128/
AEM.00180-10

Dameshghian, M., Tafvizi, F., Tajabadi Ebrahimi, M., and Hosseini Doust, R. (2024). 
Anticancer potential of Postbiotic derived from Lactobacillus brevis and Lactobacillus 
casei: in vitro analysis of breast Cancer cell line. Probiot. Antimicrob. Prot., 1–14. doi: 
10.1007/s12602-024-10288-2

de Vries, J., Saleem, F., Li, E., Chan, A. W. Y., Naphtali, J., Naphtali, P., et al. (2023). 
Comparative analysis of metagenomic (amplicon and shotgun) DNA sequencing to 
characterize microbial communities in household on-site wastewater treatment systems. 
Water 15:271. doi: 10.3390/w15020271

Du, Y., Wang, T. Y., Anane, P. S., Li, Q., Liu, S. X., and Wang, C. Y. (2019). Effects of 
different types of biochar on basic properties and bacterial communities of black soil. 
Appl. Ecol. Environ. Res. 17, 5305–5319. doi: 10.15666/aeer/1702_53055319

Dunfield, P. F., Tamas, I., Lee, K. C., Morgan, X. C., McDonald, I. R., and 
Stott, M. B. (2012). Electing a candidate: a speculative history of the bacterial 
phylum OP10. Environ. Microbiol. 14, 3069–3080. doi: 
10.1111/j.1462-2920.2012.02742.x

Ellison, M. J., Conant, G. C., Lamberson, W. R., Austin, K. J., van Kirk, E., 
Cunningham, H. C., et al. (2019). Predicting residual feed intake status using rumen 
microbial profiles in ewe lambs. J. Anim. Sci. 97, 2878–2888. doi: 10.1093/jas/skz170

Fernandes, J. P., Almeida, C. M. R., Pereira, A. C., Ribeiro, I. L., Reis, I., Carvalho, P., 
et al. (2015). Microbial community dynamics associated with veterinary antibiotics 
removal in constructed wetlands microcosms. Bioresour. Technol. 182, 26–33. doi: 
10.1016/j.biortech.2015.01.096

Fidler, G., Tolnai, E., Stagel, A., Remenyik, J., Stundl, L., Gal, F., et al. (2020). 
Tendentious effects of automated and manual metagenomic DNA purification protocols 
on broiler gut microbiome taxonomic profiling. Sci. Rep. 10, 1–16. doi: 10.1038/
s41598-020-60304-y

Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W., and Milo, R. (2013). Glycolytic 
strategy as a tradeoff between energy yield and protein cost. Proceedings of the National 
Academy of Sciences 110, 10039–10044.

Garinet, S., Nectoux, J., Neou, M., Pasmant, E., Jouinot, A., Sibony, M., et al. (2018). 
Detection and monitoring of circulating tumor DNA in adrenocortical carcinoma. 
Endocr. Relat. Cancer 25, L13–L17. doi: 10.1530/ERC-17-0467

Gohl, D. M., Vangay, P., Garbe, J., MacLean, A., Hauge, A., Becker, A., et al. (2016). 
Systematic improvement of amplicon marker gene methods for increased accuracy in 
microbiome studies. Nat. Biotechnol. 34, 942–949. doi: 10.1038/nbt.3601

Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality 
assessment tool for genome assemblies. Bioinformatics 29, 1072–1075. doi: 10.1093/
bioinformatics/btt086

Hiergeist, A., Gläsner, J., Reischl, U., and Gessner, A. (2015). Analyses of intestinal 
microbiota: culture versus sequencing. ILAR J. 56, 228–240. doi: 10.1093/ilar/ilv017

Hiltunen, L. H., Tarvainen, O., Kelloniemi, J., Tanskanen, J., Karhu, J., and Valkonen, J. P. 
(2021). Soil bacterial community in potato tuberosphere following repeated applications of 
a common scab suppressive antagonist. Appl. Soil Ecol. 167:104096.

Hug, L. A., Thomas, B. C., Sharon, I., Brown, C. T., Sharma, R., Hettich, R. L., et al. 
(2016). Critical biogeochemical functions in the subsurface are associated with bacteria 
from new phyla and little studied lineages. Environ Microbiol. 18, 159–173.

