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Contaminants, such as heavy metals (HMs), accumulate in the Arctic environment 
and the food web. The diet of the Indigenous Peoples of North Greenland includes 
locally sourced foods that are central to their nutritional, cultural, and societal 
health but these foods also contain high concentrations of heavy metals. While 
bacteria play an essential role in the metabolism of xenobiotics, there are limited 
studies on the impact of heavy metals on the human gut microbiome, and it is 
so far unknown if and how Arctic environmental contaminants impact the gut 
microbes of humans living in and off the Arctic environment. Using a multiomics 
approach including amplicon, metagenome, and metatranscriptome sequencing, 
we identified and assembled a near-complete (NC) genome of a mercury-resistant 
bacterial strain from the human gut microbiome, which expressed genes known 
to reduce mercury toxicity. At the overall ecological level studied through α- and 
β-diversity, there was no significant effect of heavy metals on the gut microbiota. 
Through the assembly of a high number of NC metagenome-assembled genomes 
(MAGs) of human gut microbes, we observed an almost complete overlap between 
heavy metal-resistant strains and antibiotic-resistant strains in which resistance 
genes were all located on the same genetic elements.

KEYWORDS

Arctic, contaminants, heavy metal resistance, antimicrobial resistance, co-resistance, 
mer-operon

1 Introduction

It is well established that the human gut microbiota—the microorganisms residing in the 
human gastrointestinal tract and their genomic capacity, collectively known as the microbiome—
has a tremendous impact on human health and disease. The human gut microbiome plays a 
multitude of important roles, including the metabolism of otherwise indigestible complex 
carbohydrates (Gibson et al., 2017), vitamin supplementation (Rowland et al., 2018), and the 
metabolism of xenobiotics (Koppel et  al., 2017). The study of the gut microbiome’s role in 
mediating toxicity predates high-throughput DNA sequencing methodologies (Rowland, 1988). 
More recently, it has been demonstrated that the metabolic activity of the human gut microbiota 
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modulates the toxicity of environmental contaminants for the host 
(Claus et al., 2016; Chiu et al., 2020), and it is recognized that the gut 
microbiota is a significant, and so far, underestimated factor when 
evaluating the environmental contaminants’ toxicity (Claus et al., 2016). 
However, there are still substantial gaps in our knowledge of the gut 
microbiota’s interactions with heavy metals (HMs) and the resulting 
toxicological implications (Koppel et al., 2017; Chiu et al., 2020; Duan 
et al., 2020; Giambò et al., 2021; Ghosh et al., 2023). Studies on the 
impact of heavy metals on gut microbiota have predominantly focused 
on animal models (Chiu et al., 2020; Duan et al., 2020), but the number 
of studies including humans is increasing (Bisanz et al., 2014; Rothenberg 
et al., 2016, 2019; Caito et al., 2018; Guo et al., 2018; Eggers et al., 2019; 
Brabec et al., 2020; Shao and Zhu, 2020; Conteville et al., 2023).

Some of the best-studied heavy metal resistance (HMR) genes are 
those of the mer-operon. It is distinguished by being the only bacterial 
metal resistance system that transforms the toxic target at a large scale 
(Barkay et  al., 2003). In contrast to lead (Pb) and cadmium (Cd) 
resistance genes, mer genes are specific to mercury (Hg). Gut microbial 
metabolism has the potential to reduce mercury toxicity to the host 
through the mercuric reductase MerA and the organomercuric lyase 
MerB, which demethylate Hg (Koppel et al., 2017). Previously, MerA 
and MerB have been identified in human fecal isolates (Liebert et al., 
1997), but only low levels of MerA and no MerB were identified in a 
human clinical trial with 17 pregnant women (Rothenberg et al., 2016).

HMR genes tend to co-occur with antimicrobial resistance (AMR) 
genes (Baker-Austin et al., 2006; Vats et al., 2022), a tendency also 
observed in the human gut (Marshall et  al., 1981). In a study 
comparing different human cohorts, including an Indigenous 
Wayampi population, there was a significantly higher frequency of 
Hg-resistant Escherichia coli in the gut microbiota of populations 
exposed to higher levels of Hg, and this group had the highest carriage 
rate of AMR E. coli despite lower exposure to antibiotics suggesting 
possible co-selection of AMR by Hg (Skurnik et al., 2010).

The Arctic environment is a good illustration of the 
interconnectedness between environmental and human health—often 
termed One Health (Ruscio et al., 2015). One of the most thoroughly 
researched aspects of One Health in the Arctic is the Arctic Indigenous 
Peoples’ diet and its high content of contaminants, including heavy 
metals (AMAP, 2022). While the Indigenous diet is unquestionably the 
best source of health and nutrients in the Arctic, the positive impact of 
the diet has been questioned because of the content of toxic compounds, 
including heavy metals, ultimately leading to a framing of the diet as 
“The Arctic Dilemma”: weighing the benefits against the disadvantages 
of the Arctic Indigenous diet (Hansen, 1997). Hg and Cd are the primary 
heavy metals of concern in the Arctic diet stemming from the high 
intake of marine mammals (AMAP, 1998). In the animals consumed, Hg 
concentrations are highest in the liver, followed by the kidney, and then 
the muscle. However, in polar bears, the kidney has the highest 
concentrations. Cd is generally found in higher concentrations in the 
kidney, followed by the liver, and then the muscle (AMAP, 2003). Pb 
concentrations in the Inuit diet are generally low, but the intake of Pb has 
been shown to exceed tolerable daily intake when eating birds hunted 
with lead shots (Johansen et al., 2001, 2004). While heavy metals have 
been a primary focus in Arctic diet research, this aspect has not been 
considered in previous assessments of the gut microbiomes of Indigenous 
communities in the Arctic (Dubois et al., 2017; Girard et al., 2017).

In a previous study, we identified a diverse array of contaminant-
resistance genes in Arctic environmental bacteria (Hauptmann et al., 

2017). In this study, we aimed to study the potential response of the 
gut microbiota to heavy metals in the diet stemming from the 
environment. We  used a multiomics approach comprising 
metatranscriptomics, 16S ribosomal (rRNA) gene amplicon data, and 
metagenome data to assess the following hypotheses:

 i) If heavy metals negatively impact the gut microbiota at the 
ecosystem level, we  expect to see effects on the diversity, 
richness, and resilience of the gut microbiome ecosystems 
expressed through α- and β-diversity measures.

 ii) If the heavy metals at the concentrations found in Arctic diets 
drive a change in the autochthonous gut microbiota toward an 
increase in already existing taxa with resistance to specific 
heavy metals, we expect to see a relatively higher fraction of 
resistant microorganisms as a response to a higher level of the 
metal in question.

 iii) If heavy metals lead to the expression of autochthonous HMR 
genes, we expect a positive correlation between HMR gene 
expression levels and heavy metal concentrations.

2 Materials and methods

2.1 Participants

Study participants were self-enrolled volunteers. This study was 
granted ethical approval by the Government of Greenland on February 
15, 2018 (file number 2018–2876, document number 7304874). 
Participants were allowed to enter the project after an oral presentation 
of the field of gut microbiome research and the current study’s theme, 
followed by a discussion in Kalaallisut (West Greenlandic dialect). The 
presentation was held in Danish and Kalaallisut and translated into the 
North Greenlandic dialect by a local translator with experience in 
collaborating with researchers. Participants were then given written 
consent forms, including information about the study, in Kalaallisut to 
sign before joining the project.

2.2 Fecal sample collection and processing

Four participants from northern Greenland, Avanersuaq, self-
collected fecal samples once a month for 15 months from March 2018 
to May 2019. Sampling required continuous coordination with each 
participant as well as the local healthcare center and was dependent on 
highly unpredictable infrastructure. Five samples were lost in the 
process (two samples from one participant and one each from the 
others), resulting in a total of 55 fecal samples. Samples for DNA 
extraction were collected using OMNIgene®•GUT kits (reference 
OM-200) (DNA genotek, Ottawa, Ontario, Canada), while samples for 
RNA extraction were collected in 3-ml RNA later® (Sigma–Aldrich, 
Merck, Darmstadt, Germany).

2.3 DNA and RNA extraction, library 
preparation, and sequencing

DNA was extracted using NucleoSpin® Soil (MACHEREY-
NAGEL GmbH & Co. KG, Dueren, Germany). The concentration of 
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DNA was checked using a fluorometer, and gel electrophoresis was 
used to check the integrity and purity of the samples (agarose gel 
concentration: 1%, voltage: 150 V, electrophoresis time: 40 min). 
Whole-genome library preparation and sequencing were performed 
according to BGI Genomics protocol SOP-EXC-J019, v.A1 (11 June 
2018). In summary, 1 μg of genomic DNA was randomly fragmented 
using the Covaris® LE220 (Woodingdean, Brighton, UK). Fragment 
selection using Agencourt AMPure XP beads (Beckman Coulter, Inc., 
Brea, CA, USA) was performed on the disrupted sample magnetic 
beads to concentrate the sample bands at approximately 300–400 bp. 
Double-stranded DNA was end-repaired, and 3′ was adenylated to 
prepare a linker ligation reaction system. Sequencing on DNBSEQ-
G400 was performed as described in the user manual (Wuhan MGI 
Tech Co. Ltd., 2019).

