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Co-application of sheep manure 
and commercial organic fertilizer 
enhances plant productivity and 
soil quality in alpine mining areas
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Background and aims: The addition of organic fertilizers and sheep slat manure 
have important effects on soil quality in alpine mining areas, but how they affect 
soil physicochemical properties and microorganisms is not yet known.

Methods: The current study employed field-controlled experiments and 
high-throughput sequencing technology to investigate differences in soil 
physicochemical properties, microbial community structures, and diversity 
under four treatments: no fertilization (CK), 100% sheep manure (SM), a 
combination of 50% sheep manure and 50% commercial organic fertilizer (MF), 
and 100% commercial organic fertilizer (OF).

Results: Aboveground biomass increased by 191.93, 253.22, and 133.32% under 
SM, MF and OF treatments, respectively, when compared to CK treatment. The 
MF treatment resulted in significantly higher soil total nitrogen, total phosphorus, 
organic matter, and available nitrogen content compared to other treatments. 
Soil total nitrogen content, total phosphorus content, organic matter, available 
nitrogen content and available phosphorus content were 211, 120, 380, 557, 
and 271% higher, respectively, under the MF treatment than the CK treatment. 
Different nutrient additions significantly influenced soil microbial community 
composition. The SM and MF treatments notably increased soil bacterial and 
fungal community Operational Taxonomic Units (OTUs) indices and Chao 1 
indices, while nutrient addition had no meaningful effect on the Simpson indices 
for microbial communities. There was a highly significant positive correlation 
between aboveground biomass and observed soil nutrient content.

Conclusion: The combined application of sheep manure and commercial 
organic fertilizer is more conducive to improving soil quality and enhancing 
plant productivity in alpine mining areas.
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1 Introduction

China possesses abundant coal resources, which have significantly propelled its economic 
development (Xie et al., 2010; Yuan, 2018). The Muli mining area is a crucial region for China’s 
coal distribution, with reserves amounting to 4.1 billion tons (Yuan et al., 2021b). Since the 
20th century, extensive coal mining has resulted in severe ecological destruction and 
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environmental pollution in the region (Jin et al., 2022). The Muli 
mining area, which is situated within the permafrost area of the 
Qinghai-Tibet Plateau, coupled with recent grazing activities, has 
experienced a substantial decline in vegetation cover and a rapid 
deterioration of soil quality (Jin et  al., 2022; Li et  al., 2022a). 
Consequently, ecological restoration in the Muli mining area has 
become an urgent scientific issue to be addressed within the global 
context of ecological governance.

Establishing artificial grasslands in alpine mining areas is a 
highly challenging endeavor (Sun et al., 2022; Jin et al., 2023). The 
region not only faces harsh climatic conditions but also poor soil 
substrates, making plant survival difficult (Jin et  al., 2023, Kong 
et  al., 2024). Research suggests that reasonable seeding and 
fertilization rates are key to the successful establishment of artificial 
grasslands (Jin et al., 2022). Initially, drought-resistant grass species 
native to the Qinghai-Tibet Plateau are selected to increase the 
survivability of the grasses (Jing et al., 2017; Sun et al., 2022), such 
as Poa pratensis cv. Qinghai, Poa crymophila cv. Qinghai, Festuca 
sinensis cv. Qinghai, and Elymus sibiricus cv. Tongde. Additionally, 
mixed planting methods are employed to ensure the resistance and 
yield stability of the artificial grasslands (Kopp et al., 2023; Zhao 
et  al., 2024). However, the main factor limiting the growth of 
artificial grasslands is nutrient deficiency (Elser et al., 2007; Kou 
et al., 2020). Mining area soils are often composed of mine tailings, 
leading to barren plant habitats that hinder root establishment and 
are unfavorable for plant growth. Studies have indicated that the 
importation of foreign soil can rapidly restore vegetation, but this 
method is not easily implemented and is costly, thus not an optimal 
approach (Yang et al., 2019; Jin et al., 2022). Fertilization is the most 
direct measure to improve soil nutrient environments, and 
significant progress has been made in the restoration and 
reconstruction of vegetation in mining areas (Li et al., 2023). As an 
important type of organic fertilizer, commercial organic fertilizers 
contain a large amount of organic matter that can quickly 
supplement soil organic matter, significantly regulating soil texture 
and nutrient content. Moreover, commercial organic fertilizers are 
cost-effective and are ideally suited as materials for soil substrate 
improvement (Möller and Schultheiß, 2015; He et al., 2022; Li et al., 
2022c). Ample evidence shows that replacing chemical fertilizers 
with organic ones can not only save costs and reduce environmental 
pollution but also largely ensure stable and high yields, as well as 
improved soil fertility (Ning et al., 2022). Soil organic carbon content 
increases with the application of organic fertilizers, which can 
significantly enhance yields and water use efficiency (Zhang et al., 
2022). Notably, in the areas surrounding the alpine mining regions, 
large numbers of sheep are penned, leading to an accumulation of 
sheep manure over time, which, along with rainfall and the impact 
of livestock trampling, results in a substantial amount of sheep 
manure on the soil surface. Once decomposed, sheep manure 
releases a substantial amount of nutrients and contains a large 
amount of soil, making it a preferred material for improving soil 
quality in mining areas. Some evidence suggests that the application 
of sheep manure helps to maintain base cations and buffer soil 
acidification, thus improving soil quality (Zhang et  al., 2015; Jia 
et  al., 2023). The efficacy of replacing a portion of commercial 
organic fertilizer with sheep manure and mixing the two types of 
fertilizers for application in soil improvement and vegetation 
restoration requires further experimental verification.