Joat, N., Bajagai, Y. S., Van, T. T. H., Stanley, D., Chousalkar, K., and Moore, R. J. 
(2023). The temporal fluctuations and development of faecal microbiota in commercial 
layer flocks. Anim. Nut. 15, 197–209. doi: 10.1016/j.aninu.2023.07.006

Jovel, J., Patterson, J., Wang, W., Hotte, N., O'Keefe, S., Mitchel, T., et al. (2016). 
Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. 
Microbiol. 7:459. doi: 10.3389/fmicb.2016.00459

Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., et al. (2019). MetaBAT 2: 
an adaptive binning algorithm for robust and efficient genome reconstruction from 
metagenome assemblies. PeerJ 7:e7359. doi: 10.7717/peerj.7359

Keambou, T. C., Hako, B. A., Ommeh, S., Bembide, C., Ngono, E. P., Manjeli, Y., et al. 
(2014). Genetic diversity of the Cameroon indigenous chicken ecotypes. Int. J. Poult. Sci. 
13, 279–291.

Khanyile, K., Dzomba, E., and Muchadeyi, F. (2015). Population genetic structure, 
linkage disequilibrium and effective population size of conserved and extensively raised 
village chicken populations of southern africa. Front. Genet. 6:13. doi: 10.3389/
fgene.2015.00013

Kraemer, S. A., Ramachandran, A., and Perron, G. G. (2019). Antibiotic pollution in 
the environment: from microbial ecology to public policy. Microorganisms 7:180. doi: 
10.3390/microorganisms7060180

Leggett, R. M., Ramirez-Gonzalez, R. H., Clavijo, B. J., Waite, D., and Davey, R. P. 
(2013). Sequencing quality assessment tools to enable data-driven informatics for high 
throughput genomics. Front. Genet. 4:288. doi: 10.3389/fgene.2013.00288

Letunic, I., and Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for 
phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296.

Li, D., Liu, C. M., Luo, R., Sadakane, K., and Lam, T. W. (2015). MEGAHIT: an 
ultra-fast single-node solution for large and complex metagenomics assembly via 

succinct de Bruijn graph. Bioinformatics 31, 1674–1676. doi: 10.1093/
bioinformatics/btv033

Li, J., Yuan, M., Wang, H., and Zhou, K. (2023). Government regulations, biosecurity 
awareness, and farmers' adoption of biosecurity measures: evidence from pig farmers in 
Sichuan Province, China. Front. Sustain. Food Syst. 7:1106766. doi: 10.3389/
fsufs.2023.1106766

Liu, L., Zhu, K., Wurzburger, N., and Zhang, J. (2020). Relationships between plant 
diversity and soil microbial diversity vary across taxonomic groups and spatial scales. 
Ecosphere 11:e02999. doi: 10.1002/ecs2.2999

Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., and Knight, R. 
(2012). Diversity, stability and resilience of the human gut microbiota. Nat. 489, 
220–230.

Malatji, D., Tsotetsi, A., Marle-Köster, E., and Muchadeyi, F. (2016). A description of 
village chicken production systems and prevalence of gastrointestinal parasites: case 
studies in Limpopo and Kwazulu-Natal provinces of South Africa. Onderstepoort J. Vet. 
Res. 83:a968. doi: 10.4102/ojvr.v83i1.968

Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic 
resistance determinants. Environ. Pollut. 157, 2893–2902. doi: 10.1016/j.
envpol.2009.05.051

Martiny, J. B. H., Bohannan, B. J., Brown, J. H., Colwell, R. K., Fuhrman, J. A., 
Green, J. L., et al. (2006). Microbial biogeography: putting microorganisms on the map. 
Nat. Rev. Microbiol. 4, 102–112. doi: 10.1038/nrmicro1341

McKenna, A., Ijaz, U. Z., Kelly, C., Linton, M., Sloan, W. T., Green, B. D., et al. (2020). 
Impact of industrial production system parameters on chicken microbiomes: 
mechanisms to improve performance and reduce campylobacter. Microbiome 8, 1–13. 
doi: 10.1186/s40168-020-00908-8

McMurdie, P. J., and Holmes, S. (2013). Phyloseq: an R package for reproducible 
interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi: 
10.1371/journal.pone.0061217

Menzel, P., Ng, K. L., and Krogh, A. (2016). Fast and sensitive taxonomic classification 
for metagenomics with kaiju. Nat. Commun. 7:11257. doi: 10.1038/ncomms11257

Mootane, M. E., Mafuna, T., Ramantswana, T. M., and Malatji, D. P. (2024). Microbial 
community profiling in intestinal tract of indigenous chickens from different villages. 
Scientific Reports 14:21218.