16S rRNA gene V4 amplicons were prepared and sequenced 
according to BGI Genomics SOP-MET-J006 v.A1 (20 November 
2015) using a dual-index paired-end (PE) approach. Fusion primers 
were designed using P5 (5′ AATGATACGGCGACCACCGA 3′) and 
P7 (5′ CAAGCAGAAGACGGCATACGAGAT 3′) Illumina adapter 
sequences, an 8-nt index sequence, and V4 primers (515F-806R). 
Polymerase chain reaction (PCR) reaction mixture was 30-ng DNA, 
4-ng PCR primer cocktail (515F-806R), and 25-ng PCR Master Mix 
(Phusion® High-Fidelity PCR Master Mix, New England Biolabs, Inc., 
Ipswich, MA, USA). The PCR program was as follows: initial 
denaturation at 98°C for 3 min, 30 cycles of denaturation at 98°C for 
45 s, annealing at 55°C for 45 s, extension at 72°C for 45 s, and final 
extension at 72°C for 7 min. The PCR products were purified with 
Agencourt AMPure XP beads (Beckman Coulter, Inc., Brea, CA, 
USA). Sequencing on DNBSEQ-G400 was performed as described in 
the user manual (Wuhan MGI Tech Co. Ltd., 2019). The resulting data 
on 16S rRNA genes were sparse; the maximum number of reads per 
sample was 3,935 reads/sample.

RNA was extracted using the QIAGEN RNeasy PowerFecal Pro 
Kit (QIAGEN, Hilden, Germany). Library preparation for 
metatranscriptomic sequencing was performed according to BGI 
Genomics protocol SOP-SS-031, v.A0 (11 June 2018). The total RNA 
concentration, RNA integrity number (RIN), 23S/16S, and size were 
determined using an Agilent 2100 Bioanalyzer (Agilent RNA 6000 
Nano Kit) (Agilent Technologies, Inc. Waldbronn, Germany). DNase 
I was used to degrade single and double-stranded DNA. rRNA was 
removed from the total RNA using QIAseq® FastSelect™—
5S/16S/23S removal (QIAGEN, Hilden, Germany) during stranded 
RNA library preparation, and RNA molecules were fragmented into 
small pieces using fragmentation reagent before cDNA synthesis. 
First-strand cDNA was generated using random hexamer-primed 
reverse transcription, followed by a second-strand cDNA synthesis. 
The synthesized cDNA was subjected to end-repair and then was 3′ 
adenylated. Adapters were ligated to the ends of these 3′ adenylated 
cDNA fragments. The PCR products were purified with Agencourt 
AMPure XP beads (Beckman Coulter, Inc., Brea, CA, USA) and 
dissolved in EB solution. Finally, the double-stranded PCR products 
were heat-denatured and circularized using the splint oligo sequence. 
The single-stranded circle DNA (ssCir DNA) was generated as the 
final library. The library was amplified with phi29 to make DNA 
nanoball (DNB), and the DNBs were loaded into the patterned 
nanoarray for PE100 sequencing on BGISEQ (DNBseq platform). 
After sequencing, the raw reads were filtered, removing adaptor 
sequences, contamination, and low-quality reads from the raw reads. 

Sequencing on DNBSEQ-G400 was performed as described in the 
user manual (Wuhan MGI Tech Co. Ltd., 2019).

2.4 Heavy metal assessments

Hg, Cd, and Pb have been the primary heavy metals of concern in 
the Arctic diet stemming from the high intake of marine mammals 
and the use of lead shots (AMAP, 1998; Johansen et al., 2001, 2004). 
The dry weight concentrations of these three heavy metals were 
measured as follows: fecal samples were dried, and their dry weight 
was measured. Medico Kemiske Laboratorium, Vedbæk, Denmark, 
analyzed the total metal concentrations. Approximately 0.7 g of dry 
matter was digested in a 5-mL digestion solution containing 7.5 M 
HNO3, 1.2 M HCl, and 1-ppm rhodium (as an internal standard). The 
sample was microwave-digested at 120°C. Finally, the sample was 
diluted and analyzed using the ICP-MS (7700X ICP-MS system, 
Agilent Technologies, Santa Clara, CA, USA). The quantification was 
carried out using certified reference standards (PlasmaCAL Custom 
Standard, SPC Science, Quebec, Canada).

2.5 Dietary surveys

Participants were asked to complete a 1-week recall survey of their 
diets on the day of feces sampling. An overview of samples and 
metadata can be found in Supplementary Table S4. The data in this 
study are presented with a high degree of anonymity to respect the 
privacy and personal integrity of the participants in this project, who 
are members of a small community. Therefore, the sex of the 
participants and their detailed dietary results are not presented but are 
known to the research team.

Samples were assigned a local food score based on the diversity of 
a selected number of key local foods, namely, narwhal/beluga, polar 
bear, mattak (whale skin and blubber), seal blubber, intestines, dried 
meat/fish, and fermented foods. The participants were asked to answer 
“yes” or “no” to whether they had eaten the food in the past week. The 
number of “yes” corresponds to the score. These foods were selected 
as they are not eaten casually together with imported foods but rather 
are eaten on occasions when there has been an active choice of eating 
Indigenous foods. Therefore, they used these foods as a marker for a 
period when the participant consumed a high level of local foods.

2.6 16S rRNA gene amplicon bioinformatic 
analysis

Raw data were trimmed and quality-checked with Trimmomatic 
v.0.38 (Bolger et al., 2014) (SLIDINGWINDOW:4:15, MINLEN: 30) 
and was subsequently merged with VSEARCH v.2.14.2 (Rognes et al., 
2016). Merged reads were processed using Qiime 2 v.2020.8 (Bolyen 
et al., 2019), denoising with deblur (Amir et al., 2017).

2.7 Metagenome bioinformatic analyses

The PE sequencing data from the metagenomic samples (n = 55) 
were collapsed for read pairs where read termini overlapped ≥11 
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base pairs using NGmerge (Gaspar, 2018). Next, collapsed and PE 
reads were mapped separately to the human reference genome 
(GRCh38) using BWA-mem (v.0.7.17) (Li and Durbin, 2009). Reads 
mapping to the human reference genome (mapping quality ≥1) 
were discarded from downstream analyses to ensure that 
metagenomic samples were devoid of sequencing data originating 
from the host. Each metagenomic sample was assembled 
individually using Metaspades (v.3.9.0, “-k 21,33,55,77”) (Nurk 
et al., 2017), followed by an open-reading-frame prediction using 
Prodigal (v.2.6.3, settings -p meta) (Hyatt et  al., 2010). Only 
complete genes with a start and stop codon were retained for further 
analysis. The non-redundant gene catalog was constructed by 
sequence clustering of predicted genes, which grouped sequences 
with more than 95% identity and 90% coverage of the shorter 
sequence using CD-HIT (v.4.8.1) (Huang et al., 2010). The reads 
were then mapped to the non-redundant gene catalog with 
BWA-mem (v.0.7.16) (Li and Durbin, 2009) and filtered to retain 
reads mapping to genes with at least 95% sequence identity over the 
length of the read, counted (count matrix), and normalized to reads 
per kilobase per million to form a gene abundance matrix using 
in-house Python scripts. To calculate the corresponding expression 
of each gene, we  mapped metatranscriptomic reads to the gene 
catalog using the same tools and sensitive cut-offs as 
described earlier.

To establish metagenomic species (MSPs), the count matrix 
derived by mapping metagenomic reads to the gene catalog was 
processed using MSPminer (v.2.0, default settings) (Oñate et  al., 
2019). This tool grouped the genes of the gene catalog into the MSP 
pan-genomes based on the defined core and accessory genes. Bacterial 
abundance profiles across samples for each MSP were calculated as a 
median transcript per million (TPM) using the 30 top representative 
core genes reported for each MSP using MSPminer.