During the process of vegetation reconstruction, soil 
physicochemical properties directly affect the growing conditions for 
plants (Zhang et  al., 2021). Soil microorganisms serve as the link 
between plants and soil, delivering nutrients to plants by modulating 
soil nutrients and decomposing organic matter, thus supporting plant 
development (Chen et al., 2017; Yuan et al., 2021a). They are often 
considered sensitive indicators of ecosystem restoration in mining areas 
(Ascher et al., 2012; Vinhal-Freitas et al., 2017; Yuan et al., 2021a). 
Under fertilization conditions, soil microorganisms play a significant 
regulatory role in plant productivity. A seven-year field trial 
demonstrated that continuous application of manure strengthened the 
relationship between soil microbial functions and crop yield (Li et al., 
2022b). Moreover, continuous application of organic fertilizer increased 
soil pH, leading to a significant enhancement in soil bacterial abundance 
and biodiversity indices, which in turn affected plant productivity (Li 
et al., 2022b). Additionally, increasing organic fertilizer application in 
arid environments can maintain higher bacterial diversity, thus fostering 
a healthier soil microbial environment (Sun et al., 2023). Studies have 
shown that the application of organic nutrients promotes the 
proliferation of functional microbes by affecting soil physicochemical 
properties, thereby enhancing the functional services of ecosystems (Hu 
et  al., 2024b). In conclusion, the incorporation of manure and 
commercial organic fertilizers has a profound effect on both the 
physicochemical properties of the soil and the composition of the 
microbial populations within it. Whether the substitution of some 
commercial organic fertilizers with sheep manure will result in even 
more significant improvements to soil physicochemical properties and 
microbial communities is a question that requires further research.

This study used an unfertilized control and established treatments 
with 100% sheep manure, 50% sheep manure +50% commercial 
organic fertilizer, and 100% commercial organic fertilizer to evaluate 
the restoration effects on degraded soils in the alpine mining area by 
analyzing soil physicochemical properties and microbial 
characteristics in the second year after fertilization. Our specific 
objectives were: (1) to assess the impact of different fertilization 
methods on plant productivity, soil physicochemical properties, and 
the structure and diversity of microbial communities; (2) to elucidate 
the key mechanisms by which fertilization enhances plant 
productivity; and (3) to determine the optimal fertilization method 
for vegetation restoration in alpine mining areas.

2 Materials and methods

2.1 Experimental site description

The research site is situated within the Juhugeng mining region of 
the Muli coalfield, situated in the northeastern Qinghai-Tibet Plateau 
within the Haixi Mongolian and Tibetan Autonomous Prefecture, 
Tianjun County, Qinghai Province (99.05°–99.27°E, 38.05°–38.27°N), 
with an average altitude of approximately 3,800–4,200 m, 
predominantly characterized by high-altitude periglacial landforms. 
The natural vegetation types in the mining area are classified as alpine 
marshes and alpine meadows, displaying distinct physical 
characteristics of alpine regions, with simple plant community 
structures, sparse vegetation, and weak resistance to human activities. 
The Juhugeng mining area features a classic plateau continental climate, 
showcasing chilly temperatures and notable fluctuations in daily 
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temperature. The rainy season occurs from June to August, while 
snowfall predominates from November to May of the following year. 
The yearly mean temperature is −4.2°C, with an average annual rainfall 
of around 477.1 mm, and an average annual evaporation of 1049.9 mm. 
With long winters and no summers, the region falls within the Qilian 
Mountains’ high-altitude permafrost zones, where permafrost is 
extensively developed. The thickness of the perennially frozen ground 
ranges from 40 to 160 m, with an average thickness of 120 m, and the 
permafrost layer starts at depths of 0.95 to 5.50 m. Before vegetation 
restoration on the mining slag heap, the physicochemical properties of 
the topsoil were as follows: total nitrogen 1.17 g·kg−1, total phosphorus 
0.91 g·kg−1, available nitrogen 18.00 g·kg−1, available phosphorus 
6.70 mg·kg−1, organic matter 93.33 g·kg−1, and pH 8.46.

2.2 Determination of research subjects

On June 29, 2022, a coal storage site was chosen for the 
experimental plot layout. The soil was tilled to a deepness of about 
30 cm with a ripper, larger rocks within the plot were removed, sheep 
slab manure and granular organic fertilizers were mixed with the soil 
using diggers, disc harrows and manual methods. The soil tillage layer 
was approximately 30 centimeters. Four treatments were established: 
CK (no fertilization), SM (100% sheep manure), MF (50% sheep 
manure +50% commercial organic fertilizer), and OF (100% 
commercial organic fertilizer), with specific application rates detailed 
in Table 1. A randomized block design was implemented with each 
treatment replicated three times, totaling 12 plots, each with an area 
of 6 m × 5 m. This study selected grass species native to the Qinghai-
Tibet Plateau that are well-suited to the local environment: Poa 
pratensis cv. Qinghai, Poa crymophila cv. Qinghai, Festuca sinensis cv. 
Qinghai, and Elymus sibiricus cv. Tongde, with a total sowing rate of 
22.5 g·m−2. Equal amounts of forage-specific fertilizer (total nutrients 
≥35%, N 18%, P2O512%, K2O5%) and seeds were thoroughly mixed in 
sealed pots, and then uniformly spread on the cultivated layer that had 
been manually furrowed beforehand, at a sowing depth of 1 cm. The 
seeds were covered with soil and then trodden down with feet and 
covered with non-woven fabric to insulate and promote germination.