Morris, K. (2024). Phenotypic and genomic characterisation of performance of 
tropically adapted chickens raised in smallholder farm conditions in Ethiopia. Front. 
Genet. 15:1383609. doi: 10.3389/fgene.2024.1383609

Muyyarikkandy, M. S., Parzygnat, J., and Thakur, S. (2023). Uncovering changes in 
microbiome profiles across commercial and backyard poultry farming systems. 
Microbiol. Spect. 11, e01682–e01623. doi: 10.1128/spectrum.01682-23

Nengovhela, N. B., Mugwabana, T. J., Nephawe, K. A., and Nedambale, T. L. (2021). 
Accessibility to reproductive technologies by low-income beef farmers in South Africa. 
Front. Vet. Sci. 8:611182. doi: 10.3389/fvets.2021.611182

Nikaido, H. (2009). Multidrug resistance in bacteria. Annu. Rev. Biochem. 78, 119–146. 
doi: 10.1146/annurev.biochem.78.082907.145923

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017). metaSPAdes: a new 
versatile metagenomic assembler. Genome Res. 27, 824–834. doi: 10.1101/gr.213959.116

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. 
(2015). CheckM: assessing the quality of microbial genomes recovered from 
isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055. doi: 10.1101/
gr.186072.114

Patel, R., Babady, E., Theel, E. S., Storch, G. A., Pinsky, B. A., St. George, K., et al. 
(2020). Report from the American Society for Microbiology COVID-19 International 
Summit, 23 March 2020: value of diagnostic testing for SARS–CoV-2/COVID-19. MBio 
11, 10–1128.

Patil, R. D., Ellison, M. J., Wolff, S. M., Shearer, C., Wright, A. M., Cockrum, R. R., 
et al. (2018). Poor feed efficiency in sheep is associated with several structural 
abnormalities in the community metabolic network of their ruminal microbes. J. Anim. 
Sci. 96, 2113–2124. doi: 10.1093/jas/sky096

Peng, Y., Leung, H. C., Yiu, S. M., and Chin, F. Y. (2011). Meta-IDBA: a de novo 
assembler for metagenomic data. Bioinformatics 27, i94–i101. doi: 10.1093/
bioinformatics/btr216

Peterson, M. J., Pressler, Y., Knight, C. A., Hannusch, H. J., Lodge, A. G., Starns, H. D., 
et al. (2022). The interactive effects of drought and fire on soil microbial communities 
in a semi-arid savanna.

Rausch, P., Rühlemann, M., Hermes, B. M., Doms, S., Dagan, T., Dierking, K., et al. 
(2019). Comparative analysis of amplicon and metagenomic sequencing methods 
reveals key features in the evolution of animal metaorganisms. Microbiome  7, 1–19. doi: 
10.1186/s40168-019-0743-1

Saint-Martin, V., Quéré, P., Trapp, S., and Guabiraba, R. (2022). Uncovering the core 
principles of the gut-lung axis to enhance innate immunity in the chicken. Front. 
Immunol. 13:956670. doi: 10.3389/fimmu.2022.956670

Salvetti, E., Fondi, M., Fani, R., Torriani, S., and Felis, G. E. (2013). Evolution of lactic 
acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and 