Discovery and taxonomic annotation of bacterial species in the data 
were performed in the following steps: prior to binning, individually 
assembled metagenomic samples were filtered for contigs of a minimum 
of 2,000 base pairs long. The reads were mapped to all contigs with 
minimap2 (v.2.6, “-N 50”) (Li, 2018) and then filtered and sorted with 
Samtools (v.1.9, “-F 3584”) (Li et al., 2009). Contig abundance profiles 
were then calculated using the jgi_summarize_bam_contig_depths 
module from MetaBAT2 (v.2.10.2) (Kang et al., 2019) to produce a 
jgi-depth matrix with contigs abundances across all samples. The 
jgi-depth matrix was used as input to the metagenomic binner VAMB 
(v.3.1) (Nissen et al., 2021) that applies a deep-learning framework to 
cluster the metagenomic contigs into biological entities using the 
jgi-depths and tetranucleotide frequencies derived from input contigs. 
Bacterial metagenomic bins (metagenome-assembled genome [MAGs]) 
were identified using the lineage-wf of CheckM (v.1.1.2) (Parks et al., 
2015), and near-complete (NC) bins with completeness of ≥90% and 
contamination ≤5% were retained for further taxonomic analysis. The 
taxonomy of each bacterial bin was determined using the classify-wf of 
GTDBK-TK (v.1.3.0) (Chaumeil et al., 2019), based on database release 
95. To produce a set of representative MAGs, NC bins were then 
dereplicated at 99% average nucleotide identity (ANI) across 50% of the 
smaller genome using coverM (v.0.6.1) (Woodcroft and Newell, 2017) 
to yield 797 representative MAGs. Furthermore, coverage, RPKM, and 
TPM, for all representative MAGs, were calculated for each sample 
using coverM.

2.8 Annotation of heavy metal and 
antimicrobial resistance genes in 
metagenome data

To determine the fraction of reads mapping to HMR genes in 
each metagenome sample, forward reads were subsampled to the 
minimum number of reads across samples (32  million reads) 
using VSEARCH v.2.14.2 (--fastq_qmin 30) (Rognes et al., 2016) 
and were subsequently processed through MGmapper single end 
v.3.0 (Petersen et al., 2017) mapping against its homology reduced 
(threshold 0.8) metal resistance database. The full list of resulting 
HMR genes used to test for correlations with HMR gene read 
counts from whole-genome data can be  found in 
Supplementary material S1. To characterize the prevalence and 
expression of microbially encoded HMR genes, we annotated the 
genes of MAGs using the BacMet database (Pal et  al., 2014), 
composed of curated high-quality genes verified by experimental 
validation. Genes encoded by MAGs were predicted with Prodigal 
(v.2.6.3, settings -p meta) and then annotated using blastp 
(v.2.10.0) (Johnson et al., 2008) accepting only hits with >40% 
sequence identity and query coverage >30%. However, to identify 
the confident genomic islands of metal resistance, only bins with 
at least one gene annotated with >80% sequence identity and 
query coverage >80% to the BacMet database were retained. The 
AMR genes in MAGs were also annotated using the 
Comprehensive Antibiotic Resistance Database (CARD) (Alcock 
et al., 2020) (v.4.2.2) accepting only strict hits. Contigs encoding 
both metal and antibiotic resistance (co-resistance islands) 
included initial blast hits to the BacMet database (>40% sequence 
identity and query coverage >30%) and strict CARD hits.

2.9 Metatranscriptome bioinformatic 
analysis

Transcriptomic data was processed with SAMSA2 v.2.2.0 
(Westreich et al., 2018). RefSeq (O’Leary et al., 2016) results from 
the SAMSA2 pipeline were used as input for downstream analysis 
of read counts of HMR genes. Genes with a total count across all 
samples <550 were excluded to have, on average, >10 counts per 
gene per sample across the 55 samples. For the principal 
component analysis (PCA) and probabilistic estimation of 
expression residuals (PEER) factors (Stegle et  al., 2012), the 
remaining genes were VST-transformed using R-package DESeq2 
v.1.26.0. Canonical correlation analysis (CCA) was carried out on 
the first seven principal components correlated to the individual 
by leaving out each sample, calculating the CCA, and projecting 
the sample onto the CCA space (leave-one-out) with the R-package 
CCA v.1.2.1. A CCA without leave-one-out is also shown. PEER 
factors were calculated using individual heavy metals and whether 
the samples were collected during the winter months (November 
through April) as covariates, using the R-package PEER v.1.0. The 
variance explained distributions were calculated using the 
R-package variancePartition v.1.16.1. Differential expression 
analysis with heavy metals, along with subsequent log2-fold change 
(FC) shrinkage, was carried out using the R-package DESeq2 
v.1.26.0, utilizing the raw counts (without VST-transformation). 
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For per-individual association analysis, only genes that were 
non-zero for more than half of the individual samples were used.

2.10 Statistics

Generic statistical analyses were conducted in RStudio 2021.09.2 
build 382 (RStudio Team, 2022). Biological and environmental 
(BIOENV) analysis packages labdsv v.2.0.1 (Roberts, 2019) and vegan 
v.2.5.7 (Oksanen et al., 2018) were used to test for ASVs that were 
significantly associated with specific heavy metals by grouping 
samples by heavy metal concentration quartiles.

MicrobiomeSeq v.0.1 (Ssekagiri et  al., 2017) together with 
phyloseq v.1.34.0 (McMurdie and Holmes, 2013) was used to evaluate 
correlations between individual taxa and heavy metal concentrations 
on a continuous scale.

3 Results and discussion

3.1 Fecal heavy metal concentrations 
reflect the intake of local foods

The median fecal Hg content is highest in July (0.146 mg/kg) 
(Figure  1A). Pb has the highest median concentration in June 
(0.175 mg/kg), followed by July (Figure 1B). In contrast, Cd has the 
highest median concentration in October (0.1105 mg/kg), followed by 
July (Figure 1C). Dietary intake of Hg and Cd is expected to be highest 
in July, coinciding with the arrival of narwhals in northern Greenland 
(Rune Dietz, personal communication). This is reflected by the 
relatively high median Hg and Cd levels in July (Figures 1A,C).

It is expected that Hg and Cd levels correlate with the level of 
intake of local foods, which was true for Cd (p = 0.0335) (Figure 2). 
Hunting season for seabirds, which has been associated with intake of 
Pb, is between mid-October and April in northern Greenland. This 
does not seem to be  reflected in the fecal concentrations of Pb, 
suggesting that the local diet is not a main source of Pb exposure, as 
also confirmed by the lack of association between Pb and the level of 
intake of local foods (Figure  2, p = 0.2498) and noted elsewhere 
(Johansen et al., 2004).

The median fecal Hg concentration of 0.07 mg/kg across all 
samples was more than double that of the concentrations observed 
in the fecal samples of two cohorts of American pregnant women, 
where medians were 0.03 and 0.028 mg/kg, respectively (Rothenberg 
et al., 2016, 2019). The mean concentration of Hg of 0.087 mg/kg 
across all samples was lower than that observed in feces in a previous 
study of 0.15 mg/kg (Rothenberg et  al., 2016). In our data, the 
month with the highest concentration of Hg shows a median of 
0.146 mg Hg/kg and a mean of 0.136 mg Hg/kg (Figure 1A). These 
values are notably higher than the median and mean concentrations 
in the previous studies mentioned above. The Hg concentrations 
found in these aforementioned studies were noted to be 5–10 times 
lower than previously observed levels based on hair samples 
(Rothenberg et al., 2016). Taken together, the Hg concentrations 
observed in the current study show fluctuations with concentrations 
that reach higher levels than previously described in studies focused 
on pregnant women. Cd concentrations detected in the present 
study (maximum 0.184 mg/kg, median 0.031 mg/kg, mean 

0.0474 mg/kg dry weight) are notably lower compared to previously 
observed Cd concentrations in feces from people living in 
contaminated areas, which showed maximum levels of 4.49 mg/kg, 
a median of 0.28 mg/kg, and a mean of 0.54 mg/kg dry weight (Yabe 
et al., 2018). This illustrates the greater impact of environmentally 
sourced heavy metal contamination over dietary sourced 
contamination. Very high concentrations of fecal Pb have been 
detected among children living near a lead-zinc mine in Kabwe, 
Zambia, with levels reaching up to 2,252 mg/kg dry weight. The 
medians were reported approximately at 31.9 mg/kg dry weight, 
while the averages were approximately 90.6 mg/kg dry weight when 
comparing different sites (Yabe et al., 2018). The much lower Pb 
concentrations found in the present study, with a median of 
0.122 mg/kg dry weight, a mean of 0.143 mg/kg dry weight, and a 
maximum of 0.439 mg/kg dry weight, do not reflect Pb pollution 
from the environment. The relatively low concentration of Pb might 
explain the low expression of Pb resistance genes 
(Supplementary Figure S1) and the fact that the Pb-specific 
resistance genes (zntA and zraS) were not found in any of the 
metagenome data. Consistent with previous findings (AMAP, 2003), 
we saw a correlation between Hg and Cd (Adj-R2 = 0.365), Hg and 
Pb are less correlated (Adj-R2 = 0.1285), and we  observed no 
correlation between Pb and Cd (Adj-R2 = −0.014) 
(Supplementary Table S1; Supplementary Figure S2). The levels of 
the individual contaminants were not significantly correlated with 
the occurrence of apex predators in the diet, namely, polar bears, 
belugas, and narwhals (Supplementary Figure S3).

