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Background: The Albumin-Bilirubin (ALBI) score and grade are widely used 
to stratify patients with primary biliary cholangitis (PBC) into different disease 
statuses and risk levels. Recent studies have increasingly highlighted the role 
of gut microbiota in autoimmune liver diseases. This study aimed to investigate 
the differences in gut microbiota among PBC patients with varying ALBI grades.

Methods: Clinical data and stool samples were collected from outpatient 
and inpatient PBC patients between 2019 and 2022. Gut microbiota profiles 
were obtained using 16S rDNA sequencing of stool samples. We  analyzed 
alpha diversity, beta diversity, LEfSe analysis and pathway function prediction. 
Additionally, various machine learning methods—including random forest (RF), 
lasso, gradient boosting machine (GBM) and support vector machine (SVM)—
were employed to identify key features and to build and validate predictive 
models using bootstrap techniques.

Results: Clinical characteristics of ALBI grade 1 patients were comparatively 
better than those of ALBI grade 2 and 3 patients, including multiple laboratory 
indices. Gut microbiota analysis revealed that species richness and balance 
were higher in ALBI grade 1 patients. Both the comparison of the most abundant 
genera and the linear discriminant analysis (LDA) in LEfSe demonstrated that 
Lachnospira had a higher abundance and better discriminative ability in ALBI 
grade 1. Pathway function prediction indicated that sulfur metabolism was 
upregulated in higher ALBI grades. Furthermore, RF identified 10 specific 
genera, which were then used to build and validate models for discriminating 
PBC patients according to their ALBI grades. All three models, developed using 
different machine learning methods, demonstrated good discrimination ability 
(mean AUC 0.75–0.80).

Conclusion: This study highlights significant differences in gut microbiota 
profiles among PBC patients with different ALBI grades. The increased abundance 
of Lachnospira and upregulation of sulfur metabolism pathways are notable in 
patients with lower ALBI grades. The machine learning models developed based 
on gut microbiota features offer promising tools for discriminating between 
PBC patients with varying disease severities, which could enhance the precision 
of treatment strategies.
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Introduction

Primary biliary cholangitis (PBC) is a chronic autoimmune 
liver disease, where patients may not exhibit specific signs or 
symptoms in early stages. As the disease progresses, they often 
develop nonspecific signs or symptoms such as pruritus, fatigue, 
and jaundice. The most common abnormalities in liver function test 
are elevated alkaline phosphatase (ALP) and gamma-glutamyl 
transferase (GGT) (Hirschfield et al., 2017; Lindor et al., 2019). 
Since the pathogenesis of PBC remains unclear, involving genetic 
background, autoimmunity, and environmental factors, the onset 
and progression of PBC also exhibit heterogeneity. Given the 
heterogeneous nature of PBC progression among individuals, 
accurate patient classification and assessment are of crucial. In 
addition to conventional criteria like Paris-I, Paris-II, and 
Rotterdam, some studies have proven that albumin-bilirubin 
(ALBI) score at baseline could evaluate prognosis effectively. ALBI 
score was firstly raised in prognosis study of hepatocellular 
carcinoma. In PBC, higher ALBI score usually associated with 
higher liver-transplant rate and death risk (Xu et al., 2024; Chan 
et al., 2015; Yamashita et al., 2023).

The gut-liver axis plays a vital role in liver disease, 
encompassing complex interactions between the gut and liver. 
This involves not only their close anatomical relationship but also 
the exchange of various substances, including bile acids, gut 
microbiota, and microbial metabolites, which can influence the 
physiological status of both organs (Tilg et al., 2022; Li et al., 2017; 
Kummen and Hov, 2019). Previous research on non-alcoholic 
fatty liver disease (NAFLD) and alcoholic liver disease (ALD) have 
demonstrated that dysbiosis occurs in early stages of liver diseases 
and worsens as the disease progresses. In turn, this dysbiosis can 
increase gut mucosal permeability, leading to translocation of 
bacteria and subsequent chronic liver inflammation and fibrosis 
(Mao et  al., 2015; Zhang et  al., 2023). Recent studies on PBC 
patients have begun to uncover their unique gut microbiota 
profiles. Tang et al. demonstrated that gut microbiota profile of 
treatment-naïve PBC patients differed significantly from that of 
healthy controls. Their analysis showed that PBC-enriched genera, 
such as Haemophilus, Streptococcus, and Pseudomonas, decreased 
after treatment, while genera enriched in healthy controls, like 
Bacteriodetes, Sutterella, and Oscillospira, increased (Tang et al., 
2018). These findings shed light on the study of PBC gut 
microbiota discovery.