https://doi.org/10.3389/fmicb.2024.1487595
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1128/AEM.00180-10
https://doi.org/10.1128/AEM.00180-10
https://doi.org/10.1007/s12602-024-10288-2
https://doi.org/10.3390/w15020271
https://doi.org/10.15666/aeer/1702_53055319
https://doi.org/10.1111/j.1462-2920.2012.02742.x
https://doi.org/10.1093/jas/skz170
https://doi.org/10.1016/j.biortech.2015.01.096
https://doi.org/10.1038/s41598-020-60304-y
https://doi.org/10.1038/s41598-020-60304-y
https://doi.org/10.1530/ERC-17-0467
https://doi.org/10.1038/nbt.3601
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1093/ilar/ilv017
https://doi.org/10.1016/j.aninu.2023.07.006
https://doi.org/10.3389/fmicb.2016.00459
https://doi.org/10.7717/peerj.7359
https://doi.org/10.3389/fgene.2015.00013
https://doi.org/10.3389/fgene.2015.00013
https://doi.org/10.3390/microorganisms7060180
https://doi.org/10.3389/fgene.2013.00288
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.3389/fsufs.2023.1106766
https://doi.org/10.3389/fsufs.2023.1106766
https://doi.org/10.1002/ecs2.2999
https://doi.org/10.4102/ojvr.v83i1.968
https://doi.org/10.1016/j.envpol.2009.05.051
https://doi.org/10.1016/j.envpol.2009.05.051
https://doi.org/10.1038/nrmicro1341
https://doi.org/10.1186/s40168-020-00908-8
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1038/ncomms11257
https://doi.org/10.3389/fgene.2024.1383609
https://doi.org/10.1128/spectrum.01682-23
https://doi.org/10.3389/fvets.2021.611182
https://doi.org/10.1146/annurev.biochem.78.082907.145923
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1093/jas/sky096
https://doi.org/10.1093/bioinformatics/btr216
https://doi.org/10.1093/bioinformatics/btr216
https://doi.org/10.1186/s40168-019-0743-1
https://doi.org/10.3389/fimmu.2022.956670


Nene et al. 10.3389/fmicb.2024.1487595

Frontiers in Microbiology 18 frontiersin.org

pentose phosphate pathways. Syst. Appl. Microbiol. 36, 291–305. doi: 10.1016/j.
syapm.2013.03.009

Sato, T., and Atomi, H. (2011). Novel metabolic pathways in Archaea. Curr. Opin. 
Microbiol. 14, 307–314. doi: 10.1016/j.mib.2011.04.014

Seidlerova, Z., Kubasova, T., Faldynova, M., Crhanova, M., Karasova, D., Babak, V., 
et al. (2020). Environmental impact on differential composition of gut microbiota in 
indoor chickens in commercial production and outdoor, backyard chickens. 
Microorganisms 8:767. doi: 10.3390/microorganisms8050767

Shade, A. (2023). Microbiome rescue: directing resilience of environmental microbial 
communities. Curr. Opin. Microbiol. 72:102263. doi: 10.1016/j.mib.2022.102263

Shaffer, M., Borton, M. A., McGivern, B. B., Zayed, A. A., La Rosa, S. L., Solden, L. M., 
et al. (2020). DRAM for distilling microbial metabolism to automate the curation of 
microbiome function. Nucleic Acids Res. 48, 8883–8900. doi: 10.1093/nar/gkaa621

Shang, Y., Kumar, S., Oakley, B., and Kim, W. (2018). Chicken gut microbiota: importance 
and detection technology. Front. Vet. Sci. 5:254. doi: 10.3389/fvets.2018.00254

Shang, L., Liu, H., Yu, H., Chen, M., Yang, T., Zeng, X., et al. (2021). Core altered 
microorganisms in colitis mouse model: a comprehensive time-point and fecal 
microbiota transplantation analysis. Antibiotics 10:643. doi: 10.3390/antibiotics 
10060643

Sieber, C. M., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., et al. 
(2018). Recovery of genomes from metagenomes via a dereplication, aggregation and 
scoring strategy. Nat. Microbiol. 3, 836–843. doi: 10.1038/s41564-018-0171-1

Singh, H., Northup, B. K., Rice, C. W., and Prasad, P. V. (2022). Biochar applications 
influence soil physical and chemical properties, microbial diversity, and crop 
productivity: a meta-analysis. Biochar 4:8. doi: 10.1007/s42773-022-00138-1

Suman, J., Rakshit, A., Ogireddy, S. D., Singh, S., Gupta, C., and Chandrakala, J. 
(2022). Microbiome as a key player in sustainable agriculture and human health. Front. 
Soil Sci. 2:821589. doi: 10.3389/fsoil.2022.821589

Sun, M., Halimubieke, N., Fang, B., Valdebenito, J. O., Xu, X., Sheppard, S. K., et al. 
(2024). Gut microbiome in two high-altitude bird populations showed heterogeneity in 
sex and life stage. FEMS Microb. 5:xtae020. doi: 10.1093/femsmc/xtae020

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: 
molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30, 2725–2729.