3.2 Hg, Cd, and Pb do not impact the gut 
microbiota at the ecological level

No significant correlations were observed between α-diversity 
metrics (Observed Features, Pielou’s Evenness, Faith’s Phylogenetic 
Diversity, and Shannon Index) and the concentrations of Hg, Pb, or 
Cd (Figure 3). We calculated the average β-diversity (Bray–Curtis) 
distance between samples grouped per individual to see if participants 
with higher concentrations of either of the three heavy metals had 
higher average intra-individual β-diversity distance than participants 
with relatively low heavy metal load, which was not the case.

If heavy metals at the concentrations found in the northern 
Greenlandic diet drive gut microbiota changes at the ecosystem level, 
we would expect to see impacts on the diversity, richness, and resilience 
of these ecosystems expressed through α- and β-diversity measures as 
proposed in hypothesis i. We did not observe any significant impact on 
α-diversity with increasing levels of contaminants, as also found in other 
studies where Hg was found not to have any significant impact on 
human gut microbiota community structure in vivo and in vitro 
(Rothenberg et al., 2016; Guo et al., 2018). Furthermore, β-diversity 
dissimilarity distances within participants did not significantly increase 
with increasing levels of contaminants found for the participant, 
suggesting that ecosystem resilience is not influenced by the level of 
contamination found in the current study. Our findings align with 
previous studies showing no significant impact from heavy metals at the 
ecological level of the human gut, and this was supported further by the 
fact that there was no significant correlation between metagenome read 
counts for genes conferring HMR and the concentration of the 
corresponding metal. There was also no significant difference between 
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the relative counts of metagenome reads mapping to HMR genes for Hg, 
Pb, and Cd between the current dataset and a Danish cohort (n = 62, 
manuscript in preparation).

3.3 Hg, Cd, and Pb have a relatively small 
influence on gene expression

PCA and CCA analyses based on the first seven principal 
components of the RNA expression data across all analyzed genes 
show that the samples cluster by individual 
(Supplementary Figures S4, S5). Individual is also one of the most 
important factors, explaining 27.3% of the transcription variance on 
average. After adjusting for individuals and the first three PEER 
factors, the heavy metal concentrations explain a relatively small 

amount of variance for the majority of genes, and the remaining mean 
residual variance is 46.7% (Supplementary Figures S4, S7).

Association analysis of heavy metals predicting gene expression 
across all individuals showed five genes significantly associated with 
Pb and eight genes with Hg (Supplementary Table S2). No gene 
expression was significantly associated with Cd. Separate 
association analysis within each individual showed an expression of 
“nitrate ABC transporter permease” being significantly associated 
with Hg (L2FC = 16.54, BH-adj p-value = 3.67E−06) and Cd 
(L2FC = 16.08, BH-adj p-value = 1.68E−03). The p-value quantile−
quantile (QQ)-plots and variance stabilizing transformation (VST)-
transformed counts plotted against both Hg and Cd are shown in 
Supplementary Figure S7. The highest log2FC for Pb is lactose ABC 
transporter permease (log2FC 7.54, padj = 7.80E−03, 
Supplementary Table S2). Bacterial adenosine triphosphate 

FIGURE 1

Boxplots of monthly fecal heavy metal concentrations (mg/kg dry weight) across all four participants (n  =  55) for mercury (A), lead (B), and cadmium 
(C). The dashed lines indicate maximum and minimum values with outliers shown as dots outside of the lines; the bottom of the gray box indicates the 
25th percentile; and the top of the gray box indicates the 75th percentile. The black line inside the gray box indicates the median.
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(ATP)-binding cassette (ABC) systems are, among many other 
functions, exporters of toxic molecules (Davidson et  al., 2008), 
including heavy metal detoxification (Prévéral et al., 2009). The 
importance of ABC systems in heavy metal detoxification is further 
supported in the current data in that nitrate ABC transporter 
permease was also significant for Hg and Cd separate association 
analysis per individual. The highest log2FC for Hg is a conserved 
histidine α-helical domain (CHAD)-containing protein (log2FC 
9.95, padj = 1.74E−02). CHAD is an uncharacterized domain 

(Letunic et al., 2021) that might participate in metal chelation (Iyer 
and Aravind, 2002; Letunic et al., 2021).

3.4 Heavy metal-resistant strains of the gut 
microbiome

To obtain further insights into the heavy metal resistome, 
metagenome data were binned into MAGs, resulting in 3,455 

FIGURE 2

Boxplot of concentrations of Hg, Pb, and Cd (mg/kg dry weight) across samples stratified on local food score. Local food scores are based on the 
diversity of a selected number of key local foods (narwhal/beluga, polar bear, mattak [whale skin and blubber], seal blubber, intestines, dried meat/fish, 
and fermented foods). The number of these categories of foods eaten within a week from the sampling corresponds to the score. The top and the 
bottom of the gray boxes represent the 25th and 75th percentiles, respectively. Statistical significance indicated with p-values was determined using 
the Kruskall–Wallis rank sum test. The score ranges from 0 to 6 but 0  s were omitted because true 0  s could not be distinguished from false 0  s 
stemming from missing entries in dietary surveys.
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near-complete (NC) genomes of 8,726 bins (>1 Mbp). These NC MAGs 
were dereplicated into 797 genomes, representing a median of 80% of 
reads from each sample on average. Through annotation to BacMet and 
strict filtering (>80% identity, >80% coverage), genomes with HMR genes 
were identified (Figure 4).

There were nine MAGs carrying HMR genes (HMR MAGs), 
including Citrobacter freundii, Citrobacter youngae, Enterobacter 
cloacae, Escherichia coli, Escherichia coli (type D), Escherichia 
flexneri, Klebsiella pneumoniae, and Kluyvera ascorbata, which are 
all Enterobacteriaceae, and finally one Gram-positive Streptococcus 
lutetiensis (Figure 4). None of the heavy metal-resistant MAGs were 
identified as significantly correlating with concentrations of any of 
the heavy metals using three different methods (BIOENV, 
ACOMBC, and microbiomeSeq, Supplementary Table S3). No taxa 
were identified as having the same significant association with a 
certain heavy metal by all three methods.

3.5 Expression of the toxicity-reducing 
mer-operon in the human gut

The E. cloacae identified among the HMR MAGs is distinguished 
by being the only HMR MAG with a comprehensive mer-operon, 
including merACDEPRR1R2T (Figure 4). The identified E. cloacae has 
the potential to reduce mercury toxicity in the gut through MerA, 
mercuric ion reductase, the key detoxification enzyme that transforms 
Hg into its volatile monoatomic vapor Hg(0), rendering it more 
volatile and less reactive (Barkay et al., 2003). The metatranscriptomic 
data showed that the samples in which E. cloacae was identified 
coincided with high levels of mer-gene expression exceeding that of 
other gene expression (Figures 5, 6). These results are relevant in light 
of the increasing attention that is being given to the search for bacterial 
strains with the potential to reduce heavy metal toxicity in the human 
gut and also beyond well-known probiotic strains (Duan et al., 2020). 

FIGURE 3

Effect and 95% confidence interval of the effect of heavy metal concentrations of mercury (Hg), lead (Pb), and cadmium (Cd) on four different diversity 
measures (observed features, Pielou’s evenness, Faith’s phylogenetic diversity, and Shannon index) calculated from 16S rRNA gene amplicon 
sequencing adjusted for individual.

FIGURE 4

The number of near-complete (NC) metagenome-assembled genomes (MAGs) containing individual Hg, Cd, and Pb resistance genes. Mer-operon 
genes to the left and other resistance genes to the right.
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A recent review highlighted that a central question remains 
unanswered: which bacterial strains are responsible for the 
detoxification of heavy metals in the gut (Ghosh et al., 2023)? Through 
combining metagenomics and metatranscriptomics, we were able to 
add new relevant insights by showing an E. cloacae strain, which is 
actively expressing mer-genes, including toxicity reducing MerA 
(Figure 6) and its distribution across time (Figure 5).

In contrast to the mer-genes, the genes hgcA and hgcB 
methylate mercury, which makes it more bioavailable and therefore 
also more toxic (Parks et al., 2013). These genes are relatively rare 
(Podar et  al., 2015) and were not found in any of the 55 
metagenomic samples of this study, supporting results from 
previous studies (Zhou et al., 2011; Gilmour et al., 2013; Podar 
et al., 2015; Rothenberg et al., 2016). This indicates that the studied 

FIGURE 5

Distribution of HMR MAGs across participants (columns) and months (x-axes). The longitudinal concentration profiles of cadmium (Cd), mercury (Hg), 
and lead (Pb) are displayed for participants (1–4) in the first row. The subsequent rows, one for each species, display the reads per kilobase million 
(RPKM) profiles of Enterobacter cloacae, Klebsiella pneumonia, Citrobacter freundii, Escherichia coli (type D), E. coli, Escherichia Flexneri, and Kluyvera 
ascorbata together with C. youngae (indicated by different shapes). Detection of a specific bacteria at a given time point (month) is determined by 
whole-genome sequence coverage with at least >25% of the genome covered by a read (colored blue) or (red) if not detected. Participant 4 was the 
only one treated with antibiotics, which happened over three consecutive months and is indicated by a green-colored background in the first row.
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microbiomes show genetic potential for reducing the toxicity of 
mercury but not for increasing it.