In recent years, machine learning has been increasingly applied 
in gut microbiota research. Due to its non-invasive nature, this 
method is being used to enhance the classification capabilities of gut 
microbiota in order to evaluate liver disease progression (e.g., fibrosis 
and cirrhosis) and predict disease outcomes, with promising results 
(Liu et  al., 2023). Therefore, we  aimed to use machine learning 
techniques to analyze gut microbiota characteristics of PBC patients 
across different ALBI grades.

Methods

Patients’ data collection

We collected laboratory examination data from 75 patients with 
PBC who were initially diagnosed at Youan Hospital, Capital Medical 
University between 2019 and 2022, including blood routine tests, 
coagulation function tests, and liver function tests. The diagnostic 
criteria for PBC were based on the 2017 EASL guidelines for PBC 
diagnosis: (1) Abnormal elevation of ALP and/or GGT; (2) Positive 
anti-mitochondrial antibody; (3) Liver biopsy showing pathological 
changes associated with PBC (Hirschfield et al., 2017). Patients who 
met at least two of the above criteria were diagnosed with 
PBC. Exclusion criteria included: (1) Patients with viral hepatitis; (2) 
Patients with ALD, NAFLD, or drug-induced liver disease (DILI), 
unrelated to infection; (3) Patients with primary or metastatic liver 
cancer; (4) Patients who used antibiotics, probiotics, or prebiotics 
within the past 14 days; (5) Patients with intestinal diseases or who 
had undergone intestinal surgery; (6) Patients with severe heart or 
kidney dysfunction or other severe organic diseases.

The ALBI score is calculated as follows:

 

( )( )
( )

ALBI score 0.66 log10 TBIL in mol / L
0.085 ALB in g / L

= × µ

− ×

Based on the calculated ALBI score, patients were classified into 
three ALBI grades:

 - ALBI Grade 1: ALBI score ≤ −2.60.
 - ALBI Grade 2: ALBI score > −2.60 and ≤−1.39.
 - ALBI Grade 3: ALBI score > −1.39 (Yamashita et al., 2023).

The present study was approved by the Ethics Committee of 
Capital Medical University affiliated Beijing You’an Hospital (No. 
LL-2019-128-K). All patients provided informed consent prior 
to participation.

Stool collection and DNA extraction

All patients who provided stool samples ensured that they had not 
used antibiotics in the 14 days prior to collection. Stool samples from 
eligible patients were collected using sterile containers, promptly 
stored at −80°C, and transported under cold chain conditions. DNA 
from the samples was extracted using the MagPure Stool DNA KF Kit 
B (MAGEN). The integrity of the DNA was confirmed through 1.2% 
agarose gel electrophoresis, and its concentration and purity 
were verified.

The V3 and V4 regions of the bacterial 16S rDNA gene were 
amplified by polymerase chain reaction (PCR) using bacterial primers 
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(338F 5′-ACTCCTACGGGAGGCAGCAG-3′ and 806R 
5′-GGACTACHVGGGTWTCTAAT-3′).

16S rDNA sequencing and data analysis

Using the Circularization Kit User (MGIEASY), the circularization 
reaction system was prepared to obtain single-stranded circular 
products, and un-circularized linear DNA molecules were digested. 
The single-stranded circular DNA molecules were then subjected to 
rolling circle amplification to form DNA nanoballs (DNBs) containing 
multiple copies of the DNA sequence. The resulting DNBs were 
applied to the wells on a high-density DNA nanochip using the 
combined probe-anchor polymerization technique (cPAS) for 
sequencing [Sequencer: MGISEQ-2000, MGISEQ-2000RS High-
throughput Rapid Sequencing Reagent Kit (FCS PE300)]. The 
sequencing data were subjected to quality control to obtain clean data.

The sequences were assembled using Fast Length Adjustment of 
Short reads (FLASH, v1.2.11) software, where paired-end reads 
generated by sequencing were assembled into a single sequence based 
on their overlapping regions, producing tags of the hypervariable 
regions. The assembled tags were then clustered into Operational 
Taxonomic Units (OTUs) based on 97% similarity using USEARCH 
(v7.0.1090) software. After obtaining the representative OTU 
sequences, taxonomic annotation was performed by comparing the 
OTU representative sequences with the database using the RDP 
classifier software, with a confidence threshold set at 0.6. Finally, 
OTUs with no annotation results or results not related to the analysis 
project were removed.