2.3 Soil sampling and plant biomass 
measurement

On July 30, 2023, the biomass of the above-ground portion of the 
plant was measured using a 50 cm by 50 cm quadrat. Three sample 

squares of 50 cm x 50 cm size were randomly set up inside each sample 
plot and the plants inside were cut with scissors. The cut plants were 
bagged in envelopes and brought back to the laboratory and dried in 
an oven at 65°C. The dried envelope bags were weighed to obtain 
aboveground biomass. Five points were randomly selected within each 
experimental plot. A five-point sampling technique was employed to 
gather 0–10 cm soil samples from each plot using a 3.5 cm diameter 
soil auger. The soil specimens obtained from the five points were 
combined and separated into two portions: one portion was sifted 
through a 1 mm screen for analysis of soil nutrient content, while the 
other portion was placed in sterile 50 mL microfuge flasks and stored 
at −80°C for ultra-high sequencing of microbes.

Soil pH was determined using a pH meter (Sartorius PB-10, 
Germany) at a 1:2.5 soil to water ratio (Yan et al., 2020); soil organic 
matter (SOM) was determined using the potassium dichromate 
oxidation method (Komy, 1995). Total phosphorus (TP) was measured 
by colorimetry after wet digestion with H2SO4 and H2O2 (UV2800A 
UV–Vis Spectrophotometer, UNIC Inc., China; Fu et  al., 2004). 
Available nitrogen (AN) was determined using the alkali diffusion 
method (Li et al., 2021). Total nitrogen (TN) content was measured 
using an elemental analyzer (FLASH SMART CHNS/O, Germany). 
Available phosphorus (AP) was determined using the molybdenum 
blue method (Xiong et al., 2015).

2.4 DNA extraction, PCR amplification, and 
high-throughput sequencing

The in-vitro extraction of DNA from microbial genomic sources 
was conducted using the E.Z.N.A. Soil samples were utilized as the 
source material. The 1% agarose gel electrophoresis and 
NanoDrop2000 TM spectrophotometer (Thermo Scientific, U.S.) were 
employed to assess the quality and concentration of the DNA samples. 
Following this, the samples were stored at −80°C in-vivo until they 
were subjected to further analysis. The V3-V4 hypervariable regions 
of the bacterial 16S rRNA gene were amplified with primers 338F 
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACH 
VGGGTWTCTAAT-3′) using a T100 Thermal Cycler PCR (BIO-
RAD, USA; Liu et al., 2016). PCR products were extracted from a 2% 
agarose gel, purified using a PCR Purification Kit (YuHua, Shanghai, 
China) as per the manufacturer’s instructions, and quantified using a 
Qubit 4.0 (Thermo Fisher Scientific, USA).

2.5 Sequencing process and bioinformatics 
approaches

The FASTQ files were demultiplexed using in-house perl scripts, 
and then underwent quality filtering with fastp version 0.19.6 (Chen 
et al., 2018), the data was merged using FLASH version 1.2.7 (Magoč 
and Salzberg, 2011) based on the specified criteria. The de novo-
generated sequences were subsequently clustered into operational 
taxonomic units (OTUs) using UPARSE 7.1 (Edgar, 2013) at a 97% 
identity threshold. The most prevalent sequence within each OTU was 
idenitifed as a representative sequence. In order to mitigate the impact 
of sequencing depth on α and β diversity calculi, the number of 16S 
rRNA gene sequences per sample was rarefied to 20,000, thereby 
achieving an average Good’s coverage of 99.09%. The de novo 

TABLE 1 Different fertilization treatments, fertilizer ratios, and 
application rates.

Treatment Organic 
fertilizer/

kg·m−2

Sheep board manure

Volume/m−3·m−2 kg·m−2

CK 0 0 0

SM 0 0.06 30

MF 1 0.03 15

OF 2 0 0

CK: no fertilization; SM: 100% sheep manure; MF: 50% sheep manure + 50% commercial 
organic fertilizer; OF: 100% commercial organic fertilizer.
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synthesized 250-nucleotide amplicons were pooled in equimolar ratios 
and sequenced on the Illumina PE300/PE250 platform (Illumina, San 
Diego, USA) in accordance with the standard protocols provided by 
Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China).