The distribution of HMR MAGs (Figure 5) shows that the HMR 
E. cloacae is present in only three samples, which happen to be two 
consecutive samples from participant 4 and a low abundance in one 
sample from participant 1. The pattern in which E. cloacae is present 
in two consecutive months suggests either a colonization event with 
an allochthonous strain or a sudden increase in abundance of a very 
low-abundant strain. E. cloacae in the human gut has been linked to a 
Bacteroides enterotype (Raymond et al., 2016), often associated with 
a diet rich in meat and fat (Arumugam et al., 2011; Wu et al., 2011). 
In our data, the sample in which E. cloacae was first detected in 
participant 4 is distinguished by being the only sample among 13 
monthly samples where the individual consumed local meats every 
day in the week up to the sampling. The presence of E. cloacae might 
be  due to the coincidental interplay between heavy metals being 
correlated with local food intake and local foods in this particular 
context being rich in animal fat and protein, thereby enhancing the 
chance of successful colonization with E. cloacae. Guo et al. (2018) 
showed an instance in which protein supplementation significantly 
increased demethylation and hypothesized that protein might enhance 
monomethyl mercury (MMHg) degradation due to syntropic 
interactions. Whether the protein- and fat-rich Arctic Indigenous diet 
increases the likelihood of colonization with mer-carrying E. cloacae 
is an interesting hypothesis to be tested. There are ongoing efforts that 
encourage a more nuanced understanding of Arctic Indigenous foods 
that take into consideration; for instance, the mitigating effect of the 
nutrient-rich foods, including the role of selenium in the Arctic diet 
as a protectant against contaminants (Laird et al., 2013; Liu et al., 

2019). Selenium, which the Inuit diet is rich in (Hansen et al., 2004), 
increases the excretion of Hg (Liu et  al., 2019). Furthermore, 
carbohydrates, which have only become a common dietary component 
in the Arctic after colonization, can inhibit demethylation (Lu et al., 
2017), also by the human gut microbiome as well (Guo et al., 2018). 
Our study adds to the argument that it is relevant to investigate further 
how the Arctic Indigenous diet has a protective effect against 
contaminants, for example, by supporting detoxification through the 
demethylation of Hg.

3.6 Antibiotic-resistant strains in the gut 
are also resistant to heavy metals

Ten of the 797 dereplicated MAGs, all belonging to the family 
Enterobacteriaceae, had more than one type of AMR mechanism and 
were also the 10 MAGs with the highest number of AMR genes 
(Figure 7). Remarkably, these 10 AMR MAGs were also resistant to 
HM (Figure 4), showing an almost complete overlap between strains 
with resistance to heavy metals (HM) and antimicrobials (AMs). Early 
culture-based studies established a correlation between Hg resistance 
and AMR in the human gut microbiome (Edlund et al., 1996). Since 
then, a comprehensive omics-based assessment of environmental and 
clinical bacterial genomes showed that 17% of all studied genomes 
have co-occurrence of HMR and AMR (Pal et al., 2015). The same 
authors more recently reviewed the knowledge gaps in this field, listing 
no gut microbiome studies and emphasizing the need for data 
representing genome-level understanding within complex 
environments (Pal et al., 2017), which is what the current study adds. 
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In the upper panel, the expression levels (TPM) of Enterobacter cloacae in Participant 4 of mer-genes, core genes, and remaining coding genes. Gene 
groups of E. cloacae were defined by MSP-miner as described in the Methods section. The lower panel shows the expression level of each of the mer-
genes.
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Our data show that in the human gut, AMR is strongly associated with 
HMR at the genome level. Specifically, 100% of the strains in the top 10 
with the highest number of AMR genes, including those with more 
than one type of AMR, are also HMR resistant (Figures 4, 7; Table 1). 
Additionally, we show that all these HMR-AMR MAGs are co-resistant 
through the co-occurrence of AMR and HMR genes on the same 
genetic element (Table 1). Finally, our chronological sampling design 
allows us to demonstrate that such AMR-HMR strains are found in all 
participants and in varying abundance through time often falling to 
undetectable levels (Figure 5), which has implications for snapshot 
studies that might miss important information on the gut microbiome’s 
capacity for co-resistance. AMR is one of the top 10 global public 
health threats facing humanity (WHO, 2021). The importance of heavy 
metals as a driver for the dissemination of AMR genes in the 
environment is well recognized (Czatzkowska et al., 2022), but its 
impact as a consequence of heavy metal pollution in the Arctic is less 
understood. This is evident in the literature on the prevalence of 
antibiotic-resistance genes in the Arctic environment (Tan et al., 2018), 
which does not touch upon the co-occurrence of AMR and HMR, 
despite the well-established contamination with heavy metals in Arctic 
environments. This points to an important knowledge gap that might 
easily be bridged through interdisciplinary conversations.

In conclusion, the concentrations of heavy metals—Hg, Cd, and 
Pb—at the concentrations found in the present study did not 
significantly impact α- and β-diversity measures. Therefore, they 
appear not to influence the gut microbiota at the ecological level. This 
aligns with previous studies and was further supported by the lack of 
correlation between metagenome read counts for genes conferring 
HMR and the concentration of the corresponding metal. In addition, 
Hg, Cd, and Pb concentrations only had small effects on gene 
expression. While the diets of Arctic Indigenous Peoples are often 
discussed in the context of contaminants, the current results on the 
gut microbiota suggest that heavy metals should not be emphasized as 
a significant factor. It appears that heavy metals are not a strong 
confounding factor in the study of Arctic Indigenous Peoples’ 
microbiomes. Among almost 800 MAGs, nine heavy metal-resistant 
strains were identified. Only one of the identified heavy metal-
resistant strains, E. cloacae, harbored the mer-operon, which was 
actively expressed and, therefore, is likely to render Hg less toxic to the 

host. Our results support previous studies showing the human gut 
microbiome as a site for demethylation, causing a lessening of the 
mercury toxicity rather than one for Hg methylation.
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TABLE 1 Co-resistance in metagenome-assembled genomes (MAGs) showing co-occurrence of antimicrobial resistance (AMR) and heavy metal 
resistance (HMR) genes on contigs.

MAG species Contig AMR genes and proteins HMR genes and proteins

Kluyvera ascorbata 1 ampH merR1

2 H-NS ychH

Enterobacter cloacae 1 baeR yodD

2 acrA, adeF merR1

3 H-NS dsbB, ychH

4 CRP irlR, yhcN,

Citrobacter freundii 1 cpxA dsbA

2 marA, QnrB67, H-NS merE, ychH

3 CRP, msbA czcP, dsbA

Escherichia coli (type D) 1 AcrF, AcrE, AcrS, bacA, TolC yhcN, ygiW

2 H-NS merR1, ychH, dsbB

3 msbA, mdfA czcD, yhcN

4 mdtP, mdtO, mdtN, eptA, ampC, soxS, 

soxR

merB2, yhcN

E. coli 1 AcrF, AcrE, AcrS, bacA, TolC KpnH, 

emrA, emrR

dsbA, yhcN, ygiW

2 emrE yodD, irlR

3 soxR, soxS merB2, yjaA

4 msBa, mdfA yhcN, czcD

5 H-NS dsbB, ychH

6 kdpE, acrA, acrB, ampH, acrR irlR

E. coli 1 ampH, acrB, acrA, kdpE, acrR irlR

2 AcrS, AcrE, AcrF yhcN

3 H-NS, mdtH ychH, dsbB

4 bacA, TolC ygiW

5 mdtP, mdtO, mdtN, eptA, ampC, soxS, 

soxR

yjaA, merB2, yhcN

6 emrE yodD, irlR

Citrobacter youngae 1 marA, QnrB8, H-NS, mdtG, PmrF, GlpT, 

marR

yodD, dsbB, merE, ychH

2 KpnH, emrR mrdH

3 cpxA dsbA

4 CMY-17 yhcN

5 soxS merB2

6 CRP, UhpT czcP

7 ampH, acrB, acrA, kdpE, mdfA irlR

8 mdtB, baeR, msbA dsbA

Escherichia flexneri 1 AcrS, AcrE, AcrF yhcN

2 mdtM, FosA2 yhcN

3 ampC, eptA, mdtN, mdtO, mdtP, soxR, 

soxS

merB2

4 mdtG, mdtH ychH, dsbB, merR1

5 TolC, bacA ygiW, irlR

Klebsiella pneumoniae 1 acrA merR1

2 CRP, EF-Tu yhcN

3 H-NS merR1, ychH

Based on contigs from metagenome assembly using Metaspades v.3.9.0 for each MAG, it was studied whether HMR genes co-occurred on contigs with AMR genes. For each MAG, the contigs 
with co-occurrence of HMR and AMR are listed.
AMR, antimicrobial resistance; HMR, heavy metal resistance; MAG, metagenome-assembled genome.