Alpha diversity was calculated using the specialized software 
package mothur (v.1.31.2) to assess the richness and evenness of the 
microbial communities, including indices such as the Chao1 index, 
ACE index, Shannon index, and Simpson index. Beta diversity 
analysis was performed using QIIME (v1.80) to evaluate the 
differences in species composition between different samples. This 
type of analysis is typically based on distance matrices; in this study, 
Bray-Curtis distance was used to measure the similarity or 
dissimilarity of species composition between samples. The 
phylogenetic characteristics of the gut microbiota and fecal microbial 
communities were analyzed using Linear Discriminant Analysis 
(LDA) and Linear Discriminant Analysis Effect Size (LEfSe) analysis.1 
Additionally, microbial functional annotation was performed using 
PICRUSt2 (v2.3.0-b) based on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database.

Machine learning and statistical analysis

For continuous normally distributed variables, data are presented 
as mean ± standard deviation (SD) and analyzed using independent 
samples t-test. For continuous non-normally distributed variables, 
data are presented as median ± interquartile range (IQR) and analyzed 
using the Mann–Whitney U test. Categorical variables were analyzed 
using the chi-square test. The comparison of gut microbiota alpha 

1 https://huttenhower.sph.harvard.edu/galaxy/

diversity indices between the two groups was conducted using the 
Wilcoxon test.

For the machine learning analysis of patients’ gut microbiota, 
we used a bootstrap method (n = 100) for data feature selection and 
modeling. First, Random Forest was employed to calculate the Mean 
Decrease Accuracy and Mean Decrease Gini for the microbiota. The 
top 10 species identified by the intersection of these two importance 
measures were selected for subsequent modeling and validation. 
We used Lasso, Gradient Boosting Machine (GBM), and Support 
Vector Machine (SVM) methods for modeling. The receiver operating 
characteristic (ROC) curve was analyzed for each bootstrap iteration, 
and the area under the curve (AUC) values were summarized and 
plotted as a frequency histogram to assess the classification 
performance of the models. All statistical analyses and machine 
learning were performed using R (version 4.3.2). A p value <0.05 and 
FDR < 0.1 were considered statistically significant.

Results

Overall comparison of patients’ 
characteristics

Information from 75 PBC patients were collected. Based on ALBI 
calculation formula, patients were divided into ALBI grade 1 (ALBI_1) 
(n = 36), ALBI grade 2 (n = 36), and ALBI grade 3 (n = 3). Since there 
were only three patients in ALBI grade 3, we combined ALBI grade 2 
and 3 (ALBI_2_3) to analyze the data. Overall characteristics of 
patients, including blood count, liver function test was compared in 
Table 1. Except bilirubin and albumin, which we used to classify the 
patients, white blood cells (WBC), platelets (PLT), prothrombin time 
(PT), prothrombin activity (PTA), international normalized ratio 
(INR), aspartate aminotransferase (AST), albumin/globulin (A/G), 
prealbumin (PALB), and total bile acid (TBA) all showed statistically 
significant differences between the two groups. The median level of 
WBC, PLT, PT, PTA, and INR were all within reference values. AST, 
A/G, PALB, and TBA all reflected that ALBI_1 was in relatively 
better status.