2.6 Statistical analysis

An analysis of variance (ANOVA) was conducted using SPSS 27.0 
to assess variations in aboveground biomass, soil properties, and 
microbiological properties across different treatments. Principal 
Coordinate Analysis (PCoA) was utilized to explore the in-situ 
microbial community structures of samples, employing the Bray-
Curtis distance algorithm. Additionally, PERMANOVA 
non-parametric tests were employed to assess the statistical significance 
of variations in microbial community structures between sample 
groups. LEfSe analysis (Linear discriminant analysis Effect Size) was 
utilized to detect bacterial and fungal taxa with substantial abundance 
variances at the phylum and genus levels across diverse groups. The 
analysis criteria included an LDA score greater than 2 and a significance 
level of p < 0.05. The analysis was conducted by accessing the following 
link: http://huttenhower.sph.harvard.edu/LEfSe (Segata et al., 2011). 
Utilizing FAPROTAX1 and UNGuild,2 the functions of bacterial and 
fungi communities were analyzed and predicted. Redundancy analysis 
(RDA) was conducted to evaluate the influence of soil physicochemical 
parameters on the structures of soil microbial communities. Heatmaps 
depicting the correlation between soil physicochemical properties and 
microbial community traits were generated utilizing Pearson 
correlation coefficients. The visualization was created using the online 
pipeline available at https://www.omicstudio.cn/tool/109. Structural 
equation modeling (SEM) was performed using the R software version 
4.0.2. Fitting indicators such as chi-square (χ2), p-value, root mean 
square error of approximation (RMSEA), goodness of fit index (GFI), 
and comparative fit index (CFI) were utilized to evaluate model fit. 
Lower χ2 values, p-values >0.05, RMSEA ≤0.05 (indicating good fit), 
GFI ≥ 0.90 (indicating relatively precise fitting), and CFI ≥ 0.90 (also 
indicating relatively precise fitting) were considered. All other images 
in the article were constructed using the Origin 2022 software.

3 Results

3.1 Effect of fertilization on plant 
productivity

The application of fertilizer resulted in a notable enhancement in 
the aboveground biomass of plant communities. Moreover, there were 
notable variations in aboveground biomass observed across different 
fertilizer treatments, as indicated by statistical significance (p < 0.05, 
Figure 1). The aboveground biomass was notably higher under the MF 
treatment compared to the other treatments, showing increases of 
253.22, 21.00, and 51.39% over the CK, SM, and OF treatments, 
respectively.

1 http://www.loucalab.com/archive/FAPROTAX/

2 http://www.stbates.org/guilds/app.php

3.2 Effect of fertilization on soil 
physicochemical properties

Significant differences were observed in soil under different 
fertilization treatments (Figure 2, p < 0.05). Fertilization generally 
increased soil pH, with the SM treatment resulting in a significantly 
higher pH than the other treatments (p < 0.05, Figure 2a). Different 
fertilization treatments significantly increased the content of total 
nitrogen (TN), total phosphorus (TP), soil organic matter (SOM), 
available nitrogen (AN), and available phosphorus (AP) in the soil. 
The soil under the MF treatment showed significantly higher levels 
of TN, TP, SOM, and AN compared to the other treatments (p < 0.05). 
Soil organic matter content under MF treatment was 37 and 82% 
higher than SM and OF treatments, respectively. Soil available N 
content under MF treatment was 105 and 171% higher than SM and 
OF treatments, respectively. The AP content in the soil of SM and MF 
treatments was not significantly different (p > 0.05), but was 
significantly higher than that of the OF treatment (p < 0.05, Figure 2f).

3.3 Effect of fertilization on the structure of 
microbial communities

3.3.1 Impact on soil microbial diversity
The Alpha diversity of microbial communities was influenced 

differently by various nutrient addition treatments (Table 2). Nutrient 
addition overall increased the OTUs index, Chao 1 index, and Shannon 
index of the soil microbial communities, but it did not significantly 
affect the Simpson index for either community (p > 0.05). The SM and 
MF treatments resulted in significant enhancements in the OTUs index, 
Chao 1 index, and Shannon index of the soil bacterial community. 
Furthermore, the SM treatment resulted in a notable elevation in the 
OTUs and Chao 1 index of the soil fungal community (p < 0.05). PCoA 
analysis using the Bray-Curtis distance metric was conducted for the 
soil bacterial and fungal communities across diverse fertilization 

FIGURE 1

Aboveground biomass under different treatments. Lowercase letters 
denote statistically significant differences between treatments (p < 
0.05). CK: no fertilization; SM: 100% sheep manure; MF: 50% sheep 
manure + 50% commercial organic fertilizer; OF: 100% commercial 
organic fertilizer.
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treatments (Figure 3). The first two principal components accounted 
for a cumulative variance of 56.71% in the bacterial community, with 
significant intergroup differences (R = 0.738, p = 0.003, Figure 3a); for 
the fungal community, the cumulative variance explained was 52.87%, 
with significant intergroup differences (R = 0.627, p = 0.002, Figure 3b).

3.3.2 Impact on soil microbial community structure
Bacterial phyla such as Proteobacteria, Actinobacteriota, Chloroflexi, 

Bacteroidota, and Acidobacteriota (Figure 4a) and bacterial genera such 
as Sphingomonas, Norank_JG30-KF-CM45, Norank_A4b, Nocardioides, 
and Pseudarthrobacter (Figure 4b) were observed in all soil samples. 
Additionally, fungal phyla such as Ascomycota, Basidiomycota, 
Chytridiomycota, Monoblepharomycota, and Mortierellomycota 
(Figure 4c) and fungal genera such as Thelebolus, Schizothecium, Preussia, 
Gibberella, and Kernia (Figure 4d) were observed. Compared to CK, the 
SM treatment increased the abound of Proteobacteria, Norank_A4b, 

Basidiomycota, and Thelebolus, and decreased the abound of 
Actinobacteriota, Pseudarthrobacter, and Nocardioides, whereas the MF 
treatment increased the abound of Actinobacteriota, Nocardioides, 
Mortierellomycota, and Schizothecium.