Tan, Z., Luo, L., Wang, X., Wen, Q., Zhou, L., and Wu, K. (2019). Characterization of 
the cecal microbiome composition of Wenchang chickens before and after fattening. 
PLoS One 14:e0225692. doi: 10.1371/journal.pone.0225692

Tatusova, T., Ciufo, S., Fedorov, B., O’Neill, K., and Tolstoy, I. (2014). RefSeq microbial 
genomes database: new representation and annotation strategy. Nucleic Acids Res. 42, 
D553–D559.

Tröscher-Mußotter, J., Deusch, S., Borda-Molina, D., Frahm, J., Dänicke, S., 
Camarinha-Silva, A., et al. (2022). Cow’s microbiome from antepartum to postpartum: 
a long-term study covering two physiological challenges. Front. Microbiol. 13:1000750. 
doi: 10.3389/fmicb.2022.1000750

Tsega, K., Maina, J., and Tesema, N. (2019). Probiotics and poultry gut microflora. J. 
World S Poult. Res. 9, 217–223. doi: 10.36380/jwpr.2019.27

Verma, M., Lal, D., Saxena, A., Anand, S., Kaur, J., Kaur, J., et al. (2013). Understanding 
alternative fluxes/effluxes through comparative metabolic pathway analysis of phylum 

actinobacteria using a simplified approach. Gene 531, 306–317. doi: 10.1016/j.
gene.2013.08.076

Waite, D. W., and Taylor, M. W. (2014). Characterizing the avian gut microbiota: 
membership, driving influences, and potential function. Front. Microbiol. 5:223.

Walsh, G. (2018). Biopharmaceutical benchmarks 2018. Nat. Biotechnol. 36, 
1136–1145. doi: 10.1038/nbt.4305

Wan, Y. D., Zhu, R. X., Wu, Z. Q., Lyu, S. Y., Zhao, L. X., Du, Z. J., et al. (2018). Gut 
microbiota disruption in septic shock patients: a pilot study. Med. Sci. Monit. 24, 
8639–8646. doi: 10.12659/MSM.911768

Wang, M., Yu, X., Weng, X., Zeng, X., Li, M., and Sui, X. (2023). Meta-analysis of the 
effects of biochar application on the diversity of soil bacteria and fungi. Microorganisms 
11:641. doi: 10.3390/microorganisms11030641

Wu, Y. W., Simmons, B. A., and Singer, S. W. (2016). MaxBin 2.0: an automated 
binning algorithm to recover genomes from multiple metagenomic datasets. 
Bioinformatics 32, 605–607. doi: 10.1093/bioinformatics/btv638

Xiong, W., Yang, J., Zeng, J., Xiao, D., Tong, C., and Zeng, Z. (2023). Metagenomic 
analysis of antimicrobial resistance in ducks, workers, and the environment in duck 
farms, southern China. Ecotoxicol. Environ. Saf. 262:115191. doi: 10.1016/j.
ecoenv.2023.115191

Yang, K. M., Jiang, Z. Y., Zheng, C. T., Wang, L., and Yang, X. F. (2014). Effect of 
Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets 
challenged with enterotoxigenic Escherichia coli K88. J. Anim. Sci. 92, 1496–1503. doi: 
10.2527/jas.2013-6619

Yao, Z., Yang, K., Huang, L., Huang, X., Qiuqian, L., Wang, K., et al. (2018). 
Disease outbreak accompanies the dispersive structure of shrimp gut bacterial 
community with a simple core microbiota. AMB Express 8, 1–10. doi: 10.1186/
s13568-018-0644-x

Yin, L., Wan, Y. D., Pan, X. T., Zhou, C. Y., Lin, N., Ma, C. T., et al. (2019). Association 
between gut bacterial diversity and mortality in septic shock patients: a cohort study. 
Med. Sci. Monit. 25, 7376–7382. doi: 10.12659/MSM.916808

Yu, J., Zhou, Y., Wen, Q., Wang, B., Gong, H., Zhu, L., et al. (2021). Effects of faecal 
microbiota transplantation on the growth performance, intestinal microbiota, jejunum 
morphology and immune function of laying-type chicks. Anim. Prod. Sci. 62, 321–949.