Analysis of gut microbiota information

Based on the results of 16S sequencing, we  compared the 
microbial characteristics between ALBI_1 and ALBI_2_3. The 
comparison of Operational Taxonomic Units (OTUs) showed that the 
number of OTUs in the ALBI_2_3 group was significantly lower than 
that in the ALBI_1 group (p < 0.05) (Figure 1A). A Venn diagram 
analysis of the overlap of OTUs between samples indicated that 
ALBI_1 and ALBI_2_3 shared 905 species (Figure 1B). The result also 
revealed that gut microbiota profile differed between ALBI_1 and 
ALBI_2_3 groups. The most abundant top 10 bacteria in class level 
were Clostridia, Bacteroidia, Negativicutes, Gammapropeobacteria, 
Bacilli, Actinobacteria, Verrucomicrobiia, Betaproteobacteria, 
Erysipelotrichia, and Fusobacteriia. ALBI_1 showed significant 
expansion of Clostrdia, Betaproteobacteria, and Erysipelotrichia 
(p < 0.05); Bacilli exhibited significant decrease in ALBI_1 (p < 0.05), 
while other bacteria class did not demonstrated significant differences 
(Figure 2A). Analyzing the species composition at the genus level, the 
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top 10 genera in relative abundance in both groups were Bacteroides, 
Dialister, Escherichia, Faecalibacterium, Gemmiger, Megamonas, 
Phocaeicola, Segatella, Veillonella, and Lachnospira (Figure  1C). A 
comparison of the top 10 genera between the two groups revealed that 
the relative abundance of Lachnospira was significantly higher in 
ALBI_1 than in ALBI_2_3 (p < 0.05), but other genera did not 
significantly enrich in either group. (Figure 2B). These results indicate 
that there are significant differences in the gut microbiota composition 
between PBC patients with different ALBI scores, suggesting that 
alterations in the gut microbiome may be  closely associated with 
disease progression and liver function deterioration in PBC. The 
expansion of beneficial bacteria such as Clostridia and Lachnospira in 
the ALBI_1 group may be linked to maintaining better liver function.

Alpha diversity analysis of the two groups showed that, except for 
the Simpson index, the Chao1, Shannon, and Sobs indices all exhibited 
significant differences between the two groups. These three indices 
were higher in the ALBI_1 group compared to the ALBI_2_3 group, 
indicating that the species richness and evenness were greater in 
ALBI_1 (Figures 3A–D). PLS-DA analysis and PCoA analysis based 
on the Bray-Curtis distance showed some differences in the distribution 
between the two groups (PERMANOVA p < 0.001) (Figures 3E,F).

Phylogenetic characteristics of fecal 
microbiota in PBC patients with different 
ALBI grades

The results of the LEfSe LDA analysis show microbial taxa that have 
a significant impact in different ALBI grade groups (Figure 4A). In the 
ALBI_1 group, 27 species demonstrated significant discriminatory 
power (p < 0.05), with g_Lachnospira being the most prominent (LDA 
score > 4). In the ALBI_2_3 group, 15 species showed significant 
discriminatory power, with c_Bacilli, o_Lactobacillales, and g_
Streptococcus having the highest scores (LDA >4). The LEfSe cladogram 
illustrates the significantly different microbial taxa, where the color of 
the nodes reflects their abundance in the corresponding group, and the 
hierarchical structure from phylum to genus is displayed from the inside 
out (Figure  4B). Combining the LDA results, the c_Bacilli, f_
Enterococcaceae, and o_Lactobacillales taxa, which have significant 
discriminatory power in the ALBI_2_3 group, show a noticeable 
increase in abundance in the cladogram and form an overlapping cluster 
on the phylogenetic tree. This indicates that these taxa are closely related 
evolutionarily and are co-enriched in this group, possibly reflecting the 
adaptive advantage or functional relevance of this evolutionary branch 

TABLE 1 Comparison of clinical characteristics of ALBI_1 and ALBI_2_3 patients.

ALBI_1 ALBI_2_3 p

n 36 39

Gender (%) Female 35 (97.2) 34 (87.2) 0.2021

Male 1 (2.8) 5 (12.8)