LEfSe analysis was utilized to identify differential microbes in soil 
microbial communities under different fertilization treatments 
(Supplementary Figure S1). Within the bacterial community, LDA 
analysis detected 16 biomarkers with significant biostatistical 
relevance (CK = 1, SM = 6, MF = 4, OF = 5; Supplementary Figure S1a). 
At the taxonomic level, the highest-scoring biomarkers for CK, SM, 
MF, and OF treatments were, respectively, Gammaproteobacteria (c), 
Rhizobiales (o), Pseudonocardiales (o), and Pseudarthrobacter (g; 
Supplementary Figure S1a). Within the fungal community, LDA 
analysis detected 21 biomarkers with significant biostatistical 
relevance (CK = 2, SM = 11, MF = 3, OF = 5; Supplementary Figure S1b). 
At the taxonomic level, the highest-scoring biomarkers for CK, SM, 

FIGURE 2

Soil physical and chemical characteristics following various treatments. Statistically significant differences between treatments are indicated by 
different lowercase letters (p < 0.05). CK: no fertilization; SM: 100% sheep manure; MF: 50% sheep manure + 50% commercial organic fertilizer;  
OF: 100% commercial organic fertilizer.

TABLE 2 Alpha diversity of soil bacterial and fungal communities under different treatments.

Microbial group Treatment OTUs Chao 1 Shannon Simpson

Bacterial

CK 1757.33 ± 197.18b 2149.88 ± 246.00b 5.60 ± 0.25b 0.02 ± 0.01a

SM 2574.00 ± 51.00a 3264.57 ± 76.08a 6.22 ± 0.06a 0.01 ± 0.00a

MF 2878.67 ± 103.67a 3507.10 ± 124.73a 6.20 ± 0.17a 0.01 ± 0.00a

OF 1802.67 ± 15.96b 2177.51 ± 20.41b 5.72 ± 0.06ab 0.01 ± 0.00a

fungi

CK 188.33 ± 19.54b 200.37 ± 23.48c 2.75 ± 0.56a 0.21 ± 0.14a

SM 321.33 ± 28.26a 410.65 ± 22.98a 2.91 ± 0.04a 0.13 ± 0.01a

MF 291.33 ± 26.69ab 342.00 ± 15.22ab 2.65 ± 0.28a 0.19 ± 0.06a

OF 246.67 ± 45.20ab 268.29 ± 43.24bc 2.89 ± 0.52a 0.15 ± 0.06a

Letters in the same column indicate significant differences between treatments (p < 0.05). CK: no fertilization; SM: 100% sheep manure; MF: 50% sheep manure + 50% commercial organic 
fertilizer; OF: 100% commercial organic fertilizer.
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MF, and OF treatments were, respectively, Bipolaris (g), Leotiomycetes 
(c), Unclassified_lasiosphaeriaceae (g), and Phaeosphaeriaceae (f; 
Supplementary Figure S1b).

Soil bacterial and fungal functions (Supplementary Figures S2, S3) 
were also significantly altered under different treatments. Aromatic_
compound degradation and Ureolysis microflora were significantly 
higher under MF treatment. The relative abundance of Cellulolysis 
microflora was significantly higher under SM treatment 
(Supplementary Figure S2). The relative abundance of Dung 
Saprotroph-Endophyte-Undefined Saprotroph microflora was 
significantly higher under SM treatment (Supplementary Figure S3).

3.4 Interconnections between plant 
productivity, soil physicochemical properties, 
and microbial community structure

Heatmap analysis indicated significant correlations between 
aboveground biomass and bacterial diversity, fungal diversity, and 
soil physicochemical properties (Figure  5). In the correlation 
analysis of bacterial diversity, aboveground biomass showed a 
highly significant positive correlation with the bacterial OTUs 
index and Chao 1 index (p < 0.001), a significant positive correlation 
with the Shannon index (p < 0.01), and a significant negative 

FIGURE 3

PCoA analysis based on bray-curtis distance of soil bacterial communities (a) and fungal communities (b) under different treatments. CK: no 
fertilization; SM: 100% sheep manure; MF: 50% sheep manure + 50% commercial organic fertilizer; OF: 100% commercial organic fertilizer.

FIGURE 4

Relative abundance of soil microbial communities at the phylum and genus levels across various treatments. (a) and (b) indicate the relative abundance 
of bacterial communities at the phylum and genus levels, while (c) and (d) represent the relative abundance of fungal communities at the phylum and 
genus levels. CK: no fertilization; SM: 100% sheep manure; MF: 50% sheep manure + 50% commercial organic fertilizer; OF: 100% commercial organic 
fertilizer.
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correlation with the Simpson index (p < 0.05, Figure 5a). In the 
correlation analysis of fungal diversity, aboveground biomass was 
significantly positively correlated with the OTUs index at the 0.05 
level (p < 0.05), and with the Chao 1 index at the 0.01 level (p < 0.01, 
Figure  5b). In the correlation analysis of soil physicochemical 
properties, aboveground biomass was highly significantly positively 
correlated with soil TN, TP, SOM, AN, and AP (p < 0.001, 
Figure 5c).