https://doi.org/10.3389/fmicb.2024.1493803
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Hauptmann et al. 10.3389/fmicb.2024.1493803

Frontiers in Microbiology 13 frontiersin.org

Resources, Supervision, Validation, Writing – original draft, Writing 
– review & editing. AA: Writing – original draft, Writing – review & 
editing, Conceptualization, Data curation, Investigation, 
Methodology, Resources, Software, Supervision.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This study was 
supported by the Novo Nordisk Foundation (grant number 
NNF20OC0061343 awarded to Professor Anders Albrechtsen). Aviaja 
Lyberth Hauptmann was supported by the Danish Government’s 
funding for Arctic research (80.23), the Carlsberg Foundation (CF19-
0401), and the Aage V. Jensen Charity Foundation (2022). Simon 
Rasmussen and Joachim Johansen were supported by the Novo 
Nordisk Foundation (grant number NNF14CC0001).

Acknowledgments

We are deeply indebted to the participants who took the time and 
interest to take part in this study. Peqataasut tamassi qamannga 
pisumik qujaffigivatsigit. This study would also not have been possible 
without a close collaboration with Peqqissaavik Qaanaaq, especially 
the porter and the nurses, Ivalu Egede Lund and colleagues, and, 

finally, Inge-Lise Kleist at Dronning Ingrids Hospital, Nuuk, Denmark. 
Our thanks are also to Ida Bomholt Dyrholm Jacobsen and Liv Mejer 
Larsen for their support and logistic help.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2024.1493803/
full#supplementary-material

References
Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., 

et al. (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive 
antibiotic resistance database. Nucleic Acids Res. 48, D517–D525. doi: 10.1093/
nar/gkz935

AMAP (1998). AMAP assessment report: Arctic pollution issues. Oslo, Norway: 
Arctic monitoring and assessment programme (AMAP). xii+859 pp.

AMAP (2003). AMAP assessment 2002: human health in the Arctic. Oslo, Oslo, 
Norway: Arctic monitoring and assessment programme (AMAP). xiv+137 pp.

AMAP (2022). AMAP: arctic monitoring & assessment programme. Available at: 
https://www.amap.no/ (Accessed November 10, 2022).

Amir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T., Zech Xu, Z., 
et al. (2017). Deblur rapidly resolves single-nucleotide community sequence patterns. 
mSystems, 2, 1110–1128. doi: 10.1128/msystems.00191-16

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., et al. 
(2011). Enterotypes of the human gut microbiome. Nature 473, 174–180. doi: 10.1038/
nature09944

Baker-Austin, C., Wright, M. S., Stepanauskas, R., and McArthur, J. V. (2006). Co-
selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182. doi: 10.1016/j.
tim.2006.02.006

Barkay, T., Miller, S. M., and Summers, A. O. (2003). Bacterial mercury resistance 
from atoms to ecosystems. FEMS Microbiol. Rev. 27, 355–384. doi: 10.1016/
S0168-6445(03)00046-9

Bisanz, J. E., Enos, M. K., Mwanga, J. R., Changalucha, J., Burton, J. P., Gloor, G. B., 
et al. (2014). Randomized open-label pilot study of the influence of probiotics and the 
gut microbiome on toxic metal levels in Tanzanian pregnant women and school 
children. MBio 5, e01580–e01514. doi: 10.1128/mBio.01580-14

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/btu170

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., 
Al-Ghalith, G. A., et al. (2019). Reproducible, interactive, scalable and extensible 
microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. doi: 10.1038/
s41587-019-0209-9

Brabec, J. L., Wright, J., Ly, T., Wong, H. T., McClimans, C. J., Tokarev, V., et al. (2020). 
Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in 
Nepal. Heliyon 6:e03313. doi: 10.1016/j.heliyon.2020.e03313

Caito, S. W., Jackson, B. P., Punshon, T., Scrimale, T., Grier, A., Gill, S. R., et al. (2018). 
Variation in methylmercury metabolism and elimination status in humans following 
fish consumption. Toxicol. Sci. 161, 443–453. doi: 10.1093/toxsci/kfx226

Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P., and Parks, D. H. (2019). GTDB-Tk: a 
toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 
1925–1927. doi: 10.1093/bioinformatics/btz848

Chiu, K., Warner, G., Nowak, R. A., Flaws, J. A., and Mei, W. (2020). The impact of 
environmental chemicals on the gut microbiome. Toxicol. Sci. 176, 253–284. doi: 
10.1093/toxsci/kfaa065

Claus, S. P., Guillou, H., and Ellero-Simatos, S. (2016). The gut microbiota: a major 
player in the toxicity of environmental pollutants? npj Biofilms Microbiomes 2, 
16003–16012. doi: 10.1038/npjbiofilms.2016.3

Conteville, L. C., Oliveira-Ferreira, J., and Vicente, A. C. P. (2023). Heavy metal 
resistance in the Yanomami and Tunapuco microbiome. Memor. Inst. Oswaldo Cruz 
118:e230086. doi: 10.1590/0074-02760230086

Czatzkowska, M., Wolak, I., Harnisz, M., and Korzeniewska, E. (2022). Impact of 
anthropogenic activities on the dissemination of ARGs in the environment—a review. 
Int. J. Environ. Res. Public Health 19:12853. doi: 10.3390/ijerph191912853

Davidson, A. L., Dassa, E., Orelle, C., and Chen, J. (2008). Structure, function, and 
evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 
317–364. doi: 10.1128/MMBR.00031-07

Duan, H., Yu, L., Tian, F., Zhai, Q., Fan, L., and Chen, W. (2020). Gut microbiota: a 
target for heavy metal toxicity and a probiotic protective strategy. Sci. Total Environ. 
742:140429. doi: 10.1016/j.scitotenv.2020.140429

Dubois, G., Girard, C., Lapointe, F. J., and Shapiro, B. J. (2017). The Inuit gut 
microbiome is dynamic over time and shaped by traditional foods. Microbiome 5:151. 
doi: 10.1186/s40168-017-0370-7

Edlund, C., Björkman, L., Ekstrand, J., Sandborgh-Englund, G., and Nord, C. E. 
(1996). Resistance of the normal human microflora to mercury and antimicrobials after 
exposure to mercury from dental amalgam fillings. Clin. Infect. Dis. 22, 944–950. doi: 
10.1093/clinids/22.6.944

Eggers, S., Safdar, N., Sethi, A. K., Suen, G., Peppard, P. E., Kates, A. E., et al. (2019). 
Urinary lead concentration and composition of the adult gut microbiota in a cross-
sectional population-based sample. Environ. Int. 133:105122. doi: 10.1016/j.
envint.2019.105122

https://doi.org/10.3389/fmicb.2024.1493803
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1493803/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1493803/full#supplementary-material
https://doi.org/10.1093/nar/gkz935
https://doi.org/10.1093/nar/gkz935
https://www.amap.no/
https://doi.org/10.1128/msystems.00191-16
https://doi.org/10.1038/nature09944
https://doi.org/10.1038/nature09944
https://doi.org/10.1016/j.tim.2006.02.006
https://doi.org/10.1016/j.tim.2006.02.006
https://doi.org/10.1016/S0168-6445(03)00046-9
https://doi.org/10.1016/S0168-6445(03)00046-9
https://doi.org/10.1128/mBio.01580-14
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1016/j.heliyon.2020.e03313
https://doi.org/10.1093/toxsci/kfx226
https://doi.org/10.1093/bioinformatics/btz848
https://doi.org/10.1093/toxsci/kfaa065
https://doi.org/10.1038/npjbiofilms.2016.3
https://doi.org/10.1590/0074-02760230086
https://doi.org/10.3390/ijerph191912853
https://doi.org/10.1128/MMBR.00031-07
https://doi.org/10.1016/j.scitotenv.2020.140429
https://doi.org/10.1186/s40168-017-0370-7
https://doi.org/10.1093/clinids/22.6.944
https://doi.org/10.1016/j.envint.2019.105122
https://doi.org/10.1016/j.envint.2019.105122


Hauptmann et al. 10.3389/fmicb.2024.1493803

Frontiers in Microbiology 14 frontiersin.org

Gaspar, J. M. (2018). NGmerge: merging paired-end reads via novel empirically-
derived models of sequencing errors. BMC Bioinformatics 19, 1–9. doi: 10.1186/
s12859-018-2579-2