Age (mean [SD]) 50.26(11.93) 57.39(8.18) 0.0182

WBC (median [IQR]) 5.65 [4.72, 6.72] 4.42 [3.19, 5.74] 0.0053

PLT (median [IQR]) 235.00 [194.00, 271.00] 105.00 [73.00, 182.50] <0.001

PT (median [IQR]) 10.95 [10.60, 11.60] 11.90 [11.07, 14.55] 0.006

PTA (median [IQR]) 104.00 [95.50, 110.00] 92.50 [63.25, 102.25] 0.004

INR (median [IQR]) 0.96 [0.94, 1.03] 1.06 [1.00, 1.30] <0.001

ALT (median [IQR]) 35.50 [20.75, 60.75] 43.00 [18.00, 62.50] 0.535

AST (median [IQR]) 36.00 [26.00, 67.00] 71.20 [44.50, 93.50] 0.006

TBIL (median [IQR]) 18.20 [12.90, 21.55] 31.70 [19.25, 53.15] <0.001

ALB (median [IQR]) 45.20 [43.10, 47.02] 37.40 [33.20, 39.35] <0.001

A/G (median [IQR]) 1.27 [1.19, 1.52] 1.10 [0.86, 1.35] 0.001

GGT (median [IQR]) 110.00 [34.05, 203.75] 154.00 [73.00, 310.50] 0.090

ALP (median [IQR]) 174.00 [121.00, 241.40] 184.00 [134.50, 331.00] 0.645

PALB (median [IQR]) 203.50 [169.25, 223.50] 125.00 [79.50, 152.25] <0.001

TBA (median [IQR]) 14.00 [7.78, 21.52] 57.10 [24.75, 106.45] <0.001

CR (median [IQR]) 49.00 [42.75, 51.75] 49.00 [44.00, 59.35] 0.393

TG (median [IQR]) 1.29 [1.09, 1.68] 1.21 [0.88, 1.63] 0.436

CHOL (median [IQR]) 5.56 [4.98, 6.55] 5.34 [4.18, 6.81] 0.216

HDL (median [IQR]) 1.46 [1.21, 2.01] 1.25 [1.00, 1.77] 0.163

LDL (median [IQR]) 3.31 [2.79, 3.82] 2.80 [2.18, 3.68] 0.129

1: Chi-square test; 2: independent samples t-test; 3: Mann–whitney U test. WBC, White blood cell; PLT, Platelet; PT, Prothrombin time; PTA, Prothrombin activity; INR, International 
normalized ratio; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; TBIL, Total bilirubin; ALB, Albumin; A/G, Albumin/globulin ratio; GGT, Gamma-glutamyltranspeptidase; 
ALP, Alkaline phosphatase; PALB, Pre-albumin; TBA, Total bile acids; CR, Creatinine; TG, Triglycerides; CHOL, Cholesterol; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; 
ALBI, Albumin-bilirubin. Normal reference range: WBC 3.5 ~ 9.5 *109/L; PLT 120 ~ 350 *109/L; PT 9.9 ~ 12.8 s; PTA: 80 ~ 120%; INR: 0.8–1.2; ALT 7 ~ 40 U/L; AST 13 ~ 35 U/L; TBIL 
5 ~ 21 μmol/L; ALB 40 ~ 55 g/L; A/G: 1.2 ~ 2.4; GGT 7 ~ 45 U/L; ALP 50 ~ 79 U/L; PALB: 200 ~ 400 mg/L; TBA: μmol/L; TG: <1.7 mmol/L; CHOL: <5.18 mmol/L; HDL: 1.0–1.6 mmol/L; LDL: 
<2.6 mmol/L.
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in ALBI_2_3. It suggests that selective pressure in this specific group 
enhances the prominence of this branch within the microbial community.

Functional analysis of gut microbiota 
differences in PBC patients with different 
ALBI grades

Using PICRUSt to predict microbial community gene functions 
based on sequencing data, it was found that pathways such as sulfur 
metabolism, pentose phosphate pathway, taurine and hypotaurine 
metabolism, citrate cycle, folate biosynthesis, thiamine metabolism, 
selenocompound metabolism, and ubiquinone and other terpenoid-
quinone biosynthesis were relatively abundant in both groups. These 
pathways showed statistically significant differences between the two 
groups (p < 0.05). After FDR correction, sulfur metabolism exhibited 
the most pronounced difference between the two groups (p < 0.05, 

FDR < 0.1), with higher expression in the ALBI_1 (Log 2 ALBI_1 vs. 
ALBI_2_3 = 0.17) (Figure  5). In the human body, various organic 
compounds, such as carbohydrates, amino acids, and cholesterol 
derivatives, undergo sulfation and desulfation processes. The 
microbiome can regulate these processes through its own enzymes, 
thereby impacting human health.

Machine learning classification analysis

As outlined in the methods section, we employed a bootstrap 
approach to enhance the robustness of our data analysis. Initially, 
we constructed a random forest model and calculated both Mean 
Decrease Accuracy and Mean Decrease Gini to rank the microbial 
taxa based on their importance in classification. Since we used 
bootstrapping, we  repeated this process at each stage of the 
machine learning calculations, aggregating results across multiple 

FIGURE 1

Overall characteristics of gut microbiota in different ALBI groups. (A) OTU number comparison of ALBI_1 and ALBI_2_3; (B) Venn diagram of OTU 
distribution in different groups; (C) The comparative distribution of the most prevalent genera across the two groups.
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iterations. The bootstrapped random forest models demonstrated 
consistent stability, ensuring the robustness of the selected 
features. Based on importance rankings from both Mean Decrease 
Accuracy and Mean Decrease Gini, we selected the top 10 species 
for further modeling and validation. These genera were 
Mediterranebacter, Agathobacter, Blautia, Streptococcus, 
Lachnospira, Parasutterella, Bifidobacterium, Dialister, Veillonella, 
and Pantoea (Figures 6A–F).