Redundancy analysis of soil properties and predominant 
bacterial phyla accounted for 38.50% of the community variation 
across two ordination axes (Figure 6a). The results indicated that 
AN (r2 = 0.7632, p = 0.003), TP (r2 = 0.7828, p = 0.004), TN 
(r2 = 0.7531, p = 0.006), AP (r2 = 0.7888, p = 0.008), SOM 
(r2 = 0.6664, p = 0.015), and pH (r2 = 0.507, p = 0.04) were key soil 
physicochemical factors affecting the distribution of dominant 
bacterial phyla. Redundancy analysis of soil physicochemical 
properties and dominant bacterial genera accounted for 41.95% 
of the community variation across two ordination axes 
(Figure 6b). AP (r2 = 0.6575, p = 0.013), TN (r2 = 0.5735, p = 0.021), 
and TP (r2 = 0.5378, p = 0.034) were key soil physicochemical 
factors affecting the distribution of dominant bacterial genera. 
Redundancy analysis of soil physicochemical properties and 
predominant fungal phyla accounted for 46.07% of the 
community variation across two ordination axes (Figure 6c). pH 
(r2 = 0.3197, p = 0.163) was a key soil physicochemical factor 
affecting the distribution of dominant fungal phyla. Redundancy 
analysis of soil physicochemical properties and dominant fungal 
genera explained 39.96% of the community variation with two 
ordination axes (Figure 6d). pH (r2 = 0.7234, p = 0.005) was a key 
soil physicochemical factor affecting the distribution of dominant 
fungal genera. Overall, bacterial communities were more 
sensitive to soil physicochemical properties.

The structural equation model revealed that the χ2 = 0.014, 
p = 0.907, GFI = 1.000, and RMSEA = 0.000. These findings indicate 
that the presented model is an effective tool for elucidating 
connections between various factors, including plant productivity, 
soil physicochemical properties, bacterial diversity, and fungal 
diversity (Figure  7). No discernible correlation was observed 

between nutrient addition, bacterial diversity, and fungal diversity 
and the subsequent plant productivity. Adding nutrients 
significantly improved soil physicochemical properties (p < 0.01), 
leading to a significant increase in plant productivity. Although soil 
properties had a significant promoting effect on bacterial diversity 
and fungal diversity, neither bacterial diversity nor fungal diversity 
had a significant promoting effect on plant productivity. Adding 
nutrients had a beneficial impact on bacterial diversity but a 
detrimental effect on fungal diversity. Overall, nutrient addition 
contributed to a cumulative contribution rate of 0.83 for plant 
productivity. In summary, in alpine mining areas, nutrient addition 
primarily improves and modulates soil physicochemical properties, 
indirectly promoting plant productivity.

4 Discussion

4.1 Effect of fertilization on plant 
productivity

In alpine mining areas, the primary in-situ determinants of plant 
productivity are soil texture, temperature, and moisture. Among 
these, soil texture is the most critical factor (Bünemann et al., 2018). 
The Muli mining area, due to years of coal mining, has a soil substrate 
that is primarily composed of mining slag. On the one hand, the 
toxicity of the slag is relatively strong, and on the other hand, the 
nutrient content available for plant uptake in the slag is extremely 
low, posing a severe threat to plant growth and development (Cheng 
et al., 2023). In this context, fertilization becomes an important way 
to resolve the inadequacy of soil nutrient supply (Ferguson and 
Lovell, 2014). In research on soil and vegetation restoration in alpine 
mining areas, commercial organic fertilizers and sheep manure have 
been widely used with notable effects (Shang et al., 2023; Wang et al., 
2023). A number of study have found that the application of 
commercial organic fertilizers can greatly enhance plant productivity 
and soil nutrient content when establishing artificial grasslands in 
alpine mining areas (Shang et al., 2023). Additionally, the application 
of sheep manure has significantly alleviated soil moisture conditions, 

FIGURE 5

Relationships between plant productivity and bacterial diversity (a), plant productivity and fungal diversity (b), plant productivity and soil 
physicochemical properties (c). AGB: aboveground biomass; SOM: soil organic matter; AN: available nitrogen; TP: total phosphorus; AP: available 
phosphorus; TN: total nitrogen.
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thereby improving plant productivity (Wang et al., 2023). This study 
found that different fertilization treatments all significantly increased 
plant productivity, with the combined application of sheep manure 
and commercial organic fertilizer having a notably higher 
enhancement effect on plant productivity than the application of 
sheep manure or organic fertilizer alone, which is similar to the 
findings of Shi and Song et al. (Al-Busaidi, 2013; Shi et al., 2023). As 
found by Al-Busaidi (2013), mixed application of organic fertilizers 
can increase the number of leaves, leaf area, stem height and stem 
girth of the plant, thus promoting plant growth. On the one hand, 
both sheep manure and commercial organic fertilizers contain large 
amounts of nutrients that can be  used for plant growth and 
development (Jia et al., 2023). On the other hand, mixed application 
of sheep slat manure and organic fertilizers can further increase crop 
yields through synergistic, counteracting and additive effects of 

fertilizers. Such interactions between fertilizers help to promote the 
stimulating effects of nutrients on the one hand, and counteract the 
production of some harmful substances on the other one (Shi et al., 
2023). Moreover, in addition to containing some nutrients, sheep 
manure also contains a large amount of soil matrix, which plays a key 
role in the amelioration of mining area soils. For example, the 
application of sheep manure may increase soil aggregates, thereby 
improving the soil’s physical properties, which are more conducive to 
plant growth (Zhao et  al., 2022). However, when sheep manure 
replaces some of the commercial organic fertilizers, this promoting 
effect is even more evident, hence the treatment combining sheep 
manure and commercial organic fertilizer in this study showed the 
most significant increase in plant productivity. Consequently, 
co-application of sheep manure and commercial organic fertilizer 
enhances plant productivity in alpine mining areas.