Ghosh, S., Nukavarapu, S. P., and Jala, V. R. (2023). Effect of heavy metals on gut 
barrier integrity and gut microbiota. Microbiota Host 2, 1–18. doi: 10.1530/mah-23-0015

Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R., et al. 
(2021). Influence of toxic metal exposure on the gut microbiota (review). World Acad. 
Sci. J. 3:1. doi: 10.3892/wasj.2021.90

Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., 
Salminen, S. J., et al. (2017). Expert consensus document: the International Scientific 
Association for Probiotics and Prebiotics (ISAPP) consensus statement on the 
definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502. doi: 
10.1038/nrgastro.2017.75

Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., 
Somenahally, A. C., et al. (2013). Mercury methylation by novel microorganisms from 
new environments. Environ. Sci. Technol. 47, 11810–11820. doi: 10.1021/es403075t

Girard, C., Tromas, N., Amyot, M., and Shapiro, B. J. (2017). Gut microbiome of the 
Canadian Arctic Inuit. mSphere 2, e00297–e00216. doi: 10.1128/msphere.00297-16

Guo, G., Yumvihoze, E., Poulain, A. J., and Chan, H. M. (2018). Monomethylmercury 
degradation by the human gut microbiota is stimulated by protein amendments. J. 
Toxicol. Sci. 43, 717–725. doi: 10.2131/jts.43.717

Hansen, J. C. (1997). Det arktiske dilemma. INUSSUK  - Arctic Research Journal: 
Grønlandsk kost - en miljømedicinsk vurdering 3, 7–10.

Hansen, J. C., Deutch, B., and Pedersen, H. S. (2004). Selenium status in Greenland 
Inuit. Sci. Total Environ. 331, 207–214. doi: 10.1016/j.scitotenv.2004.03.037

Hauptmann, A. L., Sicheritz-Pontén, T., Cameron, K. A., Bælum, J., Plichta, D. R., 
Dalgaard, M., et al. (2017). Contamination of the Arctic reflected in microbial 
metagenomes from the Greenland ice sheet. Environ. Res. Lett. 12:074019. doi: 
10.1088/1748-9326/aa7445

Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W. (2010). CD-HIT suite: a web server for 
clustering and comparing biological sequences. Bioinformatics 26, 680–682. doi: 
10.1093/bioinformatics/btq003

Hyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J. 
(2010). Prodigal: prokaryotic gene recognition and translation initiation site 
identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-11-119

Iyer, L. M., and Aravind, L. (2002). The catalytic domains of thiamine triphosphatase 
and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic 
phosphatases. BMC Genomics 3, 1–11. doi: 10.1186/1471-2164-3-33

Johansen, P., Asmund, G., and Riget, F. (2001). Lead contamination of seabirds 
harvested with lead shot - implications to human diet in Greenland. Environ. Pollut. 112, 
501–504. doi: 10.1016/S0269-7491(00)00130-5

Johansen, P., Muir, D., Asmund, G., and Riget, F. (2004). Human exposure to 
contaminants in the traditional Greenland diet. Sci. Total Environ. 331, 189–206. doi: 
10.1016/j.scitotenv.2004.03.029

Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., and 
Madden, T. L. (2008). NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–
W9. doi: 10.1093/nar/gkn201

Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., et al. (2019). MetaBAT 2: 
an adaptive binning algorithm for robust and efficient genome reconstruction from 
metagenome assemblies. PeerJ 7:e7359. doi: 10.7717/peerj.7359

Koppel, N., Rekdal, V. M., and Balskus, E. P. (2017). Chemical transformation of 
xenobiotics by the human gut microbiota. Science 356, 1246–1257. doi: 10.1126/
science.aag2770

Laird, B. D., Goncharov, A. B., Egeland, G. M., and Chan, H. M. (2013). Dietary advice 
on inuit traditional food use needs to balance benefits and risks of mercury, selenium, 
and n3 fatty acids. J. Nutr. 143, 923–930. doi: 10.3945/jn.112.173351

Letunic, I., Khedkar, S., and Bork, P. (2021). SMART: recent updates, new 
developments and status in 2020. Nucleic Acids Res. 49, D458–D460. doi: 10.1093/
nar/gkaa937

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 
34, 3094–3100. doi: 10.1093/bioinformatics/bty191

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics 25, 1754–1760. doi: 10.1093/bioinformatics/btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The 
sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. doi: 
10.1093/bioinformatics/btp352

Liebert, C. A., Wireman, J., Smith, T., and Summers, A. O. (1997). Phylogeny of mercury 
resistance (mer) operons of gram-negative bacteria isolated from the fecal flora of 
primates. Appl. Environ. Microbiol. 63, 1066–1076. doi: 10.1128/aem.63.3.1066-1076.1997

Liu, Y., Ji, J., Zhang, W., Suo, Y., Zhao, J., Lin, X., et al. (2019). Selenium modulated gut 
flora and promoted decomposition of methylmercury in methylmercury-poisoned rats. 
Ecotoxicol. Environ. Saf. 185:109720. doi: 10.1016/j.ecoenv.2019.109720

Lu, X., Gu, W., Zhao, L., Ul Haque, M. F., DiSpirito, A. A., Semrau, J. D., et al. (2017). 
Methylmercury uptake and degradation by methanotrophs. Sci. Adv. 3:e1700041. doi: 
10.1126/sciadv.1700041

Marshall, B., Schleuderberg, S., Rowse-Eagle, D., Summers, A. O., and Levy, S. B. 
(1981). “Ecology of antibiotic and heavy metal resistances in nature” in Molecular 
biology, pathogenecity, and ecology of bacterial plasmids (New York: Plenum Press), 630.

McMurdie, P. J., and Holmes, S. (2013). Phyloseq: An R package for reproducible 
interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi: 
10.1371/journal.pone.0061217

Nissen, J. N., Johansen, J., Allesøe, R. L., Sønderby, C. K., Armenteros, J. J. A., 
Grønbech, C. H., et al. (2021). Improved metagenome binning and assembly using deep 
variational autoencoders. Nat. Biotechnol. 39, 555–560. doi: 10.1038/s41587-020-00777-4

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017). MetaSPAdes: a new 
versatile metagenomic assembler. Genome Res. 27, 824–834. doi: 10.1101/gr.213959.116

O’Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., McVeigh, R., et al. 
(2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, 
and functional annotation. Nucleic Acids Res. 44, D733–D745. doi: 10.1093/nar/gkv1189

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. 
(2018). Vegan: community ecology package. R package version 2.5–1.

Oñate, F. P., Le Chatelier, E., Almeida, M., Cervino, A. C. L., Gauthier, F., Magoulès, F., 
et al. (2019). MSPminer: abundance-based reconstitution of microbial pan-genomes 
from shotgun metagenomic data. Bioinformatics 35, 1544–1552. doi: 10.1093/
bioinformatics/bty830

Pal, C., Asiani, K., Arya, S., Rensing, C., Stekel, D. J., Larsson, D. G. J., et al. (2017). 
Metal resistance and its association with antibiotic resistance. Adv. Microb. Physio. 1st 
Edn: Elsevier Ltd. 70, 261–313. doi: 10.1016/bs.ampbs.2017.02.001

Pal, C., Bengtsson-Palme, J., Kristiansson, E., and Larsson, D. G. J. (2015). Co-occurrence 
of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-
selection potential. BMC Genomics 16, 964–914. doi: 10.1186/s12864-015-2153-5

Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E., and Larsson, D. G. J. (2014). 
BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 42, 
D737–D743. doi: 10.1093/nar/gkt1252

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015). 
CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, 
and metagenomes. Genome Res. 25, 1043–1055. doi: 10.1101/gr.186072.114

Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt, R. A., Smith, S. D., et al. (2013). The 
genetic basis for bacterial mercury methylation. Science 339, 1332–1335. doi: 10.1126/
science.1230667

Petersen, T. N., Lukjancenko, O., Thomsen, M. C. F., Sperotto, M. M., Lund, O., 
Aarestrup, F. M., et al. (2017). MGmapper: reference based mapping and taxonomy 
annotation of metagenomics sequence reads. PLoS One 12:e0176469. doi: 10.1371/
journal.pone.0176469

Podar, M., Gilmour, C. C., Brandt, C. C., Soren, A., Brown, S. D., Crable, B. R., et al. 
(2015). Global prevalence and distribution of genes and microorganisms involved in 
mercury methylation. Sci. Adv. 1, e1500675–e1500612. doi: 10.1126/sciadv.1500675

Prévéral, S., Geyet, L., Moldes, C., Hoffmann, J., Mounicou, S., Gruet, A., et al. (2009). 
A common highly conserved cadmium detoxification mechanism from Bacteria to 
humans. J. Biol. Chem. 284, 4936–4943. doi: 10.1074/jbc.M808130200

Raymond, F., Ouameur, A. A., Déraspe, M., Iqbal, N., Gingras, H., Dridi, B., et al. 
(2016). The initial state of the human gut microbiome determines its reshaping by 
antibiotics. ISME J. 10, 707–720. doi: 10.1038/ismej.2015.148

Roberts, D. W. (2019). Ordination and multivariate analysis for ecology. Package 
‘labdsv.’