Notably, Dialister, Lachnospira, and Veillonella were among the 
most distinctive genera, aligning with previous studies that have 
highlighted their potential roles in gut-liver axis interactions and 
immune modulation. Interestingly, most of the other selected genera, 
such as Mediterranebacter and Bifidobacterium, were not the most 
abundant in our previous analysis, emphasizing that random forest 
tends to prioritize genera with high predictive value, rather than the 
highest abundance. This discrepancy highlights the utility of machine 
learning models in uncovering subtle but significant microbial 
patterns that may be missed using abundance-based analyses alone.

Next, we implemented three additional machine learning models: 
Gradient Boosting Machine (GBM), Support Vector Machine (SVM), 
and Lasso regression. To assess the predictive performance of each 
model, we  employed a bootstrap-based validation strategy and 
calculated the Area Under the Curve (AUC) using ROC analysis. 
Across 100 bootstrap iterations, the models demonstrated consistent 
and reliable performance, as reflected in the mean AUC values. 
Specifically:

 • GBM yielded an average AUC of 0.77 (sd = 0.04),
 • SVM produced an average AUC of 0.76 (sd = 0.04), and
 • Lasso resulted in an average AUC of 0.75 (sd = 0.05).

The consistency of these AUC values across different models 
indicates the robustness of the selected features for distinguishing 
between the two ALBI patient groups. Figures 7A–C presents the 
frequency distribution histograms of AUCs for each method, with the 

highest frequency of AUC values concentrated in the 0.75–0.80 range. 
These histograms further validate that the selected microbial taxa 
provide stable classification performance across different machine 
learning techniques.

Discussion

The role of gut microbiota in the study of PBC is receiving 
increasing attention. Among the various criteria for predicting PBC 
prognosis, the recently introduced ALBI grade has shown significant 
potential, though it still requires validation from multiple perspectives. 
In our study, we compared PBC patients categorized by ALBI grade, 
providing a cross-sectional analysis of their clinical information along 
with the comparative characteristics of their gut microbiota, including 
functional pathway predictions. We then applied the random forest 
method to identify the 10 most distinguishing features between 
patients of different ALBI grades. The predictive power of these key 
features was further validated using GBM, SVM, and Lasso methods, 
all of which confirmed their utility in constructing reliable 
predictive models.

Our clinical data revealed significant differences in other 
prognostic indicators between the ALBI_1 and ALBI 2_3 groups, 
including TBIL and TBA levels, which were significantly lower in the 
ALBI_1 group. These findings align with previous studies, reinforcing 
that the ALBI grade correlates with the patient’s overall condition—
where a lower ALBI grade is associated with better patient status 
and prognosis.

In terms of gut microbiota composition, our analysis revealed 
that the ALBI_1 group exhibited higher species richness and 
evenness (as indicated by Chao1, Shannon, and ACE indices) 
compared to the ALBI_2_3 group in alpha diversity analysis. 
Furthermore, both PCoA and PLS-DA analyses also demonstrated a 
significant difference in gut microbiota composition between the two 
groups. These findings suggest that patients in the ALBI_1 group, 

FIGURE 2

Relative abundance comparison of most abundant bacteria in different ALBI groups. (A) Class level; (B) Genus level.
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who are in a milder disease state, have a more balanced gut 
microbiota, which aligns with previous research. It has been 
established that species richness is generally lower in PBC patients 
compared to healthy controls (Tang et al., 2018; Furukawa et al., 
2020). Wang et  al. (2024) further found that species richness is 
reduced in PBC patients with cirrhosis compared to those without. 
The observed decrease in gut microbiota richness and diversity in 
ALBI_2_3 patients with poorer liver function may be explained by 
the disrupted gut-liver axis in advanced liver disease. As liver 
function deteriorates, factors such as bile acid composition, intestinal 

permeability, and immune responses are altered, leading to an 
imbalance in the gut microbiota. The reduction in beneficial 
microbial species and overall microbial diversity could further 
contribute to inflammation and metabolic dysregulation, 
exacerbating liver damage and promoting disease progression (Tilg 
et al., 2022; Hsu and Schnabl, 2023).