Zhang, X., Wang, Y., Jiao, P., Zhang, M., Deng, Y., Jiang, C., et al. (2023). Microbiome-
functionality in anaerobic digesters: a critical review. Water Res. 120891. doi: 10.1016/j.
watres.2023.120891

Zhou, Z., Tran, P. Q., Breister, A. M., Liu, Y., Kieft, K., Cowley, E. S., et al. (2022). 
METABOLIC: high-throughput profiling of microbial genomes for functional traits, 
metabolism, biogeochemistry, and community-scale functional networks. Microbiome 
10:33. doi: 10.1186/s40168-021-01213-8

Zishiri, O. T., Mkhize, N., and Mukaratirwa, S. (2016). Prevalence of virulence and 
antimicrobial resistance genes in &lt;i&gt;salmonella&lt;/i&gt; spp. isolated from 
commercial chickens and human clinical isolates from South  Africa and Brazil. 
Onderstepoort J. Vet. Res. 83:1067. doi: 10.4102/ojvr.v83i1.1067

Zondo Sinenhlanhla, N., Ginindza Themba, G., and Hlongwana Khumbulani, W. 
(2022). The extrinsic factors affecting patient access, referral and treatment of lung 
cancer in selected oncology public health facilities in KwaZulu-Natal. Healthc. Low 
Rresour. Sett. 10. doi: 10.4081/hls.2022.10170

https://doi.org/10.3389/fmicb.2024.1487595
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1016/j.syapm.2013.03.009
https://doi.org/10.1016/j.syapm.2013.03.009
https://doi.org/10.1016/j.mib.2011.04.014
https://doi.org/10.3390/microorganisms8050767
https://doi.org/10.1016/j.mib.2022.102263
https://doi.org/10.1093/nar/gkaa621
https://doi.org/10.3389/fvets.2018.00254
https://doi.org/10.3390/antibiotics10060643
https://doi.org/10.3390/antibiotics10060643
https://doi.org/10.1038/s41564-018-0171-1
https://doi.org/10.1007/s42773-022-00138-1
https://doi.org/10.3389/fsoil.2022.821589
https://doi.org/10.1093/femsmc/xtae020
https://doi.org/10.1371/journal.pone.0225692
https://doi.org/10.3389/fmicb.2022.1000750
https://doi.org/10.36380/jwpr.2019.27
https://doi.org/10.1016/j.gene.2013.08.076
https://doi.org/10.1016/j.gene.2013.08.076
https://doi.org/10.1038/nbt.4305
https://doi.org/10.12659/MSM.911768
https://doi.org/10.3390/microorganisms11030641
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1016/j.ecoenv.2023.115191
https://doi.org/10.1016/j.ecoenv.2023.115191
https://doi.org/10.2527/jas.2013-6619
https://doi.org/10.1186/s13568-018-0644-x
https://doi.org/10.1186/s13568-018-0644-x
https://doi.org/10.12659/MSM.916808
https://doi.org/10.1016/j.watres.2023.120891
https://doi.org/10.1016/j.watres.2023.120891
https://doi.org/10.1186/s40168-021-01213-8
https://doi.org/10.4102/ojvr.v83i1.1067
https://doi.org/10.4081/hls.2022.10170

	Profiling the diversity of the village chicken faecal microbiota using 16S rRNA gene and metagenomic sequencing data to reveal patterns of gut microbiome signatures
	1 Introduction
	2 Materials and methods
	2.1 Faecal sample collection
	2.2 DNA extraction, library preparation, and sequencing
	2.3 Data analysis
	2.3.1 16S rRNA gene data analysis
	2.3.2 Metagenomic data analysis

	3 Results and discussion
	3.1 16S rRNA gene microbial data
	3.1.1 Alpha diversity of the bacterial communities in the Limpopo and KwaZulu-Natal municipalities
	3.1.2 Beta diversity of the bacterial communities in the Limpopo and KwaZulu-Natal municipalities
	3.1.3 Taxonomic composition of the bacterial communities in the Limpopo and KwaZulu-Natal municipalities
	3.2 Shotgun metagenomic data
	3.2.1 Sequencing and co-assembly statistics
	3.2.2 Taxonomic assignment and relative abundance of metagenome-assembled genomes
	3.2.3 Functional characterization of MAGs and biogeochemical relevance
	3.2.4 Antibiotic resistome profiles from KwaZulu-Natal and Limpopo provinces
	3.2.4.1 Antibiotic resistome from Limpopo Province
	3.2.5 Antibiotic resistome profile from KwaZulu-Natal province

	4 Conclusion

	References