FIGURE 6

Redundancy analysis of dominant bacterial phyla (a), dominant bacterial genera (b), dominant fungal phyla (c), and dominant fungal genera (d) with 
plant community structure. In the figure, A1-A10 represent Proteobacteria, Actinobacteriota, Chloroflexi, Bacteroidota, Acidobacteriota, Firmicutes, 
Myxococcota, Gemmatimonadota, Patescibacteria, and Verrucomicrobiota, respectively; B1-B10 represent Sphingomonas, Norank_JG30-KF-CM45, 
Norank_A4b, Nocardioides, Pseudarthrobacter, Devosia, Altererythrobacter, Flavisolibacter, Norank_Vicinamibacterales, Norank_Blastocatellaceae, 
respectively. In the figure, C1-C10 represent Ascomycota, Basidiomycota, Unclassified_Fungi, Chytridiomycota, Monoblepharomycota, 
Mortierellomycota, Olpidiomycota, Rozellomycota, Aphelidiomycota, Glomeromycota, respectively; D1-D10 represent Thelebolus, Unclassified_
Sordariales, Schizothecium, Preussia, Unclassified_Lasiosphaeriaceae, Gibberella, Kernia, Unclassified_Fungi, Aspergillus, Unclassified_Sporormiaceae, 
respectively. SOM: soil organic matter; AN: soil available nitrogen; TP: total phosphorus; AP: available phosphorus; TN: total nitrogen.
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4.2 Effect of fertilization on soil 
physicochemical properties

The addition of exogenous nutrients inevitably leads to changes in 
soil nutrient content, and these changes are more pronounced in 
nutrient-poor soils (Yang et al., 2024). This study discovered that the 
addition of sheep manure and commercial organic fertilizer tended to 
increase soil pH. The application of sheep manure alone significantly 
increased soil pH, which is due to sheep manure being a weakly 
alkaline fertilizer (Cai et al., 2023); its short-term decomposition rate 
is slow, resulting in an elevation of soil pH. Previous studies have 
shown that both commercial organic fertilizers and sheep manure, 
once applied to the soil, increase soil TN, TP, SOM, AN, and AP 
contents (Shang et  al., 2023; Wang et  al., 2023). After exogenous 
fertilizers are applied to the soil, elements such as carbon, nitrogen, and 
phosphorus are gradually released into the soil through the action of 
soil microbes and root exudates, thereby directly enhancing the soil 
nutrient content (Qin et  al., 2024). This study also indicated that 
different fertilization treatments significantly increased soil TN, TP, 
SOM, AN, and AP contents. Overall, the combined treatment of sheep 
manure and commercial organic fertilizer had a more pronounced 
effect on enhancing soil nutrients compared to the individual 
applications of sheep manure or organic fertilizer, which was similar to 
the findings of Dămătîrcă et al. (2023). On the one hand, the combined 
application of organic fertilizers ensured more carbon inputs and 
significantly increased soil organic carbon and nitrogen content, 
especially in more stable mineral organic matter (MAOM), compared 
to the single application of sheep slab manure and organic fertilizers 
(Dămătîrcă et al., 2023). On the other hand, it’s because the combined 
treatment integrates the advantages of both sheep manure and 
commercial organic fertilizer: it not only increases soil nutrient content 
but also improves soil texture, thereby having the best effect on 
enhancing soil nutrient content. Therefore, the combined application 
of sheep manure and commercial organic fertilizers can be used as the 
main fertilization measure for soil remediation in alpine mining areas.

4.3 Effect of fertilization on the structure of 
microbial communities

Soil microorganisms, comprising bacteria, fungi, and protozoa 
residing in the soil (Peng et  al., 2022), play a pivotal role in the 
material cycling and energy flow of soil ecosystems (Banerjee and van 
der Heijden, 2023). Soil microorganisms enhance the bioavailability 
of soil nutrients through symbiotic and decomposition processes, 
thereby promoting plant growth and development (Hu et al., 2024a). 
Nutrient additions can rapidly alter the soil nutrient status, promoting 
or inhibiting the growth of some microbes, and thus changing the 
structure and diversity of microbial communities (Luo et al., 2023). 
This study found that the application of sheep manure alone and the 
combined treatment of sheep manure with commercial organic 
fertilizer significantly increased the number of Operational 
Taxonomic Units (OTUs) and Chao1 indices of soil microbial 
communities, as well as the Shannon index for bacterial communities, 
while having no significant effect on the Simpson indices for bacteria 
and fungi, which is similar to the findings of Wang et al. (2023). This 
may be  because sheep manure not only promotes the rapid 
proliferation of microorganisms by providing nutrients to the soil but 
also significantly increases soil water retention and the number of 
aggregates, playing an important role in ameliorating the physical 
structure of the soil, thus providing a better environment for 
microorganisms (Zhao et al., 2022). Additionally, sheep manure itself 
contains a large number of bacteria, thereby significantly increasing 
the Shannon index of soil bacterial communities (Zhao et al., 2022). 
Principal Coordinates Analysis (PCoA) revealed clear separation 
among bacterial and fungal communities under the three fertilization 
regimes, indicating significant differences in the effects of these 
fertilization methods on the structure of soil microbial communities. 
Different fertilizers have varying impacts on the composition of soil 
microbial community structures. Nitrogen fertilizer application may 
increase the abound of Actinobacteriota and Proteobacteria (Dai et al., 
2018), while phosphorus fertilizer application may decrease the 