Interestingly, in the classical PBC microbiota study by Tang et al., 
no significant difference in diversity was observed when patients were 
classified based on their albumin and bilirubin levels (Tang et al., 
2018). This discrepancy might be due to the heterogeneity in PBC 

FIGURE 3

Alpha (A–D) and beta (E,F) diversity analysis among different ALBI groups. (A) Chao1 index; (B) Shannon index; (C) Simpson index; (D) Sobs index; 
(E) PLS-DA; (F) PCoA.
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FIGURE 4

LDA analysis (A) and LEfSe cluster analysis (B) identified microbial taxa with significant discriminatory power between ALBI grade groups.
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FIGURE 5

Pathway enrichment analysis comparing ALBI grade 1 and grades 2–3 groups. The chart shows the relative abundance, fold change (Log2), and 
significance (p value/FDR) of metabolic pathways between the two groups.
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progression among individuals or differences in methodology. While 
Tang et al. classified patients directly based on albumin and bilirubin 
levels, our study used a comprehensive calculation of these two 
indicators for classification. These studies collectively support the 
value of ALBI criteria in classifying gut microbiota in PBC patients.

We discovered the difference of the most abundant classes and 
genus bacteria of the two groups. Among these bacteria, Clostridia 
and Lachnospira was identified as the most discriminative species 
between the groups at genus level, with significantly higher relative 
abundance in the ALBI_1 group. Lachnospira, an anaerobic bacterium 
belonging to the Clostridia class within the Firmicutes phylum and the 
Lachnospiraceae family. The Lachnospiraceae family, to which 
Lachnospira belongs, is known for its ability to ferment carbohydrates 
in the host to produce various short-chain fatty acids (SCFAs), 
including acetate, propionate, and butyrate (Vacca et al., 2020). SCFAs 
have been shown to participate positively in liver disease in multiple 
ways. Tang et al. found that Faecalibacterium, another SCFA producer, 
decreases in PBC patients (Tang et al., 2018). In a study by Lammert 

et al., the relative abundance of Lachnospiraceae of PBC patients in 
late-stage fibrosis was significantly lower compared to those without, 
and stool acetate levels in non-late-stage were positively correlated 
with Lachnospiraceae group NK4A136 (Lammert et al., 2021). SCFAs 
can influence immune cell function by promoting the differentiation 
of dendritic cells and regulatory T cells (T regs), increasing immune 
tolerance (Zhang et al., 2023). Moreover, Wang et al.’s recent study 
showed that patients with poor UDCA response had decreased 
butyrate levels, and butyrate could improve cholangitis by inhibiting 
HDAC3 in myeloid-derived suppressor cells (MDSCs), enhancing 
acetylation of histone H3 lysine 27 (Wang et al., 2024).

Other studies have highlighted the protective role of SCFAs in 
liver disease. For instance, in a study on acute liver injury (AILI), fecal 
transplantation enriched for Lachnospiraceae and SCFAs promoted 
recovery of mitochondrial membrane potential, prevented ferroptosis, 
reduced DNA oxidation and lipid peroxidation, and alleviated AILI in 
mice (Yang et al., 2024). In NAFLD-related animal studies, feeding 
high-fat diet mice with sodium butyrate improved their liver 

FIGURE 6

Mean decrease gini and mean decrease accuracy of genera calculated by random forest before performing GBM (A,B), SVM (C,D), or Lasso (E,F).
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FIGURE 7

Average AUC of ROC analysis of different machine learning model by bootstrap (n  =  100). (A) GBM; (B) SVM; (C) Lasso.
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biochemical levels, restored tight junctions in the small intestine, and 
reversed gut microbiota changes induced by a high-fat diet toward a 
profile similar to that of healthy controls (Zhou et al., 2017). Sodium 
butyrate can inhibit the progression of NAFLD by increasing histone 
acetylation and enhancing the sensitivity to glucagon-like peptide-1 
(Zhou et al., 2018). In summary, these findings suggest the potential 
of SCFAs as research targets in the occurrence and progression of PBC.