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a 
versatile open source tool for metagenomics. PeerJ 4:e2584. doi: 10.7717/peerj.2584

Rothenberg, S. E., Keiser, S., Ajami, N. J., Wong, M. C., Gesell, J., Petrosino, J. F., et al. 
(2016). The role of gut microbiota in fetal methylmercury exposure: insights from a pilot 
study. Toxicol. Lett. 242, 60–67. doi: 10.1016/j.toxlet.2015.11.022

Rothenberg, S. E., Wagner, C. L., Hamidi, B., Alekseyenko, A. V., and 
Azcarate-Peril, M. A. (2019). Longitudinal changes during pregnancy in gut microbiota 
and methylmercury biomarkers, and reversal of microbe-exposure correlations. Environ. 
Res. 172, 700–712. doi: 10.1016/j.envres.2019.01.014

Rowland, I. R. (Ed.) (1988). Role of the gut Flora in toxicity and cancer. London: 
Academic Press.

Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., et al. (2018). Gut 
microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 
57, 1–24. doi: 10.1007/s00394-017-1445-8

RStudio Team (2022). RStudio: integrated development environment for R. PBC, 
Boston, MA: RStudio.

Ruscio, B. A., Brubaker, M., Glasser, J., Hueston, W., and Hennessy, T. W. (2015). One 
health – a strategy for resilience in a changing arctic. Int. J. Circumpolar Health 74:27913. 
doi: 10.3402/ijch.v74.27913

Shao, M., and Zhu, Y. (2020). Long-term metal exposure changes gut microbiota of 
residents surrounding a mining and smelting area. Sci. Rep. 10, 4453–4459. doi: 10.1038/
s41598-020-61143-7

Skurnik, D., Ruimy, R., Ready, D., Ruppe, E., Bernède-Bauduin, C., Djossou, F., et al. 
(2010). Is exposure to mercury a driving force for the carriage of antibiotic resistance 
genes? J. Med. Microbiol. 59, 804–807. doi: 10.1099/jmm.0.017665-0

https://doi.org/10.3389/fmicb.2024.1493803
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1186/s12859-018-2579-2
https://doi.org/10.1186/s12859-018-2579-2
https://doi.org/10.1530/mah-23-0015
https://doi.org/10.3892/wasj.2021.90
https://doi.org/10.1038/nrgastro.2017.75
https://doi.org/10.1021/es403075t
https://doi.org/10.1128/msphere.00297-16
https://doi.org/10.2131/jts.43.717
https://doi.org/10.1016/j.scitotenv.2004.03.037
https://doi.org/10.1088/1748-9326/aa7445
https://doi.org/10.1093/bioinformatics/btq003
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2164-3-33
https://doi.org/10.1016/S0269-7491(00)00130-5
https://doi.org/10.1016/j.scitotenv.2004.03.029
https://doi.org/10.1093/nar/gkn201
https://doi.org/10.7717/peerj.7359
https://doi.org/10.1126/science.aag2770
https://doi.org/10.1126/science.aag2770
https://doi.org/10.3945/jn.112.173351
https://doi.org/10.1093/nar/gkaa937
https://doi.org/10.1093/nar/gkaa937
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1128/aem.63.3.1066-1076.1997
https://doi.org/10.1016/j.ecoenv.2019.109720
https://doi.org/10.1126/sciadv.1700041
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1038/s41587-020-00777-4
https://doi.org/10.1101/gr.213959.116
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/bioinformatics/bty830
https://doi.org/10.1093/bioinformatics/bty830
https://doi.org/10.1016/bs.ampbs.2017.02.001
https://doi.org/10.1186/s12864-015-2153-5
https://doi.org/10.1093/nar/gkt1252
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1126/science.1230667
https://doi.org/10.1126/science.1230667
https://doi.org/10.1371/journal.pone.0176469
https://doi.org/10.1371/journal.pone.0176469
https://doi.org/10.1126/sciadv.1500675
https://doi.org/10.1074/jbc.M808130200
https://doi.org/10.1038/ismej.2015.148
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1016/j.toxlet.2015.11.022
https://doi.org/10.1016/j.envres.2019.01.014
https://doi.org/10.1007/s00394-017-1445-8
https://doi.org/10.3402/ijch.v74.27913
https://doi.org/10.1038/s41598-020-61143-7
https://doi.org/10.1038/s41598-020-61143-7
https://doi.org/10.1099/jmm.0.017665-0


Hauptmann et al. 10.3389/fmicb.2024.1493803

Frontiers in Microbiology 15 frontiersin.org

Ssekagiri, A., Sloan, W. T., and Ijaz, U. Z. (2017). microbiomeSeq: an R package for 
analysis of microbial communities in an environmental context. In ISCB Africa ASBCB 
conference, Kumasi, Ghana.

Stegle, O., Parts, L., Piipari, M., Winn, J., and Durbin, R. (2012). Using 
probabilistic estimation of expression residuals (PEER) to obtain increased power 
and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507. doi: 
10.1038/nprot.2011.457

Tan, L., Li, L., Ashbolt, N., Wang, X., Cui, Y., Zhu, X., et al. (2018). Arctic antibiotic 
resistance gene contamination, a result of anthropogenic activities and natural origin. 
Sci. Total Environ. 621, 1176–1184. doi: 10.1016/j.scitotenv.2017.10.110

Vats, P., Kaur, U. J., and Rishi, P. (2022). Heavy metal-induced selection and 
proliferation of antibiotic resistance: a review. J. Appl. Microbiol. 132, 4058–4076. doi: 
10.1111/jam.15492

Westreich, S. T., Treiber, M. L., Mills, D. A., Korf, I., and Lemay, D. G. (2018). 
SAMSA2: A standalone metatranscriptome analysis pipeline. BMC Bioinformatics 
19:175. doi: 10.1186/s12859-018-2189-z

WHO (2021). Antimicrobial resistance. Available at: https://www.who.int/news-
room/fact-sheets/detail/antimicrobial-resistance (Accessed August 29, 2024).

Woodcroft, B. J., and Newell, R. (2017). CoverM: read coverage calculator for 
metagenomics.

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y., Keilbaugh, S. A., et al. 
(2011). Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 
105–108. doi: 10.1126/science.1208344

Wuhan MGI Tech Co. Ltd. (2019). DNBSEQ-G400 high-throughput sequencing set 
user manual version A1.

Yabe, J., Nakayama, S. M. M., Ikenaka, Y., Yohannes, Y. B., Bortey-Sam, N., 
Kabalo, A. N., et al. (2018). Lead and cadmium excretion in feces and urine of children 
from polluted townships near a lead-zinc mine in Kabwe, Zambia. Chemosphere 202, 
48–55. doi: 10.1016/j.chemosphere.2018.03.079

Zhou, X., Wang, L., Sun, X., Yang, X., Chen, C., Wang, Q., et al. (2011). Cinnabar is 
not converted into methylmercury by human intestinal bacteria. J. Ethnopharmacol. 135, 
110–115. doi: 10.1016/j.jep.2011.02.032

https://doi.org/10.3389/fmicb.2024.1493803
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1038/nprot.2011.457
https://doi.org/10.1016/j.scitotenv.2017.10.110
https://doi.org/10.1111/jam.15492
https://doi.org/10.1186/s12859-018-2189-z
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://doi.org/10.1126/science.1208344
https://doi.org/10.1016/j.chemosphere.2018.03.079
https://doi.org/10.1016/j.jep.2011.02.032

	Gut heavy metal and antibiotic resistome of humans living in the high Arctic
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Fecal sample collection and processing
	2.3 DNA and RNA extraction, library preparation, and sequencing
	2.4 Heavy metal assessments
	2.5 Dietary surveys
	2.6 16S rRNA gene amplicon bioinformatic analysis
	2.7 Metagenome bioinformatic analyses
	2.8 Annotation of heavy metal and antimicrobial resistance genes in metagenome data
	2.9 Metatranscriptome bioinformatic analysis
	2.10 Statistics

	3 Results and discussion
	3.1 Fecal heavy metal concentrations reflect the intake of local foods
	3.2 Hg, Cd, and Pb do not impact the gut microbiota at the ecological level
	3.3 Hg, Cd, and Pb have a relatively small influence on gene expression
	3.4 Heavy metal-resistant strains of the gut microbiome
	3.5 Expression of the toxicity-reducing mer-operon in the human gut
	3.6 Antibiotic-resistant strains in the gut are also resistant to heavy metals


	References