FIGURE 7

Structural equation model analysis of the fertilization effect (via soil characteristics and microbial diversity) on plant productivity. Blue and orange 
arrows signify significant positive and negative impacts, respectively. The numerical values attached to the arrows represent standardized path 
coefficients, while the r2 values associated with response variables indicate the percentage of variance explained by relationships with other variables.
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relative abundance of Proteobacteria (Cheng et  al., 2022). In this 
study, the application of sheep manure notably promoted the abound 
of Proteobacteria, Basidiomycota, and Thelebolus, while the 
application of commercial organic fertilizer notably decreased 
Proteobacteria and increased Aspergillus. The combined application 
of commercial organic fertilizer and sheep manure significantly 
increased the abound of Actinobacteriota and Mortierellomycota, 
while reducing Sphingomonas and Ascomycota. Actinobacteriota can 
decompose SOM, releasing nutrients into the soil for plant growth 
(Araujo et  al., 2020). Mortierellomycota improve soil carbon-
phosphorus transformation efficiency and synthesize antibiotics to 
inhibit pathogens, thus promoting crop growth (Hu et al., 2022). In 
addition, this study found that different treatments significantly 
altered soil bacterial and fungal functions, and similar conclusions 
were reached by Dămătîrcă et al. (2023). Combined application of 
organic fertilizers improves nutrient cycling and carbon sequestration 
processes and does not negatively affect crop yields (Dămătîrcă et al., 
2023). Overall, the combined treatment of sheep manure and 
commercial organic fertilizer significantly elevates the abound of soil 
microorganisms that promote plant growth and development. 
Therefore, the combined treatment of sheep manure and commercial 
organic fertilizer creates a soil microbial environment that is more 
conducive to plant growth. In the past, most of the guest soil method 
was used to improve the soil quality in alpine mining areas, and the 
results of this study can further contribute to the soil restoration in 
alpine mining areas.

4.4 Interconnections between plant 
productivity, soil physicochemical 
properties, and microbial community 
structure

Substantial evidence suggests that fertilization modulates 
plant productivity by altering soil properties and microbial 
community structures (Tian et al., 2022), a conclusion also drawn 
from this study. Higher levels of microbial diversity are often 
associated with improved soil quality, which can promote nutrient 
cycling in the soil and enhance crop yield and quality (Shu et al., 
2022). Correlation analysis in this study revealed a significant 
positive relationship between aboveground biomass and microbial 
community OTUs indices and Chao 1 indices. Furthermore, 
aboveground biomass was found to have a highly significant 
positive correlation with soil TN, TP, SOM, readily AN, and 
readily AP contents. In nutrient-poor soil environments, 
fertilization greatly increased soil total and readily available 
nutrients, further supplying plant growth and thereby stimulating 
plant development (Jia et al., 2022). This study further analyzed 
the mechanisms by which nutrient addition enhances plant 
productivity through a structural equation model. The results 
indicated that nutrient addition primarily improved plant 
productivity by indirectly enhancing soil physicochemical 
properties rather than directly through soil bacterial and fungal 
communities, which is similar to the findings of Tang et al. (2023). 
Although fertilization significantly promoted bacterial and fungal 
communities by increasing soil nutrient content, these microbial 
communities did not have a significant impact on plant 
productivity. Microbial community variability is mainly driven by 

soil carbon and nitrogen content. Dissolved organic carbon is the 
most important factor regulating microbial community structure. 
This may be due to the environmental conditions of alpine mining 
areas, where low temperatures limit soil microbial activity (Zhang 
et al., 2023), and the poor soil matrix, with soil fertility being the 
key factor limiting plant growth (Delgado-Baquerizo et al., 2017). 
These findings underscore that soil nutrient enhancement should 
be  a focal point in vegetation restoration processes in alpine 
mining areas.

5 Conclusion

Compared to the application of sheep manure or commercial 
organic fertilizer alone, the combination of sheep manure and 
commercial organic fertilizer is more beneficial for improving soil 
quality and plant productivity in alpine mining areas. Moreover, this 
combined treatment significantly enhanced soil nutrient content 
more than either sheep manure or commercial organic fertilizer 
alone and optimized the structure of soil microbial communities 
and their functions. The structural equation model showed that 
nutrient addition primarily enhanced plant productivity by 
improving soil physicochemical properties. Therefore, the combined 
application of sheep manure and commercial organic fertilizer is 
more advantageous for enhancing soil quality and plant productivity 
in alpine mining areas. Our next phase should focus on screening 
for the optimal rate of combined application of sheep slat manure 
and organic fertilizer.
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SUPPLEMENTARY FIGURE S1

LDA score histograms were calculated for species with different 
abundances in soil bacterial communities (a) and fungal communities  
(b) under different treatments. CK: no fertilization; SM: 100% sheep 
manure; MF: 50% sheep manure 50% commercial organic fertilizer; OF: 
100% commercial organic fertilizer.

SUPPLEMENTARY FIGURE S2

Prediction of soil bacterial function under different treatments. CK: no 
fertilization; SM: 100% sheep manure; MF: 50% sheep manure + 50% 
commercial organic fertilizer; OF: 100% commercial organic fertilizer.

SUPPLEMENTARY FIGURE S3

Prediction of soil fungal function under different treatments. CK: no 
fertilization; SM: 100% sheep manure; MF: 50% sheep manure + 50% 
commercial organic fertilizer; OF: 100% commercial organic fertilizer.
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