In our pathway prediction using PICRUSt, sulfur metabolism 
emerged as the most significantly altered pathway. In living organisms, 
sulfur mainly exists as sulfur-containing amino acids (e.g., cysteine 
and methionine) and sulfates (Carbonero et  al., 2012) Microbial 
sulfation and desulfation of carbohydrates have important effects on 
host health. Studies have shown that tyrosine can be metabolized into 
p-cresol sulfate through sulfur metabolism pathways in the body, 
which has been shown to alleviate inflammation in PBC by 
modulating the polarization of Kupffer cells and promoting the 
expression of anti-inflammatory factors (Fu et al., 2022). Additionally, 
reactive sulfur species (RSS), like H2S and H2S2, are generated in the 
process of sulfur metabolism, which can protect cells from oxidative 
stress (Xiao et  al., 2018; Powell et  al., 2018; Akaike et  al., 2017). 
Uchiyama et al. demonstrated that gut microbiota could produce RSS 
and alleviate oxidative stress damage in Concanavalin A-induced mice 
model. Lachnospiraceae was found to produce high levels of RSS, 
which may explain why Lachnospira abundance and sulfur metabolism 
were both upregulated in ALBI_1 group (Uchiyama et al., 2022).

To more accurately assess whether gut microbiota-based models 
can classify patients by ALBI grade, we applied machine learning 
techniques to identify the most distinguishing microbial features. 
Using random forests for feature selection, followed by validation with 
GBM, SVM, and Lasso, we found that all three methods consistently 
produced AUC values within a narrow range (0.75–0.80). This 
consistency underscores the robust discriminatory ability of the 
selected microbial features.

Moreover, the random forest model’s emphasis on predictive 
value, rather than sheer abundance, allowed us to identify key genera 
that are potentially critical in PBC progression and ALBI classification, 
despite not being among the most abundant taxa. The stability and 
consistency of these features across multiple models reinforce the 
reliability of our approach. By leveraging machine learning, we can 
assist clinicians in identifying potential biomarkers for diagnosis, 
prognosis assessment, and disease monitoring, enabling more precise 
and effective handling of large, multidimensional data.

In our machine learning analysis, Lachnospira emerged as one of 
the top microbial features distinguishing between different ALBI 
grades. This finding not only reinforces the previously discussed 
higher abundance of Lachnospira in the ALBI_1 group, but also 
supports its biological significance in sulfur metabolism, as outlined 
earlier. While sulfur metabolism was identified through pathway 
analysis, Lachnospira’s selection by the machine learning model 
underscores its central role in both gut microbiota composition and 
metabolic function in PBC patients.

Thus, the machine learning model not only highlights 
Lachnospira’s discriminatory power, but also aligns with earlier 
observations linking its elevated abundance to upregulated sulfur 
metabolism, contributing to the anti-inflammatory and 
antioxidative processes observed in milder PBC cases (ALBI_1). 
These results across both biological pathway analysis and machine 

learning classification reinforces Lachnospira’s role as a key player 
in the gut-liver axis, further validating its relevance in 
PBC progression.

This study has several limitations that should be considered when 
interpreting the findings. First, the sample size was relatively small, 
particularly in the machine learning analysis. Although we used the 
bootstrap method to resample the data and address this issue, it may 
still introduce some risk of overfitting. To enhance the reliability of the 
results, future studies should involve larger, independent cohorts 
for validation.

Second, the study duration was relatively short. Given the chronic 
nature of PBC, longer study periods would allow us to observe more 
significant and long-term changes in gut microbiota composition and 
disease progression. Future research should aim to extend the study 
duration to capture these trends over time.

In addition to these primary limitations, the current sequencing 
depth may not have been sufficient to capture the full microbial 
diversity present in the samples. We recommend that future studies 
employ metagenomic approaches for more comprehensive 
sequencing, which could provide a deeper understanding of microbial 
functional pathways and interactions.

Despite these limitations, our study provides valuable insights 
into the gut microbiota profiles of PBC patients across different 
ALBI grades, and demonstrates the potential of machine learning 
techniques in identifying key microbial features for 
disease classification.

Conclusion

In conclusion, we investigated the gut microbiota profiles of PBC 
patients with different ALBI grades, demonstrating the significance 
of ALBI classification from the perspective of gut microbiota. 
We found that Lachnospira was both discriminative in abundance 
and function by directly analyzing gut microbiota profile and 
machine learning methods. Besides Lachnospira, we also found other 
bacteria that function in distinguishing ALBI_1 and ALBI_2_3 PBC 
patients. In the future, combining ALBI classification with microbiota 
characteristics may enable more precise patient differentiation and 
prognostic assessment.
